

Windows® Communication
Foundation 4 Step by Step

John Sharp

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2010 CM Group Ltd.

Complying with all applicable copyright laws is the responsibility of the user. All rights reserved. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without express written permission of O’Reilly Media, Inc.

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 M 5 4 3 2 1 0

Microsoft Press titles may be purchased for educational, business or sales promotional use. Online editions are also
available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com. Visit our website at microsoftpress.oreilly.com. Send
comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, Excel, FrontPage, Internet Explorer, PowerPoint, SharePoint, Webdings, Windows,
and Windows 7 are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos,
people, places, and events depicted herein are fictitious, and no association with any real company, organization, prod-
uct, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the author, O’Reilly Media, Inc., Microsoft Corporation, nor their
respective resellers or distributors, will be held liable for any damages caused or alleged to be caused either directly
or indirectly by such information.

Acquisitions and Development Editor: Russell Jones
Production Editor: Kristen Borg
Production Services: Octal Publishing, Inc.
Technical Reviewer: Ashish Ghoda and Kenn Scribner
Indexing: Potomac Indexing, LLC
Cover: Karen Montgomery
Illustrator: Robert Romano

978-0-735-64556-1

Download from Wow! eBook <www.wowebook.com>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	 	 iii

Contents at a Glance
	Chapter 1
	Introducing Windows Communication Foundation 1
	Chapter 2
	Hosting a WCF Service . 45
	Chapter 3
	Making Applications and Services Robust . 93
	Chapter 4
	Protecting an Enterprise WCF Service . 121
	Chapter 5
	Protecting a WCF Service over the Internet . 165
	Chapter 6
	Maintaining Service Contracts and Data Contracts 203
	Chapter 7
Maintaining State and Sequencing Operations 243
	Chapter 8
Implementing Services by Using Workflows . 295
	Chapter 9
	Supporting Transactions . 351
	Chapter 10
	Implementing Reliable Sessions . 379
	Chapter 11
	Programmatically Controlling the Configuration and

Communications . . 399
	Chapter 12
Implementing One-Way and Asynchronous Operations 433

Download from Wow! eBook <www.wowebook.com>

iv	 Contents at a Glance

	Chapter 13
	Implementing a WCF Service for Good Performance 465
	Chapter 14
	Discovering Services and Routing Messages . 491
	Chapter 15
	Building REST Services . 547
	Chapter 16
	Using a Callback Contract to Publish and Subscribe to Events 599
Chapter 17
	Managing Identity with Windows CardSpace 625
	Chapter 18
	Integrating with ASP.NET Clients and Enterprise Service

Components . 647
	

Download from Wow! eBook <www.wowebook.com>

	 	 v

Table of Contents
Acknowledgments . xi

Introduction . xiii

1	 Introducing Windows Communication Foundation 1
What Is Windows Communication Foundation? . 1

The Early Days of Personal Computer Applications 1

Inter-Process Communications Technologies . 2

The Web and Web Services . 3

Using XML as a Common Data Format . . 4

Sending and Receiving Web Service Requests . 5

JavaScript Object Notation and Rich Internet Applications 5

Handling Security and Privacy in a Global Environment 6

Service-Oriented Architectures and Windows Communication
Foundation . . 7

Building a WCF Service . 9

Defining the Contracts . . 16

Implementing the Service . 18

Configuring and Testing the Service . 24

Building a WCF Client Application . 30

Deploying a WCF Service to Internet Information Services 39

WCF and the Principles of SOA . . 42

Summary . 43

2	 Hosting a WCF Service . 45
How Does a WCF Service Work? . 45

Service Endpoints . 46

Processing a Client Request . 47

Hosting a WCF Service by Using Windows Process Activation Service 49

Hosting a Service in a User Application . 54

Using the ServiceHost Class . 55

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Download from Wow! eBook <www.wowebook.com>

vi	 Table of Contents

Building a Windows Presentation Foundation Application to Host a WCF
Service . . 58

Reconfiguring the Service to Support Multiple Endpoints 72

Understanding Endpoints and Bindings . 76

The WCF Predefined Bindings . 77

Configuring Bindings . 81

Default Endpoints . 82

Hosting a WCF Service in a Windows Service . 84

Summary . 91

3	 Making Applications and Services Robust 93
CLR Exceptions and SOAP Faults . 94

Throwing and Catching a SOAP Fault . 94

Using Strongly Typed Faults . 99

Reporting Unanticipated Exceptions . 110

Managing Exceptions in Service Host Applications . 114

ServiceHost States and Transitions . 114

Handling Faults in a Host Application . . 115

Handling Unexpected Messages in a Host Application 116

Summary . 119

4	 Protecting an Enterprise WCF Service . 121
What Is Security? . 121

Authentication and Authorization in a Windows Environment 123

Transport-Level and Message-Level Security . 124

Implementing Security in a Windows Domain . 127

Protecting a TCP Service at the Message Level . 127

Protecting an HTTP Service at the Transport Level 135

Protecting an HTTP Service at the Message Level 142

Authenticating Windows Users . 146

Authorizing Users . 152

Using Impersonation to Access Resources . 160

Summary . 163

5	 Protecting a WCF Service over the Internet 165
Authenticating Users and Services in an Internet Environment 166

Authenticating and Authorizing Users by Using the ASP.NET
Membership Provider and the ASP.NET Role Provider 166

Download from Wow! eBook <www.wowebook.com>

	 Table of Contents	 vii

Authenticating and Authorizing Users by Using Certificates 184

Authenticating Service Messages by Using a Certificate 195

Summary . 202

6	 Maintaining Service Contracts and Data Contracts 203
Modifying a Service Contract . 204

Selectively Protecting Operations . 205

Versioning a Service . 211

Making Breaking and Nonbreaking Changes to a Service Contract . . 222

Modifying a Data Contract . 224

Data Contract and Data Member Attributes . 224

Data Contract Compatibility . 238

Summary . 242

7	 Maintaining State and Sequencing Operations 243
Managing State in a WCF Service . 244

Service Instance Context Modes . 257

Maintaining State with the PerCall Instance Context Mode 262

Selectively Controlling Service Instance Deactivation 270

Sequencing Operations in a WCF Service . . 271

Summary . 294

8	 Implementing Services by Using Workflows 295
Building a Simple Workflow Service and Client Application 296

Implementing a Workflow Service . . 296

Implementing a Client Application for a Workflow Service 313

Handling Faults in a Workflow Service . 317

Hosting a Workflow Service . 325

Hosting a Workflow Service in IIS . 325

Hosting a Workflow Service in a Custom Application 328

Implementing Common Messaging Patterns in a Workflow Service 332

Messaging Activities . . 333

Correlating Request and Reply Messages in a
Workflow Service Instance . 335

Using Messaging Activities to Implement Messaging
Patterns . . 336

Managing Sessions and Maintaining State in a Workflow Service 337

Building Durable Workflow Services . 347

Summary . 350

Download from Wow! eBook <www.wowebook.com>

viii	 Table of Contents

9	 Supporting Transactions . 351
Using Transactions in a WCF Service . 352

Implementing OLE Transactions . . 352

Implementing the WS-AtomicTransaction Protocol 369

Designing a WCF Service to Support Transactions . 371

Transactions, Sessions, and Service Instance Context Modes 371

Transactions and Messaging . . 372

Transactions and Multi-Threading . 372

Implementing Transactions in a Workflow Service . 373

Long-Running Transactions . 376

Summary . 377

10	 Implementing Reliable Sessions . 379
Using Reliable Messaging . 380

Implementing Reliable Sessions with WCF . 381

Detecting and Handling Replay Attacks . 390

Configuring Replay Detection with WCF . 391

Summary . 397

11	 Programmatically Controlling
the Configuration and Communications 399

The WCF Service Model . 399

Services and Channels . 400

Behaviors . 401

Composing Channels into Bindings . . 403

Inspecting Messages . 408

Controlling Client Communications . . 419

Connecting to a Service Programmatically . 419

Sending Messages Programmatically . 427

Summary . 431

12	 Implementing One-Way and Asynchronous Operations 433
Implementing One-Way Operations . 434

The Effects of a One-Way Operation . 434

One-Way Operations and Transactions . 435

One-Way Operations and Timeouts . 435

Implementing a One-Way Operation . 436

Recommendations for Using One-Way Operations 445

Download from Wow! eBook <www.wowebook.com>

	 Table of Contents	 ix

Invoking and Implementing Operations Asynchronously 446

Invoking an Operation Asynchronously in a Client Application 446

Implementing an Operation Asynchronously in a WCF Service 447

Using Message Queues . 457

Summary .464

13	 Implementing a WCF Service for Good Performance 465
Using Service Throttling to Control Resource Use . 466

Configuring Service Throttling . 467

Specifying Memory Requirements . 475

Transmitting Data by Using MTOM . 476

Sending Large Binary Data Objects to a Client Application 478

Controlling the Size of Messages . 484

Streaming Data from a WCF Service . 487

Enabling Streaming in a WCF Service and Client Application 487

Designing Operations to Support Streaming . 488

Security Implications of Streaming . 490

Summary . 490

14	 Discovering Services and Routing Messages 491
Implementing Discovery . 491

Configuring Ad Hoc Discovery . 492

Handling Service Announcements . . 499

Using a Discovery Proxy . 507

Implementing Routing . 523

Routing Messages Manually . 524

Using the RoutingService Class . . 539

Summary . 546

15	 Building REST Services . 547
Understanding the REST Model . 547

Querying Data by Implementing a REST Web Service 549

Updating Data Through a REST Web Service . . 570

Using WCF Data Services . 579

Consuming a WCF Data Service in a Client Application 587

Modifying Data by Using a WCF Data Service . 595

Handling Exceptions in a Client Application . 597

Summary . 598

Download from Wow! eBook <www.wowebook.com>

x	 Table of Contents

16	 Using a Callback Contract to Publish and Subscribe to Events . 599
Implementing and Invoking a Client Callback . 600

Defining a Callback Contract . 600

Implementing an Operation in a Callback Contract 601

Invoking an Operation in a Callback Contract . . 604

Reentrancy and Threading in a Callback Operation 605

Bindings and Duplex Channels . 606

Using a Callback Contract to Notify a Client of the Outcome of a
One-Way Operation . 606

Using a Callback Contract to Implement an Eventing Mechanism 614

Delivery Models for Publishing and Subscribing 620

Summary . 623

17	 Managing Identity with Windows CardSpace 625
Using Windows CardSpace to Access a WCF Service . 626

Implementing Claims-Based Security . 626

Using an Identity Provider . . 641

Claims-Based Authentication in a Federated Environment 643

Summary .646

18	 Integrating with ASP.NET Clients and Enterprise Services
Components . 647

Creating a WCF Service That Supports an ASP.NET Client 647

Exposing a COM+ Application as a WCF Service . 657

Summary . 668

Index . 669

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Download from Wow! eBook <www.wowebook.com>

xi

Acknowledgments
On the back cover of his book, “Dirk Gently’s Holistic Detective Agency,” Douglas Adams
depicts an invoice presented by Mr. Gently to his client for attempting to find her missing cat.
It contains the following items:

Item Charge

Finding cat (deceased) £50.00

Detecting and triangulating vectors of interconnectedness of all things £150.00

Tracing same to beach on Bahamas, fare and accommodation £1500.00

Struggling on in face of draining skepticism from client, drinks £327.00

Saving the human race from total extinction No charge

Douglas Adams’s book was published in 1987, but 23 years later I find myself empathizing
with Dirk Gently. Happily, my own beloved feline, Ginger, is still very much with us, but in
common with many service-oriented developers these days, I spend more and more time
searching for solutions that enable me to connect all things together. Clearly, my home office
is not quite a beach on the Bahamas, but I do admit to enjoying a decent amount of time
sunning myself in the stands at Edgbaston (the home of Warwickshire County Cricket Club)
watching batsmen attempting to endanger workmen building the new pavilion with lofted
drives over the boundary, while I contemplate how to configure pieces of software to get
them to interoperate and communicate correctly. My wife is always a little skeptical of how
our jaunts to see how Warwickshire fares against other county cricket teams amounts to
“work,” but she enjoys the cricket as much as I do, so she does not complain.

In the world of connected solutions, Microsoft Windows Communication Foundation has
proved an absolute boon, and although I am yet to be convinced that it has saved the human
race from extinction, I have authored papers and even produced a video on how using WCF
can help to save your organization (this may be hyperbole, but you know what we technophiles
are like when we desperately want to convince management of the need to invest in new
software and machinery!). To this end, I always count it an absolute privilege whenever I get
the chance to write in depth about fun, new technology; as I mentioned in the previous edition
of this book, I thank all at Content Master for allowing me to spend a significant amount of
my time doing it.

It would also be very remiss of me not to thank Russell Jones at O’Reilly Media, who badg-
ered me and patiently waited while I found the time to get started on this project as well as
for all his support and help in editing and correcting my grammar during the initial drafts of
each chapter, and to Bob Russell at Octal Publishing, who had the unrewarding job of hav-
ing to wade through every chapter seeking out any remaining “British-isms.” Additionally,

Download from Wow! eBook <www.wowebook.com>

xii	 Acknowledgments

sincere thanks are due to Ashish Ghoda and Kenn Scribner who took on the daunting task of
checking the technical accuracy of my work and who provided valuable advice, guidance, and
corrections whenever I was wrong (any remaining technical errors in the book are my own,
of course). Also, thanks to Lin Joyner at Content Master, who expended a significant effort at
great personal risk to her own sanity, for agreeing to test many of the exercises for me.

Finally, I must pay the greatest tribute to my long-suffering family: to Diana, my wife and
fellow cricket-watcher, who is never short of advice when seeing a batsman struggle against a
short-pitched delivery (“Just hit the ball!”); to James who grew up and left home to go to uni-
versity while I was writing Chapter 17; and to Francesca who has learned from my wife what it
takes to make a truly excellent cup of tea.

And to Ginger—please stop trying to walk across my keyboard as I type.

—John Sharp

Download from Wow! eBook <www.wowebook.com>

xiii

Introduction
Microsoft Windows Communication Foundation (WCF), alongside Windows Workflow Foun-
dation (WF) and Windows Presentation Foundation (WPF), has become part of the primary
framework for building the next wave of business applications for the Microsoft Windows
operating system. WCF provides the underpinning technology driving distributed solutions
based on the Microsoft platform; with it, you can build powerful service-oriented systems
designed to address connected services and applications. WCF is also an integral technology
for building and accessing services running in the cloud under Windows Azure.

You can use WCF to create new services as well as augment and interoperate with many exist-
ing services created by using other technologies. When designing distributed applications in
the past, you frequently had to choose a specific technology, such as Web services, COM+,
Microsoft Message Queue, or .NET Framework Remoting. That choice often had a fundamen-
tal impact on the architecture of your solutions. In contrast, WCF provides a consistent model
for implementing scalable and extensible systems that employ a variety of technologies with
which you can design and architect your solutions without being restricted by a specific con-
nectivity mechanism.

In short, if you are building professional, service-oriented solutions for Windows, you need to
learn about WCF.

Who This Book Is For
This book will show you how to build connected applications and services using WCF. If you
are involved in designing, building, or deploying applications for the Microsoft Windows
operating system, sooner or later you are going to need to become familiar with WCF. This
book will give you the initial boost you need to quickly learn many of the techniques required
to create systems based on WCF. The book takes a pragmatic approach, covering the concepts
and details necessary to enable you to build connected solutions.

Assumptions
To get the most from this book, you should meet the following profile:

■■ You should be an architect, designer, or developer who will be creating solutions for
the Microsoft Windows family of operating systems.

■■ You should have experience developing applications using Visual Studio and C#.

■■ You should have a basic understanding of concepts such as transactions, Web services,
security, and message queuing.

Download from Wow! eBook <www.wowebook.com>

xiv	 Introduction

Finding Your Best Starting Point in This Book
This book is designed to help you build skills in a number of essential areas. It assumes that
you are new to WCF and takes you step by step through the fundamental concepts of WCF,
feature by feature. The techniques and ideas that you see in one chapter are extended by
those in subsequent chapters; therefore, most readers should follow the chapters in sequence
and perform each of the exercises. However, if you have specific requirements or are only
interested in certain aspects of WCF, you can use the table below to find your best route
through this book.

If you are Follow these steps

New to Web services and distributed appli-
cations and need to gain a basic under-
standing of WCF.

1.	 Install the code samples as described in the “Code
Samples” section of this Introduction.

2.	 Work through Chapters 1 to 5 sequentially and per-
form the exercises.

3.	 Complete Chapters 6 to 18 as your level of experi-
ence and interest dictates.

New to Web services and distributed appli-
cations and need to learn how to use WCF
to implement solutions using common Web
services features such as sessions, transac-
tions, and reliable messaging.

1.	 Install the code samples as described in the “Code
Samples” section of this Introduction.

2.	 Work through Chapters 1 to 10 sequentially and
perform the exercises.

3.	 Complete Chapters 11 to 18 as your level of experi-
ence and interest dictates.

Familiar with Web services and distributed
applications, and need to learn about WCF
quickly, including its advanced features.

1.	 Install the code samples as described in the “Code
Samples” section of this Introduction.

2.	 Skim the first chapter for an overview of WCF, but
perform the exercises.

3.	 Read Chapter 2 and perform the exercises.

4.	 Skim Chapter 3.

5.	 Read Chapters 4 and 5 and complete the exercises.

6.	 Skim Chapters 6 to 10, performing the exercises that
interest you.

7.	 Complete the remaining chapters and exercises.

Familiar with security concepts but need to
understand how to use the security features
that WCF provides.

1.	 Install the code samples as described in the “Code
Samples” section of this Introduction.

2.	 Skim the first three chapters.

3.	 Read Chapters 4 and 5 and perform the exercises.

4.	 Skim Chapters 6 to 15.

5.	 Read Chapter 17 and complete the exercises.

6.	 Skim Chapter 18.

Download from Wow! eBook <www.wowebook.com>

	 Introduction	 xv

If you are Follow these steps

Referencing the book after working
through the exercises.

1.	 Use the index or the Table of Contents to find infor-
mation about particular subjects.

2.	 Read the Summary sections at the end of each chap-
ter to find a brief review of the concepts and tech-
niques presented in the chapter.

Conventions and Features in This Book
This book presents information using conventions designed to make the information readable
and easy to follow. Before you start, read the following list, which explains conventions you’ll
see throughout the book and points out helpful features that you might want to use:

■■ Each exercise is a series of tasks. Each task is presented as a series of numbered steps
(1, 2, 3, and so on). A bullet (n) indicates an exercise that has only one step.

■■ Reader aids labeled “Note” and “Tip” provide additional information or alternative
methods for completing a step successfully.

■■ Reader aids labeled “Important” alert you to information you need to check before
continuing.

■■ Text that you type appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys at the
same time. For example, “Press Alt+Tab” means that you hold down the Alt key while
you press the Tab key.

System Requirements
You’ll need the following hardware and software to complete the practice exercises in this
book:

■■ Microsoft Windows 7 Professional, Enterprise, or Ultimate editions.

Note  Some of the exercises require you to create local users and security groups. This fea-
ture is not available with Windows 7 Home Basic or Home Premium editions.

■■ Microsoft Visual Studio 2010 Professional, Premium, Ultimate, or Test Professional
editions, including SQL Server 2008 Express.

Download from Wow! eBook <www.wowebook.com>

xvi	 Introduction

Note  The exercises in this book are not intended to work with Visual Studio 2010 Express
edition.

■■ 1.6 GHz or faster 32-bit (x86) or 64-bit (x64) processor.

■■ 1 GB RAM (32-bit) or 2 GB RAM (64-bit).

■■ 20 GB available hard disk space (32-bit) or 25 GB (64-bit).

■■ DirectX 9 graphics device with WDDM 1.0 or higher driver.

■■ Microsoft mouse (or compatible) pointing device.

Some of the exercises require that you have installed Internet Information Services (IIS) and
Message Queuing (MSMQ). You will also need the AdventureWorks database provided with
the code samples for this book. Download and installation instructions are provided later in
this introduction.

Important  If you have other tools or services that establish network connections, you may
need to temporarily halt them if they use the same ports required by the exercises in this
book (alternatively, you can replace the port numbers referenced by the exercises with
others of your own choice). For example, some of the exercises reference port 8080. If you
have the Apache Web server running on your development computer, it defaults to using
port 8080, so you may need to halt or reconfigure this service.

Code Samples
Follow these steps to download and install the code samples and other companion content
on your computer so that you can use them with the exercises:

	 1.	 Navigate to http://oreilly.com/catalog/9780735645561/.

	 2.	 Click the Companion Content link.

You’ll see instructions for downloading the .zip archive containing the companion con-
tent files.

	 3.	 Unpack the .zip archive into your Documents folder. This action creates the following
folder containing the exercise and solution files for each chapter:

Microsoft Press\WCF Step By Step

Download from Wow! eBook <www.wowebook.com>

	 Introduction	 xvii

Installing and Configuring Internet Information Services and
Microsoft Message Queue
Many of the exercises in this book require you to build WCF services hosted by using Internet
Information Services (IIS). You must make sure that you have installed and configured IIS on
your computer, and you must have installed ASP.NET version 4.0 with IIS. Additionally, some
exercises use Microsoft Message Queue (MSMQ) as the transport for connecting client appli-
cations to services, so you must also install the MSMQ Server Core. The following instructions
describe how to do this. Note that you require administrative access to your computer to
install and configure IIS and MSMQ.

	 1.	 Log on to Windows as an account that has Administrator access.

	 2.	 On the Windows Start menu, click Control Panel, and then click Programs. In the
Programs pane, under Programs And Features, click Turn Windows Features On Or Off.

	 3.	 In the Windows Features dialog box, expand Internet Information Services, and then
select the following features:

❏❏ Web Management Tools | IIS Management Console

❏❏ Web Management Tools | IIS 6 Management Compatibility | IIS 6 Metabase and
IIS 6 Configuration Compatibility

❏❏ World Wide Web Services | Application Development Features | ASP.NET (this will
also select .NET Extensibility, ISAPI Extensions, and ISAPI Filters)

❏❏ World Wide Web Services | Common Http Features | Directory Browsing (Default
Document should already be selected)

❏❏ World Wide Web Services | Security | Basic Authentication and World Wide Web
Services | Security | Windows Authentication (Request Filtering should already be
selected)

	 4.	 Expand Microsoft Message Queue (MSMQ) Server, and then select Microsoft Message
Queue (MSMQ) Server Core (do not select the individual items in the Microsoft
Message Queue (MSMQ) Server Core folder).

	 5.	 Click OK, and then wait for the features to be installed and configured.

Download from Wow! eBook <www.wowebook.com>

xviii	 Introduction

Installing ASP.NET Version 4.0
The exercises in this book rely on ASP.NET Version 4.0 being installed and configured with IIS.
To do this, perform the following tasks:

	 1.	 On the Windows Start menu, click All Programs, click Microsoft Visual Studio 2010, click
Visual Studio Tools, right-click Visual Studio Command Prompt (2010), and then click
Run As Administrator. In the User Account Control dialog box, click Yes.

	 2.	 In the Visual Studio Command Prompt window, type the following command:

aspnet_regiis –iru

	 3.	 When the command has completed, leave the Visual Studio Command Prompt window
open; you will use it again after installing the AdventureWorks database.

Installing and Configuring the AdventureWorks Database
The exercises and examples in this book make use of the AdventureWorks sample database.
If you don’t already have this database installed on your computer, a copy of the database
installation program is supplied with the companion content for this book. Follow these steps
to install and configure the database:

	 1.	 Log on to Windows as an account that has administrator access if you have not already
done so.

	 2.	 Verify that the SQL Server (SQLEXPRESS) service is running.

Tip  Start the SQL Configuration Manager utility in the Configuration Tools folder, located
in the Microsoft SQL Server 2008 program group. In the left pane, click SQL Server Services.
In the right pane, examine the status of the SQL Server (SQLEXPRESS) service. If the status is
Stopped, right-click the service, and then click Start. Wait for the status to change to Run-
ning, and then close SQL Configuration Manager.

	 3.	 Using Windows Explorer, move to the Microsoft Press\WCF Step By Step\Setup folder
located within your Documents folder.

	 4.	 Double-click the file AdventureWorks2008_SR4.exe. If the User Account Control dialog
box appears, click Yes.

	 5.	 Wait while the WinZip Self-Extractor tool unzips the installation program.

	 6.	 When the SQL Server 2008R2 Database Installer dialog box appears, read the license
agreement. If you agree with the license terms, select the I Accept The License Terms
check box, and then click Next.

Download from Wow! eBook <www.wowebook.com>

	 Introduction	 xix

	 7.	 On the AdventureWorks 2008 Community Sample Database SR4 page, set the
Installation Instance to SQLEXPRESS, select the AdventureWorks OLTP database, deselect
all other databases, and then click Install.

Note  Make sure that you select the AdventureWorks OLTP database and not Adventure-
Works OLTP 2008. Depending on how you have configured SQL Server, not all databases
will be available anyway, and you may see a warning icon against some of these databases.
You can ignore these warnings because these databases are not required.

	 8.	 On the Installation Execution page, wait while the database is installed and configured,
and then click Finish.

	 8.	 Return to the Visual Studio Command Prompt window running as Administrator in the
Microsoft Press\WCF Step By Step\Setup folder.

	 9.	 Type the following command:

osql –E –S .\SQLEXPRESS –i aspnet.sql

This command should complete without any errors (it will display a series of prompts,
“1> 2> 1> 1> 2> 1> 1> 2> 1> 2> 1>”).

Note  The script aspnet.sql creates user accounts for the DefaultAppPool and ASP.NET v4.0
applications pools used by IIS and grants these accounts access to the AdventureWorks
database.

	 10.	 Close the Visual Studio Command Prompt window.

Using the Code Samples
Each chapter in this book explains when and how to use any code samples for that chapter.
When it’s time to use a code sample, the book will list the instructions for how to open the
files. The chapters are built around scenarios that simulate real programming projects, so you
can easily apply the skills you learn to your own work.

For those of you who like to know all the details, following is a list of the code sample, Visual
Studio projects, and solutions, grouped by the folders where you can find them.

Important  Many of the exercises require administrative access to your computer. Make sure you
perform the exercises using an account that has this level of access.

Download from Wow! eBook <www.wowebook.com>

xx	 Introduction

Solution Folder Description

Chapter 1

Completed\ProductsService This solution gets you started. Creating the ProductsService project
leads you through the process of building a simple WCF service
hosted by IIS. You can use the service to query and update product
information in the AdventureWorks database.

The ProductsClient project is a console-based WCF client applica-
tion that connects to the ProductsService service. You use this
project for testing the WCF service.

Chapter 2

ProductsClient This solution is the starting point for the exercises in this chapter.
It contains a copy of the completed client application from
Chapter 1.

Completed\ProductsClient This solution contains a version of the client application that con-
nects to the ProductsService service by using a TCP connection.

Completed\HostedProducts
ServiceHost

This solution contains Windows Presentation Foundation applica-
tion that provides a host environment for the ProductsService service.
You use this application to manually start and stop the service.

You configure the ProductsClient application to connect to the ser-
vice hosted by this application by using an HTTP endpoint.

Completed\WindowsProduct
Service

This solution contains a Windows Service that hosts the Products
Service service. You can start and stop the service from the Services
applet in the Windows Control Panel.

You reconfigure the ProductsClient application to connect to this
service by using an endpoint based on the Named Pipe transport.

Chapter 3

ProductsServiceFault This solution contains a copy of the ProductsServiceLibrary, Products
ServiceHost, and ProductsClient applications from Chapter 2. It is
used as a starting point for the exercises in this chapter.

Completed\UntypedProducts
ServiceFault

The ProductsService service in this solution traps exceptions and
reports them back to the client application as untyped SOAP faults,
which are caught and handled by the ProductsClient application.

Completed\StronglyTyped
ProductsServiceFault

The ProductsService service in this solution reports exceptions as
typed SOAP faults, defined by using fault contracts. The Products
Client application catches these strongly typed SOAP faults as
exceptions.

Chapter 4

ProductsService This solution contains three projects: the ProductsService ser-
vice, the ProductsServiceHost application, and the ProductsClient.
These projects are configured to catch and handle SOAP faults, as
described in Chapter 3. This solution forms the starting point for
the exercises in this chapter.

Download from Wow! eBook <www.wowebook.com>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	 Introduction	 xxi

Solution Folder Description

Chapter 4 (continued)

Completed\NetTcpProducts
ServiceWithMessageLevelSecurity

This solution contains an implementation of the ProductsService
service, the ProductsServiceHost application, and the Products
Client applications that applies message-level security over a TCP
binding.

Completed\BasicHttpProducts
ServiceWithTransportLevel
Security

This solution shows how to implement transport-level security over
an HTTP binding.

Completed\WS2007Http
ProductsServiceWithMessage
LevelSecurity

This version of the solution contains a host that implements
message-level security over an HTTP binding.

Completed\ProductsService
WithBasicAuthentication

This solution contains a version of the ProductsService service that
implements basic authentication and displays the name of the user
calling the ListProducts operations. The client application explicitly
provides the name and password of the user connecting to the
service.

Completed\ProductsService
WithWindowsAuthentication

This solution is similar to the previous one, except that the Products
Service service implements Windows authentication. The creden-
tials for the client application are picked up from the user’s login
session.

Completed\ProductsService
WithAuthorization

The ProductsService service in this solution authorizes users accord-
ing to the Windows security group to which they belong. Users
that do not belong to a specified security group are denied access
when they attempt to invoke operations.

Chapter 5

ProductsClient This folder contains a copy of the client application that is used for
testing the various configurations of the InternetProductsService
service in this chapter.

Completed\ASPNETMembership This solution contains the InternetProductsService service that is
deployed to IIS and authenticates users by using the ASP.NET Role
Provider rather than Windows security groups.

Completed\ASPNETMemberShip
UsingCertificates

The InternetProductsService service in this solution uses the ASP.
NET Role Provider in conjunction with certificates to authenticate
users.

Completed\MutualAuthentication
UsingCertificates

The InternetProductsService service in this solution uses a certificate
to authenticate itself to the client application.

Chapter 6

ProductsService This solution contains an amended copy of the ProductsClient,
ProductsServiceLibray, and ProductsServiceHost projects from
Chapter 4. The service implements message-level security and
authenticates users by using Windows tokens. This solution is used
as the starting point for the exercises in this chapter.

Download from Wow! eBook <www.wowebook.com>

xxii	 Introduction

Solution Folder Description

Chapter 6 (continued)

ProductsServiceWithVersioned
ServiceContract

This solution contains an implementation of the ProductsService
service and a client application that provides these two versions of
the service contract. It is used by some of the exercises in the sec-
ond part of the chapter.

Completed\ProductsService
WithProtectedOperations

This solution contains a version of the ProductsService service in
which client applications are required to encrypt and sign request
messages for some operations, but only sign requests for others.
The proxy class in the ProductsClient application has been updated
to encrypt and sign, or just sign messages, as appropriate. The
purpose of this solution is to show how changing security require-
ments for operations can break a service contract.

Completed\ProductsService
WithAdditionalBusinessLogic

The ProductsService service in this solution contains additional
methods. However, because these methods implement internal
logic for the service and are not exposed as part of the service
contract, they do not require that existing client applications are
updated.

Completed\ProductsService
WithModifiedServiceContract

This solution contains a version of the ProductsService service with
an additional operation and a modified service contract. The client
application has not been updated, but it still works although it can-
not invoke the new operation.

Completed\ProductsService
WithVersionedServiceContract

The ProductsService service in this solution exposes two versions of
the service contract, enabling existing client applications to use the
old contract while exposing the additional operation to new client
applications.

Completed\ProductsServiceWith
AdditionalFieldsInDataContract

This solution shows the effects that modifying a data contract can
have on client applications and how you can implement a data
contract that supports clients expecting different versions of a data
contract.

Chapter 7

Completed\ShoppingCart This solution contains a completed version of the initial Shopping
CartService service that implements shopping cart functionality
and a client application that exercises this functionality. This solu-
tion is used as the basis for subsequent exercises in this chapter.

Completed\
ShoppingCartContextModes

The ShoppingCartService service in this solution demonstrates the
use of the Single instance context mode.

Completed\ShoppingCartWith
State

The ShoppingCartService service in this solution uses the PerCall
instance context mode and contains code that saves the instance
state to XML files.

Completed\ShoppingCart
WIthSequencedOperations

This solution shows how to control the sequence in which a client
application can invoke operations and control the lifetime of a
session.

Download from Wow! eBook <www.wowebook.com>

	 Introduction	 xxiii

Solution Folder Description

Chapter 7 (continued)

DurableShoppingCart This solution contains a version of the ShoppingCartService service
that implements the PerSession instance context mode. The solu-
tion also contains a GUI client application called Shopping
CartGUIClient. This solution is used by exercises that convert the
ShoppingCartService service into a durable service.

Completed\DurableShoppingCart This solution contains a completed implementation of the durable
version of ShoppingCartService service.

Chapter 8

Completed\ProductsWorkflow This solution contains a workflow service called ProductsWork
flowService that retrieves the details of a specified product. The
solution also includes a basic console client application to test
the service.

Completed\ProductsWorkflow
WithFaultHandling

The ProductsWorkflowService service in this solution shows how
to catch exceptions in a service and send SOAP faults to a client
application.

ProductsClient This version of the client application for the ProductsWorkflow
Service service that generates SOAP faults.

Completed\ProductsWorkflow
WithIISDeployment

This solution shows how to deploy the ProductsWorkflowService
service to IIS.

Completed\ProductsWorkflow
WithCustomHost

This solution demonstrates how to create a custom host applica-
tion for a workflow service.

Completed\ShoppingCartService This solution contains a completed version of the ShoppingCart
Service service implemented as a workflow service.

ShoppingCartGUIClient This is a copy of the ShoppingCartGUIClient developed in Chapter 7.
It is used to test the workflow version of the ShoppingCartService
service.

Completed\ShoppingCartWith
HostAndClient

This solution contains a complete version of the workflow version
of the ShoppingCartService service, hosted in a custom host appli-
cation and accessed from the ShoppingCartGUIClient application.

Completed\DurableShopping
CartWithHostAndClient

This solution demonstrates how to implement a workflow service
as a durable service.

Chapter 9

ShoppingCartService This solution contains a copy of the non-durable ShoppingCart
Service, ShoppingCartServiceHost, and ShoppingCartClient proj-
ects from Chapter 7. It is used as the starting point for the exercises
in this chapter.

Download from Wow! eBook <www.wowebook.com>

xxiv	 Introduction

Solution Folder Description

Chapter 9 (continued)

Completed\ShoppingCartService This solution contains a version of the ShoppingCartService service
that uses transactions to maintain database integrity. The client
application initiates the transactions.

ProductsWorkflow This solution shows how to implement transactions in a workflow
service. It is based on the ProductsWorkflowService from Chapter 8.
The client application is also based on a workflow.

Chapter 10

ShoppingCartService This solution contains a completed version of the Shopping
CartService, ShoppingCartHost, and ShoppingCartClient applica-
tions from Chapter 9. It is used as the starting point for the exer-
cises in this chapter.

Completed\ShoppingCartService This solution shows how to configure the ShoppingCartService
service and ShoppingCartClient application to implement reliable
sessions. You run the client application and use the WCF Service
Trace Viewer utility to examine the messages passing between the
client application and service.

Completed\ShoppingCart
ServiceWithReplayDetection

This solution implements a custom binding for the Shopping
CartService service and ShoppingCartClient applications to support
the secure conversation protocol and provide automatic message
replay detection.

Chapter 11

ShoppingCartService This solution contains a copy of the completed ShoppingCart
Service and ShoppingCartClient projects from Chapter 10. The
binding and endpoint configuration has been removed from the
ShoppingCartHost project. In the exercises in this chapter, you
implement these items in code rather than by providing them in a
configuration file.

Completed\ShoppingCartService This solution contains an implementation of the ShoppingCartHost
application that programmatically creates a custom binding rather
than using one of the WCF predefined bindings.

Completed\ShoppingCart
ServiceWithMessageInspector

This solution shows how to create a custom service behavior with
which you can inspect request messages sent to the service and
response messages that it sends back to client applications.

ProductsService This solution contains a copy of the ProductsService service from
Chapter 6. The code and configuration information in the client
that connects to the service and sends request messages has been
removed. You add code that performs these tasks programmati-
cally in the exercises in this chapter.

Completed\ProductsService This solution contains a completed version of the ProductsClient
application. The client application connects to the service by creat-
ing a binding and a channel programmatically rather than using a
generated proxy class.

Download from Wow! eBook <www.wowebook.com>

	 Introduction	 xxv

Solution Folder Description

Chapter 11 (continued)

ProductsServiceWithManualProxy This solution shows how to inherit from the ClientBase generic
abstract class to implement a proxy class that enables a client
application to authenticate itself to the service.

SimpleProductsService This solution contains a stripped down version of the Products
Service service and client application. You add code to the client
application to connect to the service by creating a binding and a
channel and then manually create and send a SOAP message to
the service.

Completed\SimpleProducts
Service

This solution contains a completed version of the client application
that manually creates and sends a SOAP message to the service. It
receives the response also as a SOAP message.

Chapter 12

Completed\OneWay This solution contains a new service called AdventureWorksAdmin.
The AdventureWorksAdmin service exposes an operation that can
take significant time to run. It demonstrates how to implement this
operation as a one-way operation. You also use this solution to
understand the circumstances under which a one-way operation
call can block a client application and how to resolve this blocking.

Completed\Async This solution contains a version of the AdventureWorksAdmin service
that implements an operation that can execute asynchronously.

MSMQ This solution contains a copy of the AdventureWorksAdmin service
that acts as the starting point for the exercises that demonstrate
how to use MSMQ as the transport for a WCF service.

Completed\MSMQ This version of the solution contains a completed implementation
of the AdventureWorksAdmin service that uses a message queue to
receive messages from client applications. You run the client appli-
cation and service at different times and verify that messages sent
by the client application are queued and received when the service
runs.

Chapter 13

Throttling This solution contains a simplified, non-transactional version of the
ShoppingCartService service and an extended version of the client
application that simulates multiple users connecting to the service.
This solution provides the starting point for the exercises showing
how to implement throttling.

Completed\Throttling This solution contains the completed version of the Shopping
CartService service. You use this service to test the way in which
you can configure WCF to conserve resources during periods of
heavy load.

Download from Wow! eBook <www.wowebook.com>

xxvi	 Introduction

Solution Folder Description

Chapter 13 (continued)

MTOM This solution contains a service called ShoppingCartPhotoService
that retrieves photographic images of products from the Adventure
Works database. The solution also contains a basic WPF client
application that displays images sent by the server. You use this
solution to examine how a WCF service transmits messages con-
taining large amounts of binary data.

Completed\MTOM This version of the service encodes the binary data constituting
the image by using the Message Transmission Optimization Mech-
anism (MTOM). You use this solution to generate message traces
that you examine so you can see how the messages are encoded.

Streaming This solution contains a version of the ShoppingCartPhotoService
that uses streaming to send the image data to the client applica-
tion rather than MTOM.

Chapter 14

ProductsService This solution contains a copy of the ProductsService service hosted
by the ASP.NET Development Web Server, and client application
that connects to this service. This solution is used as the start-
ing point for the exercises that show how to implement service
discovery.

Completed\ProductsServiceWith
AdHocDiscovery

The ProductsService service in this solution implements ad hoc
discovery. It is deployed to IIS. The client application is modified
to broadcast a discovery request and retrieve the address of the
ProductsService service.

Completed\ProductsServiceWith
Announcements

In this version of the solution, the ProductsService service sends
announcement messages when it starts up and shuts down. The
client application listens for service announcements and caches
the URLs of services as they come on-line. When the client appli-
cation sends a request, it looks up the URL of the service in this
cache.

Completed\ProductsServiceWith
ManagedDiscovery

This solution shows how to implement a discovery proxy. The
ProductsService service sends announcement messages, and the
discovery proxy listens for these messages and caches the URLs of
services as they come on-line. The client application is modified
to retrieve the address of the ProductsService from the discovery
proxy.

LoadBalancingRouter This solution contains an amended copy of the durable Shopping
CartService, ShoppingCartServiceHost, and ShoppingCartGUIClient
from Chapter 7. It is used as the basis for the exercises that show
how to implement routing inside a WCF service.

Completed\LoadBalancing
Router

This solution contains a WCF service called ShoppingCartService
Router that acts as a load-balancing router for two instances of
the ShoppingCartService service. The client application connects
to the router, which transparently redirects requests to one instance
or the other of the ShoppingCartService service.

Download from Wow! eBook <www.wowebook.com>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	 Introduction	 xxvii

Solution Folder Description

Chapter 14 (continued)

ShoppingCartServiceWithRouter This solution contains another copy of the durable Shopping
CartService, ShoppingCartServiceHost, and ShoppingCartGUI
Client from Chapter 7, except that the host application is precon-
figured with two HTTP endpoints. This solution provides the start-
ing point for the exercises that show how to implement a WCF
routing service.

Completed\ShoppingCartService
WithRouter

This solution contains a completed implementation of the WCF
routing service

MessageInspector This solution contains a version of the MessageInspector behavior
created in Chapter 11. It is used to test the routing service in the
ShoppingCartServiceWithRouter project by displaying the details of
messages as they are received by the ShoppingCartHost project.

Chapter 15

Completed\ProductsSales This solution contains a REST Web service called ProductsSales
Service, host, and client application that provides access to sales
information. The client application tests the ProductsSalesService
service by sending requests that query the details of orders and
customers.

Completed\ProductsSales
WithUpdates

This solution contains an updated version of the ProductsSales
Service service that supports insert, update, and delete operations.
The client application is extended to test this functionality.

Completed\SalesData This solution contains a REST Web service called SalesData that
also provides access to customer and order information. This ser-
vice is implemented by using the WCF Data Services template. The
SalesDataClient application in this solution uses the client library
for the service to connect and send requests to the service.

Chapter 16

ProductsServiceV3 This solution contains another version of the ProductsService ser-
vice that provides an additional operation that updates the price
of a product. The solution also contains a host application, and a
client application for testing the service.

Completed\ProductsServiceV3 In this solution, the ProductsService service implements a callback
contract. The operation that changes the price of a product is
reconfigured as a one way operation, and the callback contract
enables the service to asynchronously notify the client application
of the result of the operation when it has completed.

Completed\ProductsServiceV3
WithEvents

This version of the ProductsService service implements an event-
ing mechanism. Instances of the client applications subscribe to an
event, and the service uses a callback contract to notify each sub-
scribing client when the event occurs.

Download from Wow! eBook <www.wowebook.com>

xxviii	 Introduction

Solution Folder Description

Chapter 17

ShoppingCartService This solution contains a completed version of the ShoppingCart
Service service, host, and client applications from Chapter 10. It is
used as the starting point for the exercises in this chapter.

Completed\ShoppingCartService The ShoppingCartService service in this solution implements claims-
based security. The client application uses Windows CardSpace to
manage user credentials and send claims information to the ser-
vice. The service uses verified claims to authorize access to users.

Chapter 18

ASPNETService This solution contains a legacy ASP.NET Web site called ASPNET
ProductsService. This Web site provides an ASP.NET Web service.
The solution also contains a client application that connects to this
Web service. Both applications were developed by using the .NET
Framework 2.0. The service is used as the basis for exercises that
show how to migrate an ASP.NET Web service to WCF and the .NET
Framework 4.0.

ProductsServiceHost This project contains the host application for the WCF service that
implements the functionality migrated from the ASPNETService
Web service.

Completed\ASPNETService This solution is a version of the ASPNETProductsService service that
has been migrated to WCF, together with the host and client appli-
cations. The code in the client application has not changed, and
connects to WCF service in exactly the same way as it did to the
original ASP.NET Web service.

Products This solution contains a legacy COM+ application that you config-
ure to appear to client applications as a WCF service.

ProductsClient This solution contains an incomplete copy of the ProductsClient
application for testing the Products COM+ application by connect-
ing to it as though it was a WCF service. You finish this application
during the exercises in this chapter.

Completed\ProductsClient This solution contains the completed version of the ProductsClient
application.

Uninstalling the Code Samples
To remove the code samples from your computer, delete the folder Microsoft Press\WCF Step
By Step from your Documents folder by using Windows Explorer.

Download from Wow! eBook <www.wowebook.com>

	 Introduction	 xxix

Errata and Book Support
We’ve made every effort to ensure the accuracy of this book and its companion content. If
you do find an error, please report it on our Microsoft Press site at oreilly.com:

	 1.	 Go to http://microsoftpress.oreilly.com.

	 2.	 In the Search box, enter the book’s ISBN or title.

	 3.	 Select your book from the search results.

	 4.	 On your book’s catalog page, under the cover image, you’ll see a list of links. Click
View/Submit Errata.

You’ll find additional information and services for your book on its catalog page. If you need
additional support, please e-mail Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

Download from Wow! eBook <www.wowebook.com>

http://microsoftpress.oreilly.com
mailto:mspinput@microsoft.com
http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

Download from Wow! eBook <www.wowebook.com>

1

Chapter 1

Introducing Windows
Communication Foundation

After completing this chapter, you will be able to:

■■ Explain the purpose of Windows Communication Foundation.

■■ Use the .NET Framework 4.0 and Visual Studio 2010 to build a WCF service.

■■ Deploy a WCF service to Microsoft Internet Information Services (IIS).

■■ Build a client console application to test the WCF service.

■■ Describe the principles underpinning a Service-Oriented Architecture (SOA) and how WCF
facilitates building applications and services for an SOA.

This chapter provides you with an introduction to Windows Communication Foundation (WCF)
and shows you how to create, deploy, and access a simple WCF service. This is very much a
“scene-setting” chapter. During its course, you will meet many of the features of WCF. In sub-
sequent chapters, you will expand your knowledge of the various topics presented here.

What Is Windows Communication Foundation?
I assume that you are reading this book because you want to know how to build distributed
applications and services by using WCF. But what is WCF, and why should you use it, anyway?
To answer these questions, it is helpful to take a few steps back into the past.

The Early Days of Personal Computer Applications
In the early days of the personal computer, most business solutions comprised integrated
suites of applications, which typically consisted of word processing software, a spreadsheet
program, and a database package (much like Microsoft Office does these days). A skilled user
could store business data in the database, analyze this data using the spreadsheet program,
and maybe create reports and other documents integrating the data and the analyses by
using the word processor. More often than not, these applications would all be located on the
same computer, and the data and file formats they used would be proprietary to the applica-
tion suite. This was the classic desktop business platform; it was single-user and usually with
very limited scope for multitasking.

Download from Wow! eBook <www.wowebook.com>

2	 Windows Communication Foundation 4 Step by Step

As personal computers became cheaper and more widely adopted as business tools, the next
challenge was to enable multiple users to share the business data stored on them. This was
not actually a new challenge; multi-user databases had been available for some time, but they
ran predominantly on mainframe computers rather than PCs. However, networking solutions
and network operating systems (NOS) soon started to appear for the PC platform, enabling
departments in an organization to connect their PCs together and share resources. Database
management system vendors produced versions of their software for the networked PC envi-
ronment, adapted from the mainframe environment, which allowed networked PC solutions
to share their business data more easily.

Inter-Process Communications Technologies
A networked platform is actually only part of the story. Although networking solutions per-
mitted PCs to communicate with each other and share resources such as printers and disks,
applications needed to be able to send and receive data and coordinate their actions with
other applications running at the same time on other computers. Many common inter-
process communications mechanisms were available, such as named pipes and sockets. These
mechanisms were very low-level; using them required a good understanding of how networks
function. The same is true today. For example, building applications that use sockets to send
and receive data can be a challenging occupation; ostensibly the process is quite simple, but
factors such as coordinating access (you don’t want two applications trying to read from the
same socket at the same time) can complicate matters. As computers and networks evolved,
so did the variety and capabilities of the inter-process communications mechanisms. For
example, Microsoft developed the Component Object Model, or COM, as the mechanism for
communicating between applications and components running on the Windows platform.
Developers can use COM to create reusable software components, link components together
to build applications, and take advantage of Windows services. Microsoft itself uses COM
to make elements of its own applications available as services for integration into custom
solutions.

Microsoft originally designed COM to enable communications between components and
applications running on the same computer. COM was followed by DCOM (distributed COM),
which allowed applications to access components running on other computers over a net-
work. DCOM was itself followed by COM+. COM+ incorporated features such as integration
with Microsoft Transaction Server so applications could group operations on components
together into transactions. The results of these operations could either be made permanent
(committed) if they were all successful or automatically undone (rolled back) if some sort of
error occurred. COM+ provided additional capabilities such as automatic resource manage-
ment (for example, if a component connects to a database, you can ensure that the con-
nection is closed when the application finishes using the component) and asynchronous

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 3

operations (useful if an application makes a request to a component that can take a long time
to fulfill; the application can continue processing, and the component can alert the applica-
tion by sending it a message when the operation has completed). COM+ was followed in turn
by the .NET Framework, which further extended the features available. Microsoft renamed the
technology yet again to Enterprise Services. The .NET Framework also provided several new
technologies for building networked components. One example was Remoting, with which
a client application could access a remote object hosted by a remote server application as
though it were running locally, inside the client application.

The Web and Web Services
Technologies such as COM, DCOM, COM+, Enterprise Services, and .NET Framework Remot-
ing all work well when applications and components are running within the same local area
network inside an organization. They are also specific to the Microsoft Windows family of
operating systems.

While Microsoft was developing COM and DCOM, the World Wide Web appeared. The World
Wide Web is based on the Internet, which has been around for several decades. The World
Wide Web provides an infrastructure with which developers can build applications that can
combine components and other elements located almost anywhere in the world, running
on computers of varying architectures, and that execute on a bewildering array of operating
systems (not just Windows). The first generation of “Web applications” was quite simple and
consisted of static Web pages that users could download and view using a Web browser run-
ning on their local computer. The second generation provided elements of programmability,
initially through the use of components, or applets, that could be downloaded from Web
sites and executed locally in the user’s Web browser. These have been followed by the third
generation—Web services. A Web service is an application or component that executes on
the computer hosting the Web site rather than the user’s computer. A Web service can receive
requests from applications running on the user’s computer, perform operations on the com-
puter hosting the Web service, and send a response back to the application running on the
user’s computer. A Web service can also invoke operations in other Web services, hosted else-
where on the Internet. These are global, distributed applications.

You can build Web services that execute on Windows by using Visual Studio and the .NET
Framework. You can create Web services for other platforms by using other technologies,
such as Java and the Java Web Services Developers Pack. However, Web services are not
specific to any particular language or operating system. To establish Web services as a global
mechanism for building distributed applications, developers had to agree on several points,
including a common format for data, a protocol for sending and receiving requests, and
handling security. All of these features had to be independent of the platform being used
to create and host Web services.

Download from Wow! eBook <www.wowebook.com>

4	 Windows Communication Foundation 4 Step by Step

Using XML as a Common Data Format
Different types of computers can store the same values by using different internal represen-
tations—for example, computers based on a “big-endian” 32-bit processor use a different
format for numeric data than a computer based on a “small-endian” 32-bit processor. So, to
share data successfully between applications running on different computers, developers had
to agree on a common format for that data that was independent of the architecture of the
computer they were using. To cut a long story short, the currently accepted universal data
format is eXtensible Markup Language, or XML. XML is text based and human readable (just),
and lets you define a grammar for describing just about any type of data that you need to
handle. In case you have not seen XML data before, here is an example:

<Person>

 <Forename>John</Forename>

 <Surname>Sharp</Surname>

 <Age>46</Age>

</Person>

More Info  For detailed information about XML and how you can use it, visit the XML.org Web
site at http://www.xml.org.

Without trying too hard, you can probably guess what this data actually means. An applica-
tion that needs to send information about a person to another application could format the
data in this way, and the receiving application should be able to parse the data and make
sense of it. However, there is more than one way to represent this information by using XML.
You could also structure it like this:

<Person Forename="John" Surname="Sharp" Age="46" />

There are many other variations that are possible as well. How does an application know how
to format data so that another application can read it correctly? The answer is that both appli-
cations have to agree on a layout. This layout is referred to as the XML schema for the data.
Now this is neither the time nor the place to become embroiled in a discussion of how XML
schemas work. Just accept that an application can use an XML schema to convey information
about how the data it is emitting is structured, and the application receiving the data can use
this schema to help parse the data and make sense of it.

So, by adopting XML and schemas as a common data format, applications running on differ-
ent computers can at least understand the data that they are using.

More Info  If you want to know more about XML schemas and how they work, visit the World
Wide Web Consortium (W3C) Web site at http://www.w3.org/XML/Schema.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 5

Sending and Receiving Web Service Requests
By using XML and XML schemas to format data, Web services and users’ (or client) applica-
tions can pass data back and forth in an unambiguous manner. However, client applications
and Web services still need to agree on a protocol when sending and receiving requests.
Additionally, a client application needs to be able to know what messages it can send to a
Web service and what responses it can expect to receive.

To curtail another long story, Web services and client applications communicate with each
other using SOAP (formerly known as the Simple Object Access Protocol). The SOAP specifica-
tion defines a number of aspects, of which the most important are:

■■ The format of a SOAP message

■■ How data should be encoded

■■ How to send messages

■■ How to handle replies to these messages

A Web service can publish a Web Services Description Language (WSDL) document, which is
a piece of XML (conforming to a standard XML schema) that describes the messages the Web
service can accept and the structure of the responses it will send back. A client application can
use this information to determine how to communicate with the Web service.

More Info  If you want detailed information about SOAP, visit the World Wide Web Consortium
page at http://www.w3.org/TR/soap. If you want further information about WSDL, visit the page at
http://www.w3.org/TR/wsdl20.

JavaScript Object Notation and Rich Internet Applications
The XML/SOAP model for defining and transmitting messages in an interchangeable format
is well understood but might be too cumbersome in some situations. These technologies can
generate a lot of overhead if the data in the messages that they are transmitting or receiving
is small, as is typically the case in modern Rich Internet Applications (RIAs).

A RIA is an application that usually runs remotely by using a Web browser but provides many
of the characteristics associated with desktop applications. To provide the rich interactive
desktop style typically involves the use of Web scripting languages such as JavaScript as well
as technologies such as those encompassed by AJAX (Asynchronous JavaScript and XML).
Many vendors provide frameworks, such as Microsoft SilverLight, that developers can use to
implement RIAs quickly and easily, based on these technologies.

Download from Wow! eBook <www.wowebook.com>

6	 Windows Communication Foundation 4 Step by Step

Although XML forms part of the AJAX technology set, a more lightweight approach is to
use the native format defined by JavaScript for representing objects and serializing them for
transmission across the network. This format has been standardized as the JavaScript Object
Notation, or JSON. Despite its name, JSON is a completely language-independent format
that is based on conventions that most programmers will find familiar. It organizes data into
name/value pairs, or collections of values, depending on whether you are handing a simple
data item or a more complex structure such as an array.

JSON data is transmitted as text. The JSON equivalent of the XML structure that describes a
Person, shown earlier, looks like this:

{ "forename": "John". "surname": "Sharp", "age": 46 }

You can read and write JSON data by writing code directly, but many developers prefer to use
JSON parsers to convert their data into JSON format automatically, especially for structures
that are more complex than this simple example. JSON parsers are available for most modern
development languages and environments that are used for building distributed applications,
such as WCF.

More Info For further information about JSON, go to the JSON Web site as
http://json.org.

Handling Security and Privacy in a Global Environment
Security is concerned with identifying users and services and then authorizing their access
to resources. In a distributed environment, maintaining security is vitally important. In an
isolated, non-networked, desktop environment, you could physically secure a PC to prevent
an unauthorized user from typing on its keyboard or viewing its screen; however, when you
connect computers together over a network, physical security is no longer sufficient. You now
need to ensure that users accessing shared resources, data, and components running on a
computer over a network have the appropriate access rights. Companies developing operat-
ing systems, such as Microsoft with Windows, incorporate many security features into their
own platforms. Typically, these features include maintaining a list of users and the credentials
that they use to identify these users, such as their passwords. These solutions can work well in
an environment where it is possible to maintain such a list (for instance, within a single orga-
nization), but if you wish to make your services available outside of your enterprise, clearly it is
not feasible to record identity and credential information for all computers and users access-
ing your services across the World Wide Web.

A lot of research has been performed to investigate and understand the challenges of main-
taining security in a global environment, and many solutions have been proposed. To commu-
nicate in a secure manner, Web services and client applications need to agree on the form of

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 7

security that they will use and how they will identify and verify each other. The Organization
for the Advancement of Structured Information Standards (OASIS) is a consortium of organi-
zations that has proposed a number of standard mechanisms for implementing security, such
as using username/password pairs, X509 certificates, and Kerberos tokens. If you are creating
Web services that provide access to privileged information, you should consider using one of
these mechanisms to authenticate users.

More Info  For detailed information about the OASIS security standards, visit the OASIS Web
Service Security site at http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss.

Privacy is closely related to security and is equally important—especially when you start to
communicate with services on the World Wide Web. You don’t want other users to be able to
intercept and read the messages flowing between your applications and Web services. To this
end, Web services and client applications must also agree on a mechanism to ensure the pri-
vacy of their conversations. Typically, this means encrypting the messages that they exchange.
As with security, there are several mechanisms available for encrypting messages, the most
common of which rely on using public and private keys.

More Info  For a good overview and introduction to public key cryptography, visit the Wikipedia
Web site at http://en.wikipedia.org/wiki/Public-key_cryptography.

Incorporating security and privacy into a Web service and client application can be a non-
trivial task. To make life easier for developers building Web services using the Microsoft .NET
Framework, Microsoft introduced the Web Services Enhancements (WSE) package. WSE was
an add-on for earlier versions of Visual Studio. It was designed to help create Web services
that retain compatibility with the evolving Web service standards of the time. WSE provided
wizards and other tools for generating much of the code necessary to help protect Web
services and client applications and to simplify the configuration and deployment of Web
services.

Service-Oriented Architectures and Windows
Communication Foundation
Software developers soon appreciated that the principles of Web services could be applied in
a more generalized manner, leading to the concept of “Software as a Service” and the trend
toward implementing a Service-Oriented Architecture, or SOA. The driving force behind
SOA is the realization that to remain competitive and profitable, the business solutions of an
organization must be able to adapt quickly to the changing business environment. The key
architectural principles behind SOA are the ability to reuse existing software assets wherever
possible and expose the functionality of these assets as a set of services.

Download from Wow! eBook <www.wowebook.com>

8	 Windows Communication Foundation 4 Step by Step

A service provides a well-defined set of operations that support the business logic of the
organization. A developer can implement these operations by invoking new and existing soft-
ware assets, and composing these items in whatever way is necessary to satisfy the require-
ments of the organization. A service hides the details of its implementation, and service
creators can compose new functionality by transparently combining calls to other applications
and other services. The keys to implementing a successful service are:

■■ Providing a reusable and extensible interface based on well-defined standards to maxi-
mize interoperability

■■ Providing a scalable hosting environment within which a service can respond quickly to
user requests, even under an extreme load

This is where the Microsoft Windows operating system and WCF come into their own.

WCF provides a model with which you can implement services that conform to many
commonly-accepted styles and standards, including SOAP, XML, and JSON. Additionally,
WCF supports many Microsoft-specific technologies for building components, such as Enter-
prise Services and Microsoft Message Queue (MSMQ), and supports a unified programming
model for many of these technologies. This allows you to build solutions that are as indepen-
dent as possible from the underlying mechanism being used to connect services and applica-
tions together. By using WCF, you can combine these technologies and make them accessible
to non-Microsoft applications and services.

It is difficult, if not impossible, to completely divorce the programmatic structure of an appli-
cation or service from its communications infrastructure, but WCF lets you come very close to
achieving this goal much of the time. Additionally, by using WCF, you can maintain backward
compatibility with many of the preceding technologies. For example, a WCF client application
can easily communicate with a Web service that you created by using WSE.

The Windows operating system can implement a scalable, secure, and robust platform for
an SOA. Windows Server 2008 is highly optimized for this environment, and you can build
extensible clusters of Windows Server computers by making use of inexpensive commodity
hardware. On the other hand, if you do not wish to maintain the hardware required to host an
SOA solution yourself, you can subscribe to Windows Azure.

Windows Azure is a cloud computing platform. It supplies on-demand compute and storage
facilities located in data centers managed by Microsoft. You can build and test your services
locally and then upload them to a data center where they will run on one or more virtual
machines on computers managed and maintained by Microsoft staff. You can specify param-
eters that cause the service to scale out onto multiple computers as demand increases and to
scale back as and when demand drops. Windows Azure provides a highly-connectable archi-
tecture that enables client applications to locate and invoke your services. This connectivity
makes use of features provided with WCF.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 9

More Info  For further information about cloud computing and Windows Azure, visit the “Win-
dows Azure Platform” page on the Microsoft Web site at http://www.microsoft.com/windowsazure.

To summarize, if you are considering building scalable distributed applications and services,
and implementing an SOA running on the Windows platform, you should use WCF.

Building a WCF Service
Visual Studio 2010 provides the ideal environment for building WCF services and applications.
Visual Studio includes several project templates that you can use to build WCF services. You
will use the WCF Service template to create a simple WCF service that exposes methods for
querying and maintaining information stored in a database. The database used by the exer-
cises in this book is the sample AdventureWorks OLTP database.

Note  The script for creating the AdventureWorks OLTP database is provided with the download-
able samples for this book. The Introduction contains instructions on how to install and config-
ure this database for use with the exercises in this book. You can also download the database from
the CodePlex site; search for Sample Databases for Microsoft SQL Server 2008 (December 2009)
Samples Refresh 4 and download the file AdventureWorks2008_SR4.exe. Note that there might
be later versions of this database available, but the examples in this book have only been tested
against the December 2009 release.

The AdventureWorks company manufactures bicycles and accessories. The database contains
details of the products that the company sells, sales information, details of customers, and
employee data. In the exercises in this chapter, you will build a WCF service that provides
these operations:

■■ List the products sold by AdventureWorks

■■ Obtain the details of a specific product

■■ Query the current stock level for a product

■■ Modify the stock level of a product

The data required by these exercises is stored in the Product and ProductInventory tables in
the AdventureWorks database. Figure 1-1 shows these tables. There is a one-to-many relation-
ship between them; one Product record can be related to many ProductInventory records. This
is because products are stored in one or more numbered bins in the warehouse, and each bin
is on a named shelf. The tables are joined across the ProductID column.

Download from Wow! eBook <www.wowebook.com>

10	 Windows Communication Foundation 4 Step by Step

Figure 1-1  Tables holding product information in the AdventureWorks database.

To simplify the code that you need to write to access the database, but also to ensure that
the exercises are as realistic as possible, you will make use of the ADO.NET Entity Framework.
This is part of the .NET Framework 4.0 and is provided with Visual Studio 2010. The purpose
of the Entity Framework is to provide an object mapping between tables in a database and a
set of objects that you can use in your applications and services. Using the Entity Framework,
you can build an entity model that specifies the database and tables that you want to use and
generate an object model that you can use to query these tables, as well as insert, update,
and delete data. A major advantage of using the Entity Framework is that you can build appli-
cations that are independent of the underlying database management system, and you can
access data without having to understand how the database management system works (you
do not need to know SQL).

More Info  The exercises in this book only scratch the surface of the Entity Framework. If you
want more information about the Entity Framework, please visit the ADO.NET Entity Framework
page at http://msdn.microsoft.com/en-us/data/aa937723.aspx.

Build the Entity Model for the WCF Service

	 1.	 Start Visual Studio 2010 and create a new project using the Class Library template in the
Visual C# folder in the Installed Templates pane. Specify the following properties for the
solution:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 11

Property Value

Name ProductsEntityModel

Location C:\Users\YourName\Documents\Microsoft Press\WCF Step By Step\Chapter 1

(Replace YourName with your Windows user name.)

Solution name ProductsService

Note  To save space throughout the rest of this book, I will simply refer to the path
C:\Users\<YourName>\Documents\ as your Documents folder.

	 2.	 In Solution Explorer, in the ProductsEntityModel project, delete the Class1.cs file by
using the following procedure:

	 a.	 Right-click the Class1.cs file, and then click Delete.

	 b.	 In the dialog box, click OK to confirm the deletion.

	 3.	 Add a new item to the ProductsEntityModel project:

❏❏ In Solution Explorer, right-click the ProductsEntityModel project, point to Add,
and then click New Item.

	 4.	 In the Add New Item—ProductsEntityModel dialog box, in the Installed Templates pane
click the Data folder under Visual C# Items. In the middle pane, click the ADO.NET Entity
Data Model template. In the Name field, type ProductsModel.edmx, and then click Add.

The Entity Data Model Wizard appears.

	 5.	 In the Entity Data Model Wizard, on the Choose Model Contents page, click Generate
From Database, and then click Next.

	 6.	 On the Choose Your Data Connection page, click New Connection.

The Choose Data Source dialog box appears.

Note  If you have previously created database connections, the Choose Data Source dia-
log box might not appear, and the Connection Properties dialog box might be displayed
instead. If this happens, click Change, and the Choose Data Source dialog box will appear.

	 7.	 In the Choose Data Source dialog box, click Microsoft SQL Server, and then click Con-
tinue or OK.

The Connection Properties dialog box appears.

	 8.	 In the Connection Properties dialog box, in the Server name field, type .\SQLExpress. In
the Select or enter a database name field, type AdventureWorks, and then click OK.

The Entity Data Model Wizard resumes.

Download from Wow! eBook <www.wowebook.com>

12	 Windows Communication Foundation 4 Step by Step

Note  Specifying the server name as .\SQLExpress causes Visual Studio to connect to the
local instance of SQL Server Express running on your computer.

	 9.	 On the Choose Your Data Connection page, verify that the Save Entity Connection Set-
tings In App.Config As: check box is selected. Change the name to AdventureWorks
Entities if necessary.

The connection settings used by the entity model will be stored in the application con-
figuration file using this name as the key.

	 10.	 Click Next.

The Choose Your Database Objects page appears.

	 11.	 On the Choose Your Database Objects page, expand Tables and select (check) the Prod-
uct (Production) and ProductInventory (Production) tables. Verify or specify the following
values for the other items on this page, and then click Finish.

Item Value

Pluralize or singularize generated object names Selected

Include foreign key columns in the model Selected

Model Namespace AdventureWorksModel

Visual Studio generates the entity model and it is displayed. It should contain the two
entities, Product and ProductInventory, and it should resemble the model shown earlier
in Figure 1-1.

The Entity Framework generates classes for each entity defined by the entity model. In
this case, the classes are called Product and ProductInventory. The classes contain prop-
erties for each field in the corresponding tables in the database.

The Entity Framework also generates a class called AdventureWorksEntities that provides
methods that you can use to connect to the AdventureWorks database and populate a
pair of collection properties called Products and ProductInventories with instances of the
Product and ProductInventory classes. To retrieve data from the AdventureWorks data-
base, you simply create an instance of the AdventureWorksEntities class and access the
data through the Products and ProductInventories collection properties.

Notice that the ProductsEntityModel project contains an application configuration
file. This file was generated by the Entity Data Model Wizard; it contains the informa-
tion that the AdventureWorksEntities class requires to connect to the AdventureWorks
database.

	 12.	 Build the project:

❏❏ In Solution Explorer, right-click the ProductsEntityModel project, and then click
Build.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 13

Now that you have built the entity model, you can start to build the WCF service that pro-
vides operations that access the AdventureWorks database by using this model.

Create the ProductsService WCF Service

	 1.	 Add a new Web site project to the ProductsService solution:

❏❏ In Solution Explorer, right-click the ProductsService solution, point to Add, and
then click New Web Site.

Note  From now on, I will assume that you understand how to create new solutions and
projects by using Visual Studio 2010. I will simply ask you to create a new solution or proj-
ect, although I will specify the template and any specific project names that you should use.

	 2.	 In the Add New Web Site dialog box, in middle pane, click the WCF Service template.
Verify that the Web location field is set to File System, type C:\Users\YourName\
Documents\Microsoft Press\WCF Step By Step\Chapter 1\ProductsService\
ProductsService (as shown in the following image), and then click OK.

Visual Studio 2010 actually provides several templates for creating a WCF service; the
WCF Service template that you are using here creates a WCF service as part of a Web
application. You will see in later chapters how you can implement a WCF service in a
library, as part of a standalone application, or as part of a Workflow Foundation service
application.

Download from Wow! eBook <www.wowebook.com>

14	 Windows Communication Foundation 4 Step by Step

The WCF Service template generates code for a default service, and it is worth examining this
code briefly. At the top of the Service.cs file, you will find the usual using statements referenc-
ing the System, System.Collections.Generic, System.Linq, and System.Text namespaces, but you
will also see additional statements that reference the System.ServiceModel, System.Service
Model.Web, and System.Runtime.Serialization namespaces, as shown in Figure 1-2.

Figure 1-2  The default code generated for a WCF service.

The System.ServiceModel namespace contains the classes that WCF uses to define services and
their operations. You will see many of the classes and types in this namespace as you prog-
ress through this book. WCF uses the classes in the System.Runtime.Serialization namespace
to convert objects into a stream of data suitable for transmitting over the network (a process
known as serialization). It also uses them to convert a stream of data received from the net-
work back into objects (deserialization). You will learn a little about how WCF serializes and
deserializes objects later in this chapter, and you will look at serialization and deserialization
in more depth as you progress through this book. The System.ServiceModel.Web namespace
contains types that you can use to build WCF services that follow the Representational State
Transfer model, commonly known as REST. This is an approach to representing services as a
set of resources and entities; you will learn more about this architectural style in Chapter 15,
“Building REST Web Services.”

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 15

The code shown in the Service class in the Service.cs file shows an example of a simple WCF
service. This service provides two methods called GetData and GetDataUsingDataContract.
The details of these two methods are unimportant at the moment; it’s sufficient to say that
they show examples of how to implement operations. In a WCF service, an operation is simply
a method that takes zero or more parameters and can return a value. When a client applica-
tion sends a message to a WCF service, the WCF runtime converts the message into a method
call and passes the data contained in the message as parameters to the method. Similarly,
when the method returns, any return value is packaged into a message and transmitted back
to the client application.

You should notice that the Service class implements an interface called IService. If you expand
the App_Code folder for the C:\...\ProductsService\ Web site in Solution Explorer, you will see
a file called IService.cs. If you examine this file, you will see that it contains the following code:

using System.Collections.Generic;

using System.Linq;

using System.Runtime.Serialization;

using System.ServiceModel;

using System.ServiceModel.Web;

using System.Text;

// NOTE: You can use the "Rename" command on the "Refactor" menu to change the interface

name "IService" in both code and config file together.

[ServiceContract]

public interface IService

{

	 [OperationContract]

	 string GetData(int value);

	 [OperationContract]

	 CompositeType GetDataUsingDataContract(CompositeType composite);

	 // TODO: Add your service operations here

}

// Use a data contract as illustrated in the sample below to add composite types to service

operations.

[DataContract]

public class CompositeType

{

	 bool boolValue = true;

	 string stringValue = "Hello ";

	 [DataMember]

	 public bool BoolValue

	 {

		 get { return boolValue; }

		 set { boolValue = value; }

	 }

Download from Wow! eBook <www.wowebook.com>

16	 Windows Communication Foundation 4 Step by Step

	 [DataMember]

	 public string StringValue

	 {

		 get { return stringValue; }

		 set { stringValue = value; }

	 }

}

The IService interface simply defines the GetData and GetDataUsingDataContract methods
implemented by the Service class. This is known as the service contract, and it makes use of
the ServiceContract and OperationContract attributes, which you will learn about in the next
section. The IService.cs file also contains a class called CompositeType (this is the type returned
by the GetDataUsingDataContract method) that references the DataContract and DataMember
attributes. This is an example of a data contract, and you will learn about this shortly, as well.

Defining the Contracts
The structure of a WCF service enables you to adopt a “contract-first” approach to develop-
ment. When performing contract-first development, you define the interfaces, or contracts,
that the service will implement and then build a service that conforms to these contracts. This
is not a new technique; COM developers have been using a very similar strategy for the last
decade or so. The point behind using contract-first development is that you can initially con-
centrate on the design of your service. If necessary, it can quickly be reviewed to ensure that
it does not introduce any dependencies on specific hardware or software before you perform
too much development. Remember that in many cases client applications might not be built
using WCF, or even be running on Windows.

In the following exercises, you will define the data and service contracts for the ProductsSer-
vice WCF service. The data contract specifies the details of products that the WCF service
can pass to operations. The service contract defines the operations that the WCF service will
implement.

Define the Data Contract for the WCF Service

	 1.	 In the IService.cs file, delete the code and comments for the IService interface and the
CompositeType class, leaving just the using statements at the top of the file.

	 2.	 In Solution Explorer, change the name of the IService.cs file to IProductsService.cs:

❏❏ Right-click the IService.cs file, click Rename, and then type IProductsService.cs.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 17

Best Practice  It is good practice to change the name of the file containing the service
contract from IService.cs to a name that more closely reflects the name or purpose of the
service.

	 3.	 Add the following namespace to the IProductsService.cs file:

namespace Products

{

}

	 4.	 Add the following ProductData class to the Products namespace:

// Data contract describing the details of a product passed to client applications

[DataContract]

public class ProductData

{

 [DataMember]

 public string Name;

 [DataMember]

 public string ProductNumber;

 [DataMember]

 public string Color;

 [DataMember]

 public decimal ListPrice;

}

This class defines the data that the WCF service will pass back to client applications. It is
a subset of the data defined by the entity model that you created earlier.

The DataContract attribute identifies the class as defining a type that can be serialized
and deserialized as an XML stream by WCF. All types that you pass to WCF operations
or return from WCF operations must be serializable by WCF. You can apply the Data
Contract attribute to classes, structures, and enumerations.

You mark each member of the type with the DataMember attribute; any members not
tagged in this way will not be serialized.

Note  You can use any other types that already have a data contract defined for them as
the types of data members inside a data contract. You can also use any serializable type.
This includes types such as string, int, and decimal, as well as many of the more complex
types such as the Collection classes.

Download from Wow! eBook <www.wowebook.com>

18	 Windows Communication Foundation 4 Step by Step

Define the service contract for the WCF service

	 1.	 Add the IProductsService interface shown in the following to the Products namespace,
after the Product class:

// Service contract describing the operations provided by the WCF service

[ServiceContract]

public interface IProductsService

{

 // Get the product number of every product

 [OperationContract]

 List<string> ListProducts();

 // Get the details of a single product

 [OperationContract]

 ProductData GetProduct(string productNumber);

 // Get the current stock level for a product

 [OperationContract]

 int CurrentStockLevel(string productNumber);

 // Change the stock level for a product

 [OperationContract]

 bool ChangeStockLevel(string productNumber, short newStockLevel, string shelf,

 int bin);

}

Defining a service contract as an interface in this way lets you separate the definition of
the contract from its implementation. You use the ServiceContract attribute to mark the
interface as a service contract (the WCF runtime relies on the interface being tagged
with this attribute when it is generating metadata for client applications that wish to use
this service). Each method that you want to expose should be tagged with the Operation
Contract attribute. It is also worth noting that you can use generic types (such as List<>)
as the types of parameters or return values in a WCF service contract as long as the
types you specify are serializable by WCF. You will learn much more about the details of
service contracts as you proceed through this book.

Implementing the Service
Now that you have specified the structure of the data passed to the WCF service by using a
data contract and defined the shape of the WCF service by using a service contract, the next
step is to write the code that actually implements the service contract. As with any interface,
you must implement every method defined by the service contract in the WCF service. Note
that if you define additional methods in the WCF service that are not in the service contract,
those methods will not be visible to client applications using the service.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 19

Implement the WCF Service

	 1.	 Add a reference to the ProductsEntityModel project to the WCF service.

	 a.	 In Solution Explorer, right-click the C:\...\ProductsService\ Web site, and then click
Add Reference.

	 b.	 In the Add Reference dialog box, click the Projects tab.

	 c.	 Click the ProductsEntityModel project, and then click OK.

	 2.	 Add a reference to the System.Data.Entity assembly to the WCF service.

	 a.	 In Solution Explorer, right-click the C:\...\ProductsService\ Web site, and then click
Add Reference.

	 b.	 In the Add Reference dialog box, click the .NET tab.

	 c.	 Click System.Data.Entity (make sure that you select the version 4.0.0.0 assembly if
more than one version is shown), and then click OK.

The System.Data.Entity assembly contains the system types required to fetch data by
using the entity model in the ProductsEntityModel project.

	 3.	 In Solution Explorer, rename the Service.cs file in the App_Code folder as
ProductsService.cs.

	 4.	 Double-click the newly-renamed ProductsService.cs file to display it in the Code And
Text Editor window, and then remove the Service class and its associated comment, leav-
ing only the using statements in the file.

	 5.	 Add the following using statement to the list at the top of the file:

using ProductsEntityModel;

The ProductsEntityModel namespace contains the types that define the entity model in
the ProductsEntityModel project.

	 6.	 Add the Products namespace to the ProductsService.cs file, as follows:

namespace Products

{

}

	 7.	 Add the following class to the Products namespace:

// WCF service that implements the service contract

// This implementation performs minimal error checking and exception handling

public class ProductsServiceImpl : IProductsService

{

}

Download from Wow! eBook <www.wowebook.com>

20	 Windows Communication Foundation 4 Step by Step

Notice that a class that provides a WCF service should indicate that it implements a ser-
vice contract—in this case, IProductsService—by using standard C# inheritance notation.

	 8.	 Add the ListProducts method to the ProductsServiceImpl class, as shown in bold in the
following code example:

public class ProductsServiceImpl : IProductsService

{

 public List<string> ListProducts()

 {

 // Create a list for holding product numbers

 List<string> productsList = new List<string>();

 try

 {

 // Connect to the AdventureWorks database by using the Entity Framework

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 // Fetch the product number of every product in the database

 var products = from product in database.Products

 select product.ProductNumber;

 productsList = products.ToList();

 }

 }

 catch

 {

 // Ignore exceptions in this implementation

 }

 // Return the list of product numbers

 return productsList;

 }

}

Important  For the sake of clarity, this method does not include any significant exception
handling. In the real world, you should check for exceptions in a more comprehensive man-
ner and handle them accordingly. You will learn how to do this in Chapter 3, “Making Appli-
cations and Services Robust.”

This method uses the classes generated by the Entity Framework to connect to the
AdventureWorks database and retrieve the product number of every product as a list of
strings. The statement

using (AdventureWorksEntities database = new AdventureWorksEntities())

creates an instance of the AdventureWorksEntities class called database and connects to
the AdventureWorks database. The LINQ query finds the product number of all products
in the database and creates an IQueryable collection. The ToList() method fetches all
products and stores them in a List collection object which is assigned to the productsList
variable.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 21

Notice that you can access the products in the database by using the Products property
of the AdventureWorksEntity object. Remember that this is a collection property that
contains Product objects.

Note  The Entity Framework fetches data on demand. When you create an instance of
the AdventureWorksEntities class, no data is retrieved until you fetch it by calling the ToList
method of the products collection.

You might also be curious why the productsList variable is initialized as new list of strings at
the start of the method, only for it to be overwritten by the code in the try block. This is a
defensive mechanism that ensures that the productsList variable is always set to a mean-
ingful value should the code in the try block fail for some reason. You will see an example
of how such a failure might occur in Chapter 3.

	 9.	 Add the GetProduct method (shown in bold in the following) to the ProductsServiceImpl
class.

public class ProductsServiceImpl : IProductsService

{

 ...

 public ProductData GetProduct(string productNumber)

 {

 // Create a reference to a ProductData object

 // This object will be instantiated if a matching product is found

 ProductData productData = null;

 try

 {

 // Connect to the AdventureWorks database by using the Entity Framework

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 // Find the first product that matches the specified product number

 Product matchingProduct = database.Products.First(

 p => String.Compare(p.ProductNumber, productNumber) == 0);

 productData = new ProductData()

 {

 Name = matchingProduct.Name,

 ProductNumber = matchingProduct.ProductNumber,

 Color = matchingProduct.Color,

 ListPrice = matchingProduct.ListPrice

 };

 }

 }

 catch

 {

 // Ignore exceptions in this implementation

 }

 // Return the product

 return productData;

 }

}

Download from Wow! eBook <www.wowebook.com>

22	 Windows Communication Foundation 4 Step by Step

The GetProduct method connects to the AdventureWorks database by using an Adventure
WorksEntities object; it uses the First extension method of the Products collection to
fetch the details of the first product it finds in the database that has a product number
that matches the parameter passed in to the GetProduct method. The data from the
matching Product object are used to populate a ProductData object, which is returned
by the GetProduct method.

Note that if the specified product number is not found in the database, the First method
throws an exception. This exception is caught by the GetProduct method, which ignores
it. If this happens, the GetProduct method returns a null ProductData object.

	 10.	 Add the CurrentStockLevel method to the ProductsServiceImpl class, as shown in bold in
the following:

public class ProductsServiceImpl : IProductsService

{

 ...

 public int CurrentStockLevel(string productNumber)

 {

 // Obtain the total stock level for the specified product.

 // The stock level is calculated by summing the quantity of the product

 // available in all the bins in the ProductInventory table.

 // The Product and ProductInventory tables are joined over the

 // ProductID column.

 int stockLevel = 0;

 try

 {

 // Connect to the AdventureWorks database by using the Entity Framework

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 // Calculate the sum of all quantities for the specified product

 stockLevel = (from pi in database.ProductInventories

 join p in database.Products

 on pi.ProductID equals p.ProductID

 where String.Compare(p.ProductNumber,productNumber) == 0

 select (int)pi.Quantity).Sum();

 }

 }

 catch

 {

 // Ignore exceptions in this implementation

 }

 // Return the stock level

 return stockLevel;

 }

}

The CurrentStockLevel method takes a product number as a parameter and calculates
the volume of this product that is currently in stock. Remember that products are stored

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 23

in one or more bins on various shelves in the warehouse. This method uses a LINQ
query to find all items in the ProductsInventories collection that have a product ID that
matches the specified product number. It then sums the quantities in each matching
ProductsInventory object.

Important  Ideally, you should also perform some validation checking on the product-
Number parameter to verify that it does not contain strings that could be indicative of an
attempted SQL Injection attack. However, such input validation has been omitted in this
example, for clarity.

	 11.	 Add the ChangeStockLevel method (shown in bold in the following) to the Products
ServiceImpl class:

public class ProductsServiceImpl : IProductsService

{

 ...

 public bool ChangeStockLevel(string productNumber, short newStockLevel,

 string shelf, int bin)

 {

 // Modify the current stock level of the selected product

 // in the ProductInventory table.

 // If the update is successful then return true, otherwise return false.

 // The Product and ProductInventory tables are joined over the

 // ProductID column.

 try

 {

 // Connect to the AdventureWorks database by using the Entity Framework

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 // Find the ProductID for the specified product

 int productID =

 (from p in database.Products

 where String.Compare(p.ProductNumber, productNumber) == 0

 select p.ProductID).First();

 // Find the ProductInventory object that matches the parameters passed

 // in to the operation

 ProductInventory productInventory = database.ProductInventories.First(

 pi => String.Compare(pi.Shelf, shelf) == 0 &&

 pi.Bin == bin &&

 pi.ProductID == productID);

 // Update the stock level for the ProductInventory object

 productInventory.Quantity += newStockLevel;

 // Save the change back to the database

 database.SaveChanges();

 }

 }

Download from Wow! eBook <www.wowebook.com>

24	 Windows Communication Foundation 4 Step by Step

 catch

 {

 // If an exception occurs, return false to indicate failure

 return false;

 }

 // Return true to indicate success

 return true;

 }

}

This method updates the quantity in stock for the specified product, in the specified bin,
on the specified shelf. If this product is not actually located in this bin, on this shelf, the
First extension method on the second LINQ query throws an exception and the method
returns false to indicate that no update occurred. If a matching ProductInventory object
is found, the ChangeStockLevel method sets the Quantity property to the value of the
newStockLevel parameter, saves the changes back to the database, and returns true to
indicate that the update was successful.

Notice that the SaveChanges method of the AdventureWorksEntity class performs the
database update. The SaveChanges method generates SQL UPDATE statements for each
object in the Products and ProductInventories collections that has been modified; SQL
DELETE statements for each object in these collections that has been removed; and SQL
INSERT statements for each object added to these collections.

	 12.	 Build the C:\...\ProductsService\ Web site, and correct any errors if necessary.

Configuring and Testing the Service
The WCF service that you have built runs the same way as a regular Web application and is
hosted by a Web server. In this case, when you created the WCF service, you set the location
to a folder in the file system, so when you run the service it will execute by using the ASP.NET
Development Server provided with Visual Studio. You will see later in this chapter how you
can package and deploy the service to run in Internet Information Services (IIS). You can also
host a WCF service in a variety of other environments, including a stand-alone application, a
Windows service application, and Windows Server Azure. You will learn more about hosting
services in some of these environments in Chapter 2, “Hosting a WCF Service.”

You need to provide the host environment with service configuration information so it knows
which class contains the WCF service and how it should listen for requests from client applica-
tions. WCF provides default options for much of this configuration information, but you can
override these defaults with values that meet your specific requirements. You will learn about
many of these configuration options as you progress through this book.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 25

In the following exercises you will perform a minimal configuration and test the WCF service
using Internet Explorer. Later in this chapter, you will test the service by building a client appli-
cation that connects to the service and invokes its operations.

Configure the WCF Service

	 1.	 In the C:\...\ProductsService\ Web site, double-click the Service.svc file to display it in the
Code And Text Editor window. The contents of the file look like this:

<%@ ServiceHost Language="C#" Debug="true" Service="Service"

 CodeBehind="~/App_Code/Service.cs" %>

The Service.svc file specifies the name and location of the class that implements the
WCF service. Visual Studio generated that file when you first created the WCF service,
but it is now out of date because you changed both the name of the WCF service class
and the name of the file that contains the class.

	 2.	 In the Service.svc file, change the value of the Service attribute to Products.Products
ServiceImpl, and the value of the CodeBehind attribute to reference the ProductsService.cs
file, as shown in bold in the following:

<%@ ServiceHost Language="C#" Debug="true" Service="Products.ProductsServiceImpl"

 CodeBehind="~/App_Code/ProductsService.cs" %>

Note  The name of the WCF service class must be fully qualified with the namespace that
contains the service.

	 3.	 In the C:\...\ProductsService\ Web site, open the Web.config file. This is the configura-
tion file for the WCF service; it looks like this (the layout has been changed slightly to
make it more readable in this book):

<?xml version="1.0"?>

<configuration>

 <system.web>

 <compilation debug="false" targetFramework="4.0">

 <assemblies>

 <add assembly="System.Data.Entity, Version=4.0.0.0, Culture=neutral,

 PublicKeyToken=B77A5C561934E089"/>

 </assemblies>

 </compilation>

 </system.web>

 <system.serviceModel>

 <behaviors>

 <serviceBehaviors>

 <behavior>

Download from Wow! eBook <www.wowebook.com>

26	 Windows Communication Foundation 4 Step by Step

 <!-- To avoid disclosing metadata information, set the

 value below to false and remove the metadata endpoint

 above before deployment -->

 <serviceMetadata httpGetEnabled="true"/>

 <!-- To receive exception details in faults for debugging purposes,

 set the value below to true. Set to false before deployment to

 avoid disclosing exception information -->

 <serviceDebug includeExceptionDetailInFaults="false"/>

 </behavior>

 </serviceBehaviors>

 </behaviors>

 <serviceHostingEnvironment multipleSiteBindingsEnabled="true"/>

 </system.serviceModel>

 <system.webServer>

 <modules runAllManagedModulesForAllRequests="true"/>

 </system.webServer>

</configuration>

The key part to notice in this configuration file is the <system.serviceModel> section.
You can use this section to specify the endpoints to which the service listens for client
requests, to configure the security requirements of the service, and to specify the policy
requirements and behavior of the service. The configuration file generated by the WCF
Service template simply modifies the behavior to enable the WCF service to publish its
metadata (client applications can use this metadata to discover the operations that the
service implements) and to turn off debugging details. Most of the remaining configu-
ration elements are left at their default values; the service will listen for client requests
by using the HTTP protocol on the default port used by the Web server hosting the
WCF service.

You will learn a lot more about the configuration elements available in the <system.
serviceModel> section as you perform the exercises in this book.

	 4.	 In Solution Explorer, in the ProductsEntityModel project, open the App.config file.

This configuration file contains the connection string generated by the Entity Data
Model Wizard for connecting to the AdventureWorks database (highlighted in bold in
the example that follows):

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 27

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <connectionStrings>

 <add name="AdventureWorksEntities"

connectionString="metadata=res://*/ProductsModel.csdl|res://*/ProductsModel.ssdl|res:/

/*/ProductsModel.msl;provider=System.Data.SqlClient;provider connection

string="Data Source=.\SQLExpress;Initial Catalog=AdventureWorks;Integrated

Security=True;MultipleActiveResultSets=True""

providerName="System.Data.EntityClient" />

 </connectionStrings>

</configuration>

	 5.	 Copy the <connectionStrings> element and the AdventureWorksEntities connection string
to the Web.config file for the WCF service. Insert this element in the <configuration>
section, before the <system.Web> section, as shown in bold in the following:

<?xml version="1.0"?>

<configuration>

 <connectionStrings>

 <add name="AdventureWorksEntities"

connectionString="metadata=res://*/ProductsModel.csdl|res://*/ProductsModel.ssdl|res:/

/*/ProductsModel.msl;provider=System.Data.SqlClient;provider connection

string="Data Source=.\SQLExpress;Initial Catalog=AdventureWorks;Integrated

Security=True;MultipleActiveResultSets=True""

providerName="System.Data.EntityClient" />

 </connectionStrings>

 <system.web>

 ...

 </system.web>

 ...

</configuration>

Note  The connectionString element should be entered on a single line, without breaks.

	 6.	 Save the Web.config file.

Test the WCF Service by Using Internet Explorer

	 1.	 In Solution Explorer, in the C:\...\ProductsService\ Web site, right-click the Service.svc file,
and then click View in Browser.

The ASP.NET Development Server starts, and Internet Explorer runs, displaying the page
shown in the following image (the port number shown in the URL might be different for
your service):

Download from Wow! eBook <www.wowebook.com>

28	 Windows Communication Foundation 4 Step by Step

This is the help page for the WCF service. It verifies that the WCF service has been con-
figured correctly (you will see error messages if the WCF service cannot start) and pro-
vides information showing how you can build a client application that can connect to
the WCF service.

	 2.	 Click the URL displayed in Internet Explorer.

Another page appears, as shown in the following image:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 29

This page shows the metadata that describes the service. You can see that this is an XML
document that uses the WSDL schema. The elements in this document describe the
operations that the WCF service exposes and the messages that it can receive and send.
The operations are derived from the methods you implemented, and the messages
are based on the parameters that each method takes and the return values that each
method passes back.

Developers familiar with WSDL can take this description and use it to build client appli-
cations that can connect to your service. This sounds like an imposing task, but fortu-
nately many development environments, including Visual Studio, provide tools that can
convert a WSDL description of a service and generate code for a proxy class that client
applications can use to access the service. This is the approach that you will take in the
next section.

	 3.	 Close Internet Explorer and return to Visual Studio.

Deploying a WCF Service in IIS Without an .svc File
The .svc file is a special content file that IIS uses to recognize a WCF service. It provides
the information that the hosting environment in IIS uses to activate the WCF runtime
and start the service. The .svc file always forms part of the address of a WCF service
hosted by using IIS (this is not the case with other hosting environments, as you will see
in Chapter 2).

WCF 4.0 provides a feature called Configuration-Based Activation, with which you can
combine the information normally included in the .svc file directly into the Web.config
file for a WCF service hosted by IIS. To do this, you add a <serviceActivations> section to
the <serviceHostingEnvironment> part of the configuration file and provide values for
the relativeAddress and service elements. The relativeAddress element should be a string
that looks like a filename with the .svc extension, and the service element should specify
the fully qualified type that implements the WCF service. The following code fragment
shows an example that configures the ProductsService WCF service:

<?xml version="1.0"?>

<configuration>

 ...

 <system.serviceModel>

 ...

 <serviceHostingEnvironment multipleSiteBindingsEnabled="true">

 <serviceActivations>

 <add relativeAddress="NoServiceFile.svc"

 service="Products.ProductsServiceImpl" />

 </servicaActivations>

 </serviceHostingEnvironment>

 </system.serviceModel>

 ...

</configuration>

Download from Wow! eBook <www.wowebook.com>

30	 Windows Communication Foundation 4 Step by Step

With this configuration, you can remove the Service.svc file from the Web site and
access the ProductsService WCF service by using the URL http://localhost:49208/
ProductsService/NoServiceFile.svc (your port number might vary).

Building a WCF Client Application
You have seen that you can view the metadata for a WCF service by using a Web browser
such as Internet Explorer and querying the metadata endpoint for the service; in a WCF ser-
vice, the metadata endpoint is the URL of the service with the extension ?wsdl. Visual Studio
can use the metadata published by a WCF service to generate a proxy class that a client appli-
cation can use to connect to the service. The proxy class provides the same operations and
messages as the WCF service, but it makes them available as methods, parameters, and return
values. The code in the proxy class converts the method calls into request messages and con-
verts the response messages received from a service back into method calls. Thus, the client
application is not exposed to the internal details of building messages and can access the
WCF service in a manner very similar to calling methods in ordinary local objects.

In the following exercise, you will build a console client application to test the ProductsService
WCF service.

Build the Console Client Application

	 1.	 In Visual Studio, add a new project to the ProductsService solution using the informa-
tion in the following table:

Item Value

Template Console Application

Name ProductsClient

Location Microsoft Press\WCF Step By Step\Chapter 1\ProductsService (within your Docu-
ments folder [this is the default location])

	 2.	 In Solution Explorer, add a reference to the System.ServiceModel assembly to the Products
Client application. If you have more than one version installed on your computer, make
sure that you add version 4.0.0.0 of this assembly.

	 3.	 Add a Service Reference for the ProductsService service to the ProductsClient applica-
tion, as follows:

	 a.	 In Solution Explorer, right-click the ProductsClient project, and then click Add Ser-
vice Reference.

The Add Service Reference dialog box appears.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 31

	 b.	 In the Add Service Reference dialog box, click Discover.

The Address text box is populated with the address of the ProductsService service,
and the service appears in the Services box.

Note  The Discover button is intended to find all WCF services that are part of the
same solution as the client application. If you need to add a service reference for a
WCF service that is located elsewhere, you can type the URL of the WCF service in the
Address box and then click Go.

	 c.	 In the Services box, expand ProductsService/Service.svc, expand ProductsServiceImpl,
and then click IProductsService. Verify that the four operations, ChangeStockLevel,
CurrentStockLevel, GetProduct, and ListProducts appear in the Operations box, as
shown in the following image:

	 d.	 In the Namespace text box, type ProductsService, and then click OK.

You should notice that the Service References folder appears in Solution Explorer,
under the ProductsClient project. If you expand the Service References folder, you
will see an entry called ProductsService. This service reference contains the proxy
class. You can view the code for the proxy class if you click the Show All Files but-
ton in the Solution Explorer toolbar, expand the ProductsService entry, expand
Reference.svcmap, and then double-click Reference.cs. Be careful not to change
any of this code.

Hint  If you do accidentally modify the code for the proxy class, you can regenerate it quite
easily; in Solution Explorer, right-click the ProductsService service reference and then click
Update Service Reference.

Download from Wow! eBook <www.wowebook.com>

32	 Windows Communication Foundation 4 Step by Step

	 4.	 In Solution Explorer, double-click the App.config file for the ProductsClient project to
display this file in the code view window. This is the WCF client configuration file that’s
generated at the same time as the proxy class. It contains the settings the client applica-
tion uses to connect to the WCF service. It looks similar to this:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.serviceModel>

 <bindings>

 <basicHttpBinding>

 <binding name="BasicHttpBinding_IProductsService" closeTimeout="00:01:00"

 openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00"

 allowCookies="false" bypassProxyOnLocal="false"

 hostNameComparisonMode="StrongWildcard"

 maxBufferSize="65536" maxBufferPoolSize="524288"

 maxReceivedMessageSize="65536"

 messageEncoding="Text" textEncoding="utf-8" transferMode="Buffered"

 useDefaultWebProxy="true">

 <readerQuotas maxDepth="32" maxStringContentLength="8192"

 maxArrayLength="16384" maxBytesPerRead="4096"

 maxNameTableCharCount="16384" />

 <security mode="None">

 <transport clientCredentialType="None" proxyCredentialType="None"

 realm="" />

 <message clientCredentialType="UserName" algorithmSuite="Default" />

 </security>

 </binding>

 </basicHttpBinding>

 </bindings>

 <client>

 <endpoint address="http://localhost:49208/ProductsService/Service.svc"

 binding="basicHttpBinding"

 bindingConfiguration="BasicHttpBinding_IProductsService"

 contract="ProductsService.IProductsService"

 name="BasicHttpBinding_IProductsService" />

 </client>

 </system.serviceModel>

</configuration>

WCF client applications do not have the same degree of default configuration options
as WCF services. Consequently, you must specify this information explicitly, so the con-
figuration file for a client application might contain a lot more information than the
corresponding service configuration file.

The <client> section toward the end of the file specifies how the client connects to the
service. The <endpoint> element provides the details of the service that the client appli-
cation requires to communicate with it. An endpoint contains three key pieces of infor-
mation: an address, a binding, and a contract. An endpoint can also have an optional
name that you can reference in the code of your client application; this is useful if you
connect to multiple services because each service can have its own named endpoint in
the client configuration file.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 33

The address is the URL of the service (in this case, http://localhost:49208/ProductsService/
Service.svc).

The binding element specifies items such as the transport mechanism used to access
the Web service and the protocol to use, among other items. A service can use one of a
number of standard bindings built into WCF. When you configured the service, you did
not specify any binding information, so the default basicHttpBinding binding was used.
This binding is based on the HTTP protocol and is compatible with many existing Web
services and client applications built with technologies other than WCF. In addition, you
can modify the properties of a binding to specify additional information, such as time-
out values, message encodings, and security requirements.

The example generated for the client application creates a binding configuration called
BasicHttpBinding_IProductsService. This configuration is referenced from the definition
of the client endpoint. A client application must use the same binding configuration as
the service in order to communicate with it successfully. If you modify the configura-
tion for a WCF service, you must make the corresponding changes to the configuration
files for each client. Fortunately, the binding configuration is exposed by a service as
part of its metadata, so if you modify the configuration for a service, you can regener-
ate the binding configuration for a client by using the Update Service Reference feature
described earlier. You will learn much more about bindings and binding configurations
in Chapter 2.

Finally, the contract element indicates the contract that the service implements, which in
turn dictates the messages that a client application can send and expect to receive when
communicating with the service. Again, you will learn a lot more about service contracts
throughout the exercises in this book.

	 5.	 Open the Program.cs file for the ProductsClient project in the Code And Text Editor win-
dow. Add the using statements (shown in bold in the following) to the list at the top of
the file:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.ServiceModel;

using ProductsClient.ProductsService;

namespace ProductsClient

{

 class Program

 {

 static void Main(string[] args)

 {

 }

 }

}

Download from Wow! eBook <www.wowebook.com>

34	 Windows Communication Foundation 4 Step by Step

You should always add a reference to the System.ServiceModel assembly and namespace
to a WCF client application because they provide the methods needed to communicate
with a WCF service. The ProductsClient.ProductsService namespace contains the proxy
class for the ProductsService WCF service.

	 6.	 In the Main method, add the statements, shown in bold in the following:

static void Main(string[] args)

{

 // Create a proxy object and connect to the service

 ProductsServiceClient proxy = new ProductsServiceClient();

}

The ProductsServiceClient class is the name of the proxy type generated earlier. This
code creates a new instance of the proxy and connects to the ProductsService service.

Note  The constructor for the ProductsServiceClient class is overloaded. The default con-
structor is useful if the client configuration defines a single endpoint for connecting to a
service. If there is a choice of endpoints with different configurations, you can specify the
name of the endpoint to use, like this:

ProductsServiceClient proxy =

 new ProductsServiceClient("BasicHttpBinding_IProductsService");

Other overloads enable you to explicitly specify the address of the service and the binding
to use if you wish to override the settings in the configuration file.

	 7.	 Add the following code (shown in bold) to the Main method, just below the code added
in the previous step:

static void Main(string[] args)

{

 // Create a proxy object and connect to the service

 ProductsServiceClient proxy = new ProductsServiceClient();

 // Test the operations in the service

 // Obtain a list of all products

 Console.WriteLine("Test 1: List all products");

 string[] productNumbers = proxy.ListProducts();

 foreach (string productNumber in productNumbers)

 {

 Console.WriteLine("Number: {0}", productNumber);

 }

 Console.WriteLine();

}

This block of code tests the ListProducts method. This method should return an array of
strings containing the product number of every product in the database. The foreach
statement iterates through the list and displays them.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 35

	 8.	 Add the following code (shown in bold) to the Main method, after the previous
statements:

static void Main(string[] args)

{

 ...

 Console.WriteLine("Test 2: Display the details of a product");

 ProductData product = proxy.GetProduct("WB-H098");

 Console.WriteLine("Number: {0}", product.ProductNumber);

 Console.WriteLine("Name: {0}", product.Name);

 Console.WriteLine("Color: {0}", product.Color);

 Console.WriteLine("Price: {0}", product.ListPrice);

 Console.WriteLine();

}

This section of code tests the GetProduct method. The GetProduct method returns
the details for the specified product (in this case, product WB-H098) as a ProductData
object. Remember that the definition of the ProductData type was specified in the data
contract for the WCF service. The code defining this type in the client application was
generated from the metadata for the service and can be found in the Reference.cs file,
in the ProductsService.svcmap folder, under the ProductsService service reference in
Solution Explorer.

	 9.	 Add the following code (shown in bold) to the end of the Main method:

static void Main(string[] args)

{

 ...

 // Query the stock level of this product

 Console.WriteLine("Test 3: Display the stock level of a product");

 int numInStock = proxy.CurrentStockLevel("WB-H098");

 Console.WriteLine("Current stock level: {0}", numInStock);

 Console.WriteLine();

}

This block of code tests the CurrentStockLevel method. The value returned should be the
total number of product WB-H098 held in the warehouse.

	 10.	 Add the following code (shown in bold) to the Main method:

static void Main(string[] args)

{

 ...

 // Modify the stock level of this product

 Console.WriteLine("Test 4: Modify the stock level of a product");

 if (proxy.ChangeStockLevel("WB-H098", 100, "N/A", 0))

 {

 numInStock = proxy.CurrentStockLevel("WB-H098");

 Console.WriteLine("Stock changed. Current stock level: {0}", numInStock);

 }

Download from Wow! eBook <www.wowebook.com>

36	 Windows Communication Foundation 4 Step by Step

 else

 {

 Console.WriteLine("Stock level update failed");

 }

 Console.WriteLine();

}

This code tests the ChangeStockLevel method. Product WB-H098 is located on shelf
“N/A,” in bin 0, and this code adds another 100 to the volume in stock. The code then
calls the CurrentStockLevel method again, which should return the new stock level for
this product.

	 11.	 Complete the Main method by adding the following code shown in bold:

static void Main(string[] args)

{

 ...

 // Disconnect from the service

 proxy.Close();

 Console.WriteLine("Press ENTER to finish");

 Console.ReadLine();

}

You disconnect from a service by calling the Close method of the proxy. You should not
attempt to call further methods by using the proxy without connecting again.

Note  It is important that you close the proxy object when you have finished with it, oth-
erwise the connection might hold resources open on the server hosting the service. The
ProductsClientService class actually implements the IDisposable interface, so you can employ
a using construct, as shown below, to ensure that the proxy is closed appropriately; the Close
method is called automatically when execution reaches the end of the block and the proxy
object goes out of scope.

// Create a proxy object and connect to the service

using (ProductsServiceClient proxy = new ProductsServiceClient())

{

 // Use the proxy

 ...

} // Disconnect and close the proxy automatically

	 12.	 Save the project and build the solution.

Configuring the Service Proxy
You might be wondering why the value returned by ListProducts is a string array when
the WCF service implements this method as returning a List<string>. The answer lies in
the way that the data is transmitted from the service to the client application.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 37

When you build a WCF service, you define its operations in terms of types implemented
by using the .NET Framework. As described earlier, the messages that you send and
receive to and from a Web service are defined by using an XML schema. The WCF run-
time converts the data in incoming messages for a service from this XML format into
.NET Framework types and passes them as parameters to the methods that implement
the service operations. Similarly, when a service returns a value from an operation, the
WCF runtime converts the data back into XML and transmits it to the client application.
If you have built the client application by using Visual Studio, the proxy converts the
data from XML back into the native .NET Framework format before passing it to your
code.

In many cases, the WCF runtime implements well-defined mappings for converting
between XML and .NET Framework types; however, for collections there are several
choices. The XML schema used by Web services defines its own representation for
arrays, and the WCF runtime converts all collections into this XML format. When the
proxy for a client application receives an XML array, it has no knowledge of the original
.NET Framework type used by the service, and so by default it converts the XML array
into a .NET Framework array.

If you want the data to be returned to your client application as a specific type of col-
lection, you can configure the proxy to do so. In Solution Explorer, right-click the service
reference for the proxy (ProductsService for the ProductsClient application) then click
Configure Service Reference. You can specify the type that the proxy should use when it
receives an XML array in the Collection type drop-down list, as shown in the following
image. Note that this field defaults to System.Array.

Download from Wow! eBook <www.wowebook.com>

38	 Windows Communication Foundation 4 Step by Step

The final step is to run the client application and verify that the service operates as expected.

Run the Client Application

	 1.	 Set the ProductsClient project and C:\...ProductsService\ Web site as the startup projects
for the solution:

	 a.	 In Solution Explorer, right-click the ProductsService solution, and then click Set
StartUp Projects.

	 b.	 In the Solution ‘ProductsService’ Property Pages window, click the Multiple Startup
Projects radio button, and then set the Action property for the C:\...\Products
Service\ and ProductsClient projects to Start. Leave the Action property for the
ProductsEntityModel project set to None, and then click OK.

	 c.	 In Solution Explorer, right-click the C:\...\ProductsService\ project, and then click
Start Options.

	 d.	 In the Property Pages window, select the Don’t Open A Page. Wait For A Request
From An External Application option, and then click OK.

Note  If you don’t perform this final step, Visual Studio will start Internet Explorer running
and browse to the Web site when you run the project.

	 2.	 Start the application without debugging:

❏❏ On the Debug menu, choose Start Without Debugging.

A console window opens. A list of product numbers should appear first, followed by the
details of product WB-H098 (a water bottle), the current stock level (252), and the stock
level after adding another 100 (352):

	 3.	 Press Enter to terminate the program and return to Visual Studio.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 39

Deploying a WCF Service to Internet Information
Services

The ProductsService WCF service works well, but currently it runs within the confines of the
ASP.NET Development Server. In the real world, you want to be able to access it from a loca-
tion outside your development environment—which typically means deploying it to IIS. The
various wizards and tools provided with Visual Studio and IIS make deploying a service a fairly
simple operation. In the following exercises, you will deploy the ProductsService WCF service
to IIS, reconfigure the client application to connect to the new address and then test it.

The exercises in this section require that you have administrator access to your computer
and that you are running Visual Studio as an administrator. To do this, exit Visual Studio and
restart it by using the following procedure:

	 1.	 On the Windows Start menu, click All Programs, click the Microsoft Visual Studio 2010
folder, right-click Microsoft Visual Studio 2010, and then click Run As Administrator.

	 2.	 In the User Account Control dialog box, either click Yes if you already have administra-
tor access to your computer, or if you don’t, enter the administrator password and then
click Yes.

	 3.	 Open the ProductsService solution in the Microsoft Press\WCF Step By Step\Chapter 1\
ProductsService folder (within your Documents folder).

Deploy the WCF Service to IIS

	 1.	 In Solution Explorer, right-click the C:\...\ProductsService\ project, and then click Publish
Web Site.

The Publish Web Site dialog box appears.

	 2.	 Click the ellipsis button adjacent to the Target Location text box.

Another dialog box appears (also called Publish Web Site) in which you specify the
deployment location of your service. You can deploy the service to a local or remote
installation of IIS (if you have the appropriate access rights), or to an FTP site.

	 3.	 Click Local IIS.

The main window in the dialog box displays the Web sites on your local installation
of IIS.

	 4.	 Click Default Web Site, and then in the upper-right corner or the dialog box, click the
Create New Web Application button, as highlighted in the image that follows:

Download from Wow! eBook <www.wowebook.com>

40	 Windows Communication Foundation 4 Step by Step

A new Web site appears, called WebSite.

	 5.	 Change the name of the new Web site to ProductsService, and then click Open.

	 6.	 In the Publish Web Site dialog box, click OK.

The files comprising your WCF service are compiled, and the compiled assemblies and
configuration files are copied to the ProductsService virtual directory. You can verify
that publication was successful by using Windows Explorer to examine the contents of
the C:\inetpub\wwwroot\ProductsService folder which will have been created by this
process. Note that—for security reasons—the source code for your service is not copied,
only the compiled assemblies are copied. If you need to modify the code for your service,
you should make the changes and test them locally by using the ASP.NET Development
Server, and then use the Publish Web Site Wizard to publish the updated service.

Important  By default, the WCF service will be deployed to run by using the IIS Default-
AppPool. Unless you have reconfigured this application pool, it will attempt to run the ser-
vice by using the .NET Framework Version 2.0, and will fail. In this case, you should therefore
configure the ProductsService application in IIS to use something more appropriate, such as
the ASP.NET v4.0 application pool. You can achieve this by performing the following steps:

	 1.	 Start Internet Information Services Manager as an administrator as follows.

❏❏ On the Windows Start menu, click Control Panel, click System And Security, click
Administrative Tools, right-click Internet Information Services (IIS) Manager, and
then click Run As Administrator. Enter the administrator password if you are
prompted.

	 2.	 In Internet Information Services Manager, in the Connections pane, expand the
connection that corresponds to your local computer, expand Sites, expand Default
Web Site, and then click ProductsService.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 41

	 3.	 In the Actions pane (on the right side), click Basic Settings.

	 4.	 In the Edit Application dialog box, click Select (adjacent to the Application pool box).

	 5.	 In the Select Application Pool dialog box, select ASP.NET v4.0, and then click OK.

	 6.	 In the Edit Application dialog box, click OK.

You should also note that when you host a WCF service in IIS, the service runs with the
identity of the account specified by the application pool. You therefore need to ensure
that the account for this identity has access to the resources used by the WCF service.
In the case of the ProductsService service, you must provide the account used by the
DefaultAppPool or the ASP.NET v4.0 application pool with access to the AdventureWorks
database. The script aspnet.sql that you ran as part of the installation and configuration in
the Introduction already adds the default accounts used by these application pools to SQL
Server, but if you have reconfigured the application pools to use different accounts you
must add them manually (to see the syntax, examine the aspnet.sql script in the Microsoft
Press\WCF Step By Step\Setup folder, located within your Documents folder).

Reconfigure the Client Application and Test the Service

	 1.	 In Visual Studio, in the ProductsClient application, open the App.config file.

	 2.	 In the <endpoint> configuration section near the end of the file, change the address to
http://localhost/ProductsService/Service.svc.

	 3.	 Save the file.

	 4.	 Start the ProductsClient application without debugging and verify that it runs success-
fully. This time, however, it is connecting to the WCF service hosted by using IIS.

	 5.	 Close the application and return to Visual Studio.

Note  If the client application fails with an exception, there are two common causes to look for.
First, verify that you have not inserted any extraneous characters in the address in the application
configuration file and that you have removed the port number and colon from the address. If the
address is correct but the application still fails, the most likely cause is that the account used by
the application pool hosting the service does not have appropriate access to the AdventureWorks
database. The account must be a member of the db_owner role in the AdventureWorks database.
For examples of how to add an account with this privilege to the database, see the aspnet.sql
script in the Microsoft Press\WCF Step By Step\Setup folder.

Download from Wow! eBook <www.wowebook.com>

42	 Windows Communication Foundation 4 Step by Step

WCF and the Principles of SOA
At the start of this chapter I mentioned that WCF is an ideal platform for implementing an SOA.

You have seen how you can quickly build services by using WCF that you can integrate into
enterprise solutions. Apart from writing entirely new functionality, you can use WCF to imple-
ment services that wrap existing applications and connect them together in ways that were
previously difficult to achieve. WCF can act as the “glue” for combining applications and
components together. Additionally, WCF can make use of standard protocols, data formats,
and communications mechanisms, enabling interoperability with services developed by using
other technologies.

An SOA consists of a set of resources on a network that are made available as independent
services and that can be accessed without requiring any knowledge of how they are imple-
mented. You can combine the services in an SOA to create an enterprise application. I don’t
want to go into the full theory of SOA, but the main benefits are that you can create complex
solutions that are independent of any specific platform and location. This means that you can
quickly replace or upgrade a service or move a service to a different site (possibly running
on faster hardware). As long as the service exposes the same interfaces as it did before the
change, you can continue to use it without modifying any code. However, SOA is not a magic
wand that will instantly solve all of your distributed application architecture problems. To suc-
cessfully design and implement an SOA, you should be aware of what has become known as
the “Four Tenets of Service Orientation.” These are:

	 1.	 Boundaries are explicit.  Applications and services communicate by sending messages
to each other. You should not make any assumptions about how a service processes a
request or how a client application handles any response to a request. Following this
principle can help remove dependencies between services and client applications. Addi-
tionally, sending and receiving messages has an associated cost in terms of communica-
tions. You should design the operations that services implement with this in mind and
ensure that clients call services only when necessary.

	 2.	 Services are autonomous.  If you are building an application based on services, you
might not have control over every service you are using, especially Web services hosted
outside your organization. The location of a Web service might change, or a service
might be temporarily taken offline for maintenance or other reasons. You should design
your solutions to be loosely coupled so that they can tolerate these changes and con-
tinue running even if one or more services are unavailable.

	 3.	 Services share schemas and contracts, not classes or types.  Services publish information
about the operations that they implement and the structure of the data that they expect
to send and receive. Clients use this information when communicating with the service.
You should design contracts and schemas to define the interfaces that your services
expose. This can reduce the dependencies that clients have on a particular version of

Download from Wow! eBook <www.wowebook.com>

	 Chapter 1  Introducing Windows Communication Foundation	 43

your services. Services can change and evolve over time, and a new version of a service
might appear that supercedes a previous version. If a service is updated, it should main-
tain compatibility with existing clients by continuing to implement existing contracts
and send messages that conform to existing schemas. If you need to modify a service
and provide additional functionality, you can add contracts and schemas that extend the
original capabilities of the service while retaining the existing contracts and schemas.
Older client applications should continue to work unchanged.

	 4.	 Compatibility is based on policy.  The schemas and contracts exposed by a service
define the “shape” of the service but not the nonfunctional requirements that a client
attempting to access the service must fulfill. For example, a service might have security
requirements that state that clients must connect to it in a particular manner and send
and receive messages by encrypting data in a specific way. This is an example of policy.
The policy requirements of a service cannot be specified by using contracts and should
not require additional coding on the part of the client or the service—these require-
ments might change over time, and so should be decoupled from the implementation
of the service and clients. You should design services whose policy requirements are
independent of any implementation, and you should force clients to abide by any poli-
cies required by the service. Additionally, all services and client applications must agree
on how to specify this policy information (typically by using some sort of configuration
file). This is the purpose of the WS-Policy framework, published by the World Wide Web
Consortium and widely adopted by Web service developers.

More Info  For further information about the WS-Policy framework, visit the World Wide Web
Consortium Web site at http://www.w3.org/TR/2007/REC-ws-policy-20070904.

This sounds like a lot to think about when creating services, but WCF has been designed with
these principles in mind. As you progress through the rest of this book, you will encounter
many of the features WCF provides to help you build services that conform to SOA best
practices.

Summary
This chapter has introduced you to WCF. You should be familiar with the purpose of WCF and
how to use it to create a simple Web service by adopting a contract-first approach to design.
You have deployed a WCF Web service to IIS and seen how to create a client application that
can access the service. Finally, you have learned the basic principles of SOA and should now
understand that using WCF can help you to build services for an SOA, quickly and easily.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

45

Chapter 2

Hosting a WCF Service
After completing this chapter, you will be able to:

■■ Describe how a WCF service runs.

■■ Explain the different ways you can host a WCF service.

■■ Build a Windows Presentation Foundation application and a Windows service that host a
WCF service.

■■ Describe the different bindings available for communicating with a WCF service.

■■ Use multiple bindings with a WCF service.

In the previous chapter, you saw how to create a WCF service, how to deploy a WCF service to
Internet Information Services (IIS), and how to access it from a client application. This chapter
describes in more detail how a WCF service works and explains some of the other options you
have for hosting a WCF service. In this chapter, you will build and configure host applications
that process service requests and control the state of a WCF service. You will also learn more
about how bindings work in WCF and how the WCF runtime uses bindings to implement the
nonfunctional features of a service.

How Does a WCF Service Work?
Functionally, a WCF service is just an object that exposes a set of operations that client appli-
cations can invoke. When you build a service, you describe the operations for a service by
using a service contract, and then create a class that implements that contract. To execute
the service, you must provide a runtime environment for the service object and then make it
available to client applications. The runtime environment for an object implementing a service
is provided by a host application. You have already seen that you can use IIS to provide such a
runtime environment. You can also create your own application to act as a host.

A host application must perform several tasks, which include:

■■ Starting and stopping the service

■■ Listening for requests from a client application and directing them to the service

■■ Sending any responses from the service back to the client applications

To understand more about how a host application works, it is helpful to look in detail at ser-
vice endpoints and the way the WCF runtime uses the binding information specified in end-
points to enable client applications to connect to the service.

Download from Wow! eBook <www.wowebook.com>

46	 Windows Communication Foundation 4 Step by Step

Service Endpoints
A host application makes a service available to client applications by providing one or
more endpoints to which clients can send requests. An endpoint contains three pieces of
information:

	 1.	 The address of the service. The form of a service address depends on several factors,
including the transport protocol being used. Different transport mechanisms use
different address spaces. For example, in Chapter 1, “Introducing Windows Communi
cation Foundation,” you deployed a service to IIS using the address http://localhost/
ProductsService/ProductsService.svc. This address specifies the virtual directory and the
service definition (.svc) file. If you build your own custom host application, you can use
a different transport mechanism, and you must specify an address that is appropriate to
your chosen transport mechanism.

	 2.	 The binding supported by the service. The binding for a service describes how a client
can connect to the service and the format of the data expected by the service. A
binding can include the following information:

❏❏ The transport protocol. This must conform to the requirements of the service
address. For example, if you are using IIS to host the service, you should specify
the HTTP or HTTPS transport protocol. WCF also has built-in support for the TCP
protocol, named-pipes, and message queues. You will see examples of addresses
specified by using some of these transport schemes later in this chapter.

❏❏ The encoding format of messages. In many cases, request and response messages
will be transmitted in XML format, encoded as ordinary text. However, in some
cases you might need to transmit data using a binary encoding, especially if you
are transmitting images or handling streams. You will learn more about using an
appropriate encoding for messages in Chapter 13, “Implementing a WCF Service
for Good Performance.”

❏❏ The security requirements of the service. You can implement security at the trans-
port level and at the message level, although different transport protocols have
their own limitations and requirements. You will learn more about specifying the
security requirements for a service in Chapter 4, “Protecting an Enterprise WCF
Service,” and in Chapter 5, “Protecting a WCF Service over the Internet.”

❏❏ The transactional requirements of the service. A service typically provides access
to one or more resources. Client applications update these resources by sending
requests to the service. If a client makes multiple requests of a service that result in
multiple updates, it can be important to ensure that all of these updates are made
permanent. In the event of a failure, the service should undo all of these updates.
This is the definition of a transaction. You will learn more about building WCF ser-
vices that support transactions in Chapter 9, “Supporting Transactions.”

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 47

❏❏ The reliability of communications with the service. Clients usually connect to ser-
vices across a network. Networks are notoriously unreliable and can fail at any
time. If a client application is performing a conversation (an ordered exchange of
several messages) with a service, information about the reliability of the service is
important. For example, the service should try to ensure that it receives all mes-
sages sent by the client—and receives them in the order that the client sent them.
A service can ensure the integrity of conversations by implementing a reliable
messaging protocol. You will learn more about reliable messaging in Chapter 10,
“Implementing Reliable Sessions.”

`	 3.	 The contract implemented by the service. A WCF service contract is an interface stored
in a .NET Framework assembly and annotated with the ServiceContract attribute. The
service contract describes the operations implemented by the service by tagging them
with the OperationContract attribute. Any data passed to and from operations must be
serializable. A service can define data contracts that describe the structure of complex
data and how that data should be serialized. The service can publish the description of
its service contract, which a client application can use to ascertain the operations that
the service implements and to send messages that are correctly formatted.

Processing a Client Request
A service can respond to requests from multiple client applications simultaneously. To achieve
this feat, the application hosting the service must be able to accept multiple incoming requests
and direct service responses back to the appropriate client. Additionally, the host application
must ensure that messages being sent between the client and service conform to the security,
reliability, and transactional requirements of the binding being used. Fortunately, you don’t
need to write this functionality yourself. The WCF runtime environment for a client applica-
tion and a service provides a collection of channel objects that can perform this processing
for you.

A channel is responsible for handling one aspect of message processing, as specified by the
bindings of a service. For example, a transport channel manages communications by using
a specific transport protocol, and a transaction channel controls the transactional integrity
of a conversation. The WCF runtime provides built-in channels for each of the supported
transport protocols. The WCF runtime also provides channels that handle the different ways
that WCF can encode data, manage security, implement reliability, and perform transactions.
The WCF runtime composes channels into a channel stack. All messages passing between the
client and the service go through each channel in the channel stack. Each channel in the
channel stack transforms the message in some way, and the output from one channel is
passed as input to the next. The channel stack operates in two directions: messages received
from clients across the network proceed up the channel stack to the service, and response
messages sent back from the service traverse the channel stack in the opposite direction back

Download from Wow! eBook <www.wowebook.com>

48	 Windows Communication Foundation 4 Step by Step

to the network and then to the client. If a channel cannot process a message, it reports an
error, an error message is sent back to the client, and the message is not processed any further.

Note  There is an order to the channels in the channel stack. A transport channel always resides
at the bottom of the stack and is the first channel to receive data from the network. On top of the
transport channel will be an encoding channel. These two channels are mandatory; the remaining
channels in a stack are optional.

When you start a service running, the WCF runtime uses the endpoint information specified
as part of the service configuration and creates a listener object for each address specified
for the service. When an incoming request is received, the WCF runtime constructs a channel
stack by using the binding information specified for the address and routes the incoming data
from the client through the stack. If a message successfully traverses all the channels in the
channel stack, the transformed request is passed to an instance of the service for processing.

Note  The channel model used by WCF makes the WCF framework very flexible. If you need to
add a new transport protocol or implement an additional piece of functionality, you can write your
own channel to perform the processing required and link it into the channel stack by adding it to
the binding description of the service. However, this task is beyond the scope of this book.

As mentioned earlier, a WCF service must be able to handle requests from multiple client
applications simultaneously. To do this, the WCF runtime can create multiple concurrent
instances of a service. The WCF runtime creates an InstanceContext object to control the inter-
action between the channel stack and a service instance. You can modify the way in which the
WCF runtime instantiates a service instance through the InstanceContext object by specifying
the ServiceBehavior attribute of the class that is implementing the service contract. The
ServiceBehavior attribute has a property called InstanceContextMode, which can take the
values shown in Table 2-1.

Table 2-1  InstanceContextMode Values

Value Description

InstanceContextMode.PerCall A new instance of the service will be created every time a client
calls an operation. When the call completes, the service instance is
recycled.

InstanceContextMode.PerSession If the service implements sessions, a new instance of the service will
be created at the start of the session and recycled when the ses-
sion completes. A client can call the service several times during a
session. However, the service instance cannot be used across more
than one session. For more information about using sessions, see
Chapter 7, “Maintaining State and Sequencing Operations.”

InstanceContextMode.Single Only one instance of the service is created, which is then shared
by all clients and all sessions. The instance is created when the first
client attempts to access it.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 49

The default value for the InstanceContextMode property is PerCall. You can specify the
InstanceContextMode property for a service like this:

[ServiceBehavior (InstanceContextMode=InstanceContextMode.PerSession)]

public class ProductsServiceImpl : IProductsService

{

 ...

}

A WCF client application can communicate with a WCF service by using a proxy class. You
can generate this proxy class by using Visual Studio (as you did in Chapter 1) or by using the
svcutil utility from the command line. This proxy class implements a channel stack on the
client side. You configure this channel stack by using bindings in the same way that you do
for a service. All responses received from a service pass through the channels in this stack. To
communicate successfully, the client and the service should use an equivalent channel stack
containing a compatible set of bindings.

Note  A client application can also communicate with a service by creating its own channel stack
manually. This is useful if you need to add specific optimizations or customize the way in which
the client application sends and receives messages. You will learn more about how to do this in
Chapter 11, “Programmatically Controlling the Configuration and Communications.”

Hosting a WCF Service by Using Windows Process
Activation Service

In Chapter 1, you saw how to build and deploy a WCF service to IIS. IIS provides a compre-
hensive and scalable hosting environment for Web services; that is, services that client appli-
cations can connect to from the World Wide Web. Web services use the HTTP protocol to
provide the communications transport. IIS listens for incoming HTTP requests, and when it
receives one, it activates the appropriate service that handles that request. The HTTP proto-
col is a good choice to use as a transport for connecting to Web services across the Internet.
However, if you are building client applications that access a service deployed within the same
organization, other protocols can prove to be more efficient.

The Windows Process Activation Service (WAS) extends the functionality of IIS by removing
the dependency on the HTTP protocol. Using WAS, you can host services that make use of
other protocols, such as TCP, named pipes, and Microsoft Message Queues. WAS can listen for
requests and activate a service that is waiting on an address that is based on any of these pro-
tocols. The important point to understand as far as a WCF service is concerned is that, for the
most part, the protocol and the address are merely configuration details. The service contract,
data contract, and service implementation are largely independent of the protocol and the
host environment.

Download from Wow! eBook <www.wowebook.com>

50	 Windows Communication Foundation 4 Step by Step

In the next exercise, you will configure WAS for the ProductsService service to enable it to
receive requests over the TCP protocol. You will then update the ProductsClient application
so it connects to the ProductsService service using the TCP protocol.

Installing and Configuring the Windows Process Activation
Service
WAS is not installed and configured by default on Windows 7. To install WAS, perform
the following steps as an administrator:

	 1.	 From the Windows Start menu, choose Control Panel, and then select Programs.

	 2.	 Under Programs and Features, click Turn Windows Features On And Off.

	 3.	 In the Windows Features dialog box, select Windows Process Activation Service
and its sub-features, and then select Microsoft .NET Framework 3.51 and its sub-
features, and then finally click OK.

Note  The Microsoft .NET Framework 3.51 feature contains the Windows Communication
HTTP Activation and Windows Communication Foundation Non-HTTP Activation sub-features.
You need these sub-features if you want to run WCF services using WAS.

Additionally, you should ensure that you have installed and registered the correct version
of ASP.NET with IIS—installing and uninstalling WAS components can sometimes cause IIS
to revert to an earlier version of ASP.NET. To do this, perform the following steps:

	 1.	 From the Windows Start menu, select All Programs | Microsoft Visual Studio
2010 | Visual Studio Tools, and then right-click Visual Studio Command Prompt
(2010), and click Run As Administrator. Enter the administrator password if you are
prompted.

	 2.	 In the Visual Studio Command Prompt window, run the following command to
install ASP.NET for the .NET Framework 4.0:

aspnet_regiis -iru

	 3.	 Close the Visual Studio Command Prompt window.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 51

Configure the Host Environment for the WCF Service to Support the TCP Protocol

	 1.	 Start Internet Information Services Manager as an administrator:

❏❏ From the Windows Start menu, open Control Panel. Select System and Security,
click Administrative Tools, right-click Internet Information Services (IIS) Manager,
and then click Run As Administrator. Enter the administrator password if you are
prompted.

	 2.	 In Internet Information Services Manager, in the Connections pane, expand the connec-
tion that corresponds to your local computer, expand the Sites item, right-click Default
Web Site, and then click Edit Bindings.

The Site Bindings dialog box appears. If you have installed WAS correctly, it should list
the default protocol bindings for the Web site, as shown in the following image:

Notice that the binding information for the net.tcp protocol indicates that WAS is
expecting TCP requests on port 808. You can modify this setting by selecting the Net.
Tcp entry and clicking Edit. Alternatively, you can configure WAS to listen for TCP
requests on multiple ports by clicking Add and adding an additional protocol binding.
For this exercise, leave the net.tcp protocol binding with its default configuration.

	 3.	 In the Site Bindings dialog box, click Close.

	 4.	 In the Connections pane, expand the Default Web Site item, and then click the
ProductsService application.

	 5.	 In the Actions pane (on the right-hand side), click Advanced Settings.

	 6.	 In the Advanced Settings dialog box, add a comma (,) and the text net.tcp to the
Enabled Protocols box, as shown in the following image.

Download from Wow! eBook <www.wowebook.com>

52	 Windows Communication Foundation 4 Step by Step

The Enabled Protocols configuration should contain a comma-separated list of network
protocols. These are the protocols that WAS will use to listen for connection requests
from client applications.

	 7.	 In the Advanced Settings dialog box, click OK.

The host environment for the ProductsService WCF service is now configured to listen for
requests using the HTTP and TCP protocols. Client applications can connect through TCP by
sending requests to port 808.

The next step is to configure the ProductsClient application with a binding that sends requests
over TCP to this port.

Configure the Client Application to Connect by Using the TCP Protocol

	 1.	 Using Visual Studio, open the ProductsClient solution in the Microsoft Press\WCF Step
By Step\Chapter 2\ProductsClient folder.

This solution contains a working copy of the ProductsClient application that you built in
Chapter 1.

	 2.	 Build and run the ProductsClient application and verify that the ProductsService WCF
service is still functioning correctly.

The ProductsClient application currently uses the HTTP protocol, and it should still be
able to connect successfully to the service.

	 3.	 In Solution Explorer, open the app.config file for the ProductsClient project in the Code
And Text Editor window.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 53

	 4.	 In the <client> section towards the end of the file, add the following <endpoint> con-
figuration, shown in bold in the following:

<client>

 <endpoint address="http://localhost/ProductsService/Service.svc"

 binding="basicHttpBinding"

 bindingConfiguration="BasicHttpBinding_IProductsService"

 contract="ProductsService.IProductsService"

 name="BasicHttpBinding_IProductsService" />

 <endpoint address="net.tcp://localhost/ProductsService/Service.svc"

 binding="netTcpBinding" contract="ProductsService.IProductsService"

 name="NetTcpBinding_IProductsService" />

</client>

This endpoint specifies a TCP address (note that the protocol element of the URL is
net tcp). The netTcpBinding binding specifies that the client should connect using
the TCP protocol (netTcpBinding is a predefined binding provided with WCF, like
basicHttpBinding—these predefined bindings are described in more detail later in this
chapter.) The endpoint is also given a name, NetTcpBinding_IProductsService. You can
actually identify endpoints by using whatever name you like, but this name follows
the pattern generated by the Add Service Reference Wizard for the basicHttpBinding
binding.

	 5.	 Open the Program.cs file for the ProductsClient project in the Code And Text Editor
window.

	 6.	 In the Main method, locate the statement that creates the proxy object that the client
application uses to connect to the WCF service. It looks like this:

ProductsServiceClient proxy = new ProductsServiceClient();

If there is only a single endpoint defined in the client configuration, this statement con-
nects to the service by using this endpoint. However, now that you have more than
one endpoint available, you must specify which endpoint to use; if you try to run the
ProductsClient application at this point it will fail with an InvalidOperationException
exception and the message “An endpoint configuration for contract ‘ProductsService.
IProductsService’ could not be loaded because more than one endpoint configuration
for that contract was found. Please indicate the preferred endpoint configuration sec-
tion by name.”

	 7.	 Modify the statement that creates the proxy object and specify the name of the TCP
endpoint configuration, as shown in bold in the following:

ProductsServiceClient proxy =

 new ProductsServiceClient("NetTcpBinding_IProductsService");

	 8.	 Build and run the ProductsClient application. It should function as before, except that
this time it is using the TCP protocol to connect to the ProductsService WCF service.

Download from Wow! eBook <www.wowebook.com>

54	 Windows Communication Foundation 4 Step by Step

Note  You can verify that the ProductsClient application is not using HTTP if you stop the
World Wide Web Publishing Service on your computer and run the client application again.
WAS does not use this service, so the client should still be able to connect to the service.
If the client was using an HTTP connection, the connection would fail with an Endpoint
NotFoundException exception and the message “There was no endpoint listening at http://
localhost/ProductsService/Service.svc that could accept the message.”

If you do try this experiment, be sure to restart the World Wide Web Publishing Service
again afterwards as you will need it for the exercises in the next chapters.

Hosting a Service in a User Application
Apart from using IIS or WAS, you have several other options available for hosting a WCF
service:

■■ You can create an ordinary Windows application that a user runs to start and stop the
WCF service.

■■ You can host the WCF service in a Windows Service so that it is available as long as
Windows is running.

■■ You can host the WCF service in a Workflow Foundation Service application. This is
really just a variation on using a Windows application, but the way in which you define
and implement the service is different.

In the remainder of this chapter, you will see how to build a Windows application and a Win-
dows Service that can host a WCF service. You will learn how to build and host a WCF service
by using Workflow Foundation application, which is described in Chapter 8, “Implementing
Services by Using Workflows.” However, before beginning the practical exercises, you need to
learn a little about the ServiceHost class.

Windows Server AppFabric
If you are hosting WCF services by using IIS or WAS in a production environment, you
might want to consider implementing Windows Server AppFabric.

Windows Server AppFabric is a set of extensions to the Windows operating system
aimed at making it easier for developers to build faster, scalable, and more-easily man-
aged services. AppFabric provides a distributed in-memory caching service and replica-
tion technology that helps developers improve the speed and availability of ASP.NET
Web applications and WCF services. AppFabric also includes hosting features that can
simplify the deployment, monitoring, and management of services by making use of
familiar tools such as PowerShell, Internet Information Services Manager, and Microsoft
System Center.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 55

The AppFabric Caching Service makes repeated access to the same data faster by cach-
ing this data in memory. It implements a distributed cluster model that can span many
computers; to a client application or service, this cluster appears to be a single logical
store, and the application or service is not concerned with which physical server holds
an item of cached data. Applications and services can use APIs provided by AppFabric to
store, query, modify, and remove data from the cache. The Caching Service implements
configurable concurrency control to handle versioning of data that is accessed by mul-
tiple clients.

AppFabric Hosting Services provides a scalable and configurable environment for
hosting WCF services. AppFabric Hosting Services can run on a set of load-balanced
computers. You can use the templates provided with Visual Studio 2010 to build WCF
services, and you can implement these services by using code or Workflow Foundation
workflows. By using workflows, you can create business processes that can potentially
be long-lived. AppFabric Hosting Services builds on the persistence services provided by
Workflow Foundation to enable an administrator to specify that an instance of a service
should be removed from memory and its state retained in a database if the service is
inactive for any length of time. If a message is later received for this instance, AppFabric
Hosting Services can resurrect it from the database and continue the instance running.
An administrator configures the policy for persisting service instances by using the Man-
age WCF and WF Services feature added to Internet Information Services Manager by
AppFabric.

The details of Windows Server AppFabric are beyond the scope of this book, but if you
want more information see the “Windows Server AppFabric” page on the MSDN Web
site at http://msdn.microsoft.com/en-us/windowsserver/ee695849.aspx.

Using the ServiceHost Class
So far in this chapter, the discussion has described the tasks that a host application for a
WCF service must perform. If you are building your own host application rather than using
IIS or WAS, you can achieve most of these tasks by using the ServiceHost class, available in the
System.ServiceModel namespace. A ServiceHost object can instantiate a service object from an
assembly holding the service class; configure the endpoints of the service by using bindings
provided in a configuration file or in code; apply any security settings required by the service;
and create listener objects for each address that you specify.

When you create a ServiceHost object, you specify the type of the class implementing the ser-
vice. You can optionally specify the addresses that the ServiceHost object should listen to for
requests, like this:

Download from Wow! eBook <www.wowebook.com>

56	 Windows Communication Foundation 4 Step by Step

ServiceHost productsServiceHost = new ServiceHost(typeof(ProductsServiceImpl),

 new Uri("http://localhost:8000/ProductsService/ProductsService.svc"),

 new Uri("tcp.net://localhost:8080/TcpProductsService");

This example uses the ProductsService service that you created in Chapter 1; it uses two
addresses: the first uses the HTTP transport, and the second uses TCP. Strictly speaking, the
addresses that you specify in the ServiceHost constructor are base addresses. A base address
is just the initial part of the address. If you provide an application configuration file that con-
tains further address information, this information will be combined with the base addresses
you specify here to generate the real addresses. For example, if you use the following code to
instantiate the ServiceHost object:

ServiceHost productsServiceHost = new ServiceHost(typeof(ProductsServiceImpl),

 new Uri("http://localhost:8000/ProductsService"));

…and the application configuration contains an endpoint definition like this:

<endpoint address="ProductsService.svc" binding="basicHttpBinding"

name="ProductsServiceHttpEndpoint" contract="Products.IProductsService" />

…the WCF runtime will combine the two elements together to generate an address of “http://
localhost:8000/ProductsService/ProductsService.svc”. This is a very powerful feature with which
an administrator can direct a service to use a particular address on a specified site. But it also
provides the developer with full control over the selection of the site hosting the service.

If you omit the base address information in the ServiceHost constructor, like this:

ServiceHost productsServiceHost = new ServiceHost(typeof(ProductsServiceImpl));

…the WCF runtime will just use the address information specified in the application con-
figuration file and automatically listen for requests on all configured endpoints. This gives
the administrator complete control over the addresses and transports used by the service.
For convenience, in the examples in this book, you will adopt this approach and specify the
complete address information in the application configuration file wherever possible. How-
ever, when building your own enterprise applications, you might prefer to provide the base
addresses for service endpoints programmatically.

Note  There is one minor side effect of specifying complete addresses in the application con-
figuration file; if you are building a host application and you wish to enable metadata publish-
ing, you must provide the URL for the service to use to publish its metadata in the HttpGetUrl or
HttpsGetUrl properties of the serviceMetadata element of the service behavior. The convention is
to specify the same address as the service, but with the suffix “/mex”.

After you have created the ServiceHost object, you can start listening for requests by using the
Open method, like this:

productsServiceHost.Open();

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 57

Opening a ServiceHost object causes the WCF runtime to examine the binding configura-
tion for each endpoint of the service and start listening on each endpoint address. Opening a
service can take some time. An overloaded version of the Open method is available that takes
a TimeSpan object and throws an exception if the Open method does not complete within
the specified time. Additionally, the ServiceHost class supports the .NET Framework asynchro-
nous mode of operations through the BeginOpen and EndOpen methods implementing the
IAsyncResult design pattern.

More Info  The IAsyncResult design pattern is commonly used throughout the .NET Framework,
and is not specific to WCF. For details, see the topic “Calling Asynchronous Methods Using
IAsyncResult” in the .NET Framework Developer’s guide, available in the Microsoft Visual Studio
Documentation (also available online at http://msdn.microsoft.com/en-us/library/ms228969.aspx).

You stop a service by calling the Close method of the ServiceHost object. The Close method
stops the WCF runtime from listening for more requests and gracefully shuts the service
down; any work in progress is allowed to complete. As with the Open method, you can close
a service asynchronously by using the BeginClose and EndClose methods.

The ServiceHost class also provides events that you can use to track the state of a ServiceHost
object. Table 2-2 summarizes these events.

Table 2-2  ServiceHost Events

Event Description

Opening The ServiceHost object is opening the service and is processing the
binding information for each endpoint so that it can start listening.

Opened The ServiceHost object has successfully opened the service, which is
now ready to accept client requests.

Closing The ServiceHost is executing the close method and waiting for all cur-
rent service requests to complete processing.

Closed The service has shut down. No listeners are active, and clients cannot
send requests.

Faulted The service has encountered an unrecoverable error. You can examine
the ServiceHost object to try to determine the cause of the fault, but
clients can no longer use the service. You must close the service and
open it again before clients can connect.

UnknownMessageReceived The WCF runtime received a message that the service does not recog-
nize. This can stem from a misconfigured client application or possibly
as the result of an attack by a malicious client application.

Download from Wow! eBook <www.wowebook.com>

58	 Windows Communication Foundation 4 Step by Step

Building a Windows Presentation Foundation
Application to Host a WCF Service

Next, you’ll see how to use the ServiceHost class to host a WCF service inside an ordinary
Windows application. In the following exercise you will build a simple Windows Presentation
Foundation (WPF) application to perform this task. Before getting into this application, how-
ever, you need to rebuild the WCF service in such a way that it can be more easily incorpo-
rated into the host application. You can do this by implementing the service in a WCF Service
Library. A WCF service library is simply an assembly that contains one or more WCF services.
Visual Studio provides a template you can use to build one.

Rebuild the ProductsService WCF Service as a WCF Service Library

	 1.	 In Visual Studio, create a new solution with a new project by using the WCF Service
Library template. You can find this template in the WCF folder in the Installed Templates
pane in the New Project dialog box, as shown in the following image:

Name the project ProductsServiceLibrary in a solution also called ProductsService
Library and save it in the Microsoft Press\WCF Step By Step\Chapter 2 folder (within
your Documents folder).

	 2.	 In Solution Explorer, delete the IService1.cs and Service1.cs files.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 59

	 3.	 Add the IProductsService.cs and ProductsService files located in the Microsoft Press\
WCF Step By Step\Chapter 2 folder to the project as follows:

	 a.	 In Solution Explorer, right-click the ProductsServiceLibrary project, point to Add,
and then click Existing Item.

	 b.	 In the Add Existing Item – ProductsServiceLibrary dialog box, browse to the
Microsoft Press\WCF Step By Step\Chapter 2 folder, select the IProductsService.cs
and ProductsService.cs files, and then click Add.

These files contain a copy of the contracts and implementation for the ProductsService
WCF service—the same code that you wrote during the exercises in Chapter 1.

	 4.	 Add a reference to the ProductsEntityModel assembly located in the Microsoft Press\
WCF Step By Step\Chapter 2 folder to the project, as follows:

	 a.	 In Solution Explorer, right-click the ProductsServiceLibrary project, and then click
Add Reference.

	 b.	 In the Add Reference dialog box, click the Browse tab.

	 c.	 Move to the Microsoft Press\WCF Step By Step\Chapter 2 folder, click the
ProductsEntityModel.dll file, and then click OK.

This assembly contains a copy of the entity data model for accessing the AdventureWorks
database that you created in Chapter 1.

	 5.	 Add a reference to the System.Data.Entity assembly (use the .NET tab in the Add Refer-
ence dialog box).

	 6.	 Build the ProductsServiceLibrary project. It should compile without any warnings or
errors.

Testing a WCF Service Library by Using the WcfTestClient
Application
The WCF Service Library template provides a quick way for you to test a WCF service
without building a host application or a client. If you run a WCF Service Library project,
the project automatically starts a utility called WcfSvcHost. This utility hosts the service
and configures it using the values specified in the application configuration file pro-
vided with the service. The WCF Service Library template also generates a default con-
figuration file that you should edit to specify the name of the class that implements the
name of your service, as well as the name of the contract that your service implements.
Additionally, if your service accesses resources such as a database, you must add the

Download from Wow! eBook <www.wowebook.com>

60	 Windows Communication Foundation 4 Step by Step

appropriate connection strings to the configuration file. The following code shows an
example of the application configuration file generated for the ProductsServiceLibrary
project, with the connection string and modifications to the service name and the end-
point contract shown in bold:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <connectionStrings>

 <!-- Be sure the connection string forms a single line in the configuration

 file. The line is shown as multiple lines here for publishing purposes. -->

 <add name="AdventureWorksEntities"

connectionString="metadata=res://*/ProductsModel.csdl|res://*/ProductsModel.

ssdl|res://*/ProductsModel.msl;provider=System.Data.SqlClient;

provider connection string="Data Source=.\SQLExpress;Initial Catalog=AdventureWorks;

Integrated Security=True;MultipleActiveResultSets=True""

providerName="System.Data.EntityClient" />

 </connectionStrings>

 <system.web>

 <compilation debug="true" />

 </system.web>

 <!-- When deploying the service library project, the content of the config file must

 be added to the host’s app.config file. System.Configuration does not support

 config files for libraries. -->

 <system.serviceModel>

 <services>

 <service name="Products.ProductsServiceImpl">

 <host>

 <baseAddresses>

 <add baseAddress =

 http://localhost:8732/Design_Time_Addresses/ProductsServiceLibrary/

 Service1/" />

 </baseAddresses>

 </host>

 <!-- Service Endpoints -->

 <!-- Unless fully qualified, address is relative to base address supplied

 above -->

 <endpoint address ="" binding="wsHttpBinding"

 contract="Products.IProductsService">

 <!--

 Upon deployment, the following identity element should be removed or

 replaced to reflect the identity under which the deployed service runs.

 If removed, WCF will infer an appropriate identity automatically.

 -->

 <identity>

 <dns value="localhost"/>

 </identity>

 </endpoint>

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 61

 <!-- Metadata Endpoints -->

 <!-- The Metadata Exchange endpoint is used by the service to describe itself

 to clients. -->

 <!-- This endpoint does not use a secure binding and should be secured or

 removed before deployment -->

 <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange"/>

 </service>

 </services>

 <behaviors>

 <serviceBehaviors>

 <behavior>

 <!-- To avoid disclosing metadata information,

 set the value below to false and remove the metadata endpoint above before

 deployment -->

 <serviceMetadata httpGetEnabled="True"/>

 <!-- To receive exception details in faults for debugging purposes,

 set the value below to true. Set to false before deployment

 to avoid disclosing exception information -->

 <serviceDebug includeExceptionDetailInFaults="False" />

 </behavior>

 </serviceBehaviors>

 </behaviors>

 </system.serviceModel>

</configuration>

When the WcfSvcHost application starts, it runs minimized, but you can display it
by clicking the WCF Service Host icon that appears in the list of hidden icons in the
Windows Service task bar. If you display the application, it should look like the following
image:

Download from Wow! eBook <www.wowebook.com>

62	 Windows Communication Foundation 4 Step by Step

After the WcfSvcHost application has started, another application called WcfTestClient
runs and displays the WCF Test Client window. This application connects to the WcfSvcHost
application, queries the services that it hosts, obtains a description of the operations
exposed by each service, and displays them as shown in the following image:

You can use the WCF Test Client window to test each operation and verify that they
return the correct data. To do this, double-click an operation in the left pane, enter test
values for each of the parameters displayed in the Request section in the right pane, and
then click Invoke. The results generated by the service appear in the Response section.
The following image shows the results of calling the GetProduct operation, passing the
string WB-H098 as the value of the productNumber parameter:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 63

You now have the ProductsService WCF service in the form of an assembly that you can refer-
ence from the host application. The next step is to actually build the host application.

Create a Windows Application to Host the WCF Service

	 1.	 In Visual Studio, add a new project to the ProductsServiceLibrary solution using the
information in the following table:

Item Value

Template WPF Application (in the Windows folder in the Installed Templates pane)

Name ProductsServiceHost

Location Microsoft Press\WCF Step By Step\Chapter 2\ProductsServiceLibrary

	 2.	 In Solution Explorer, rename the MainWindow.xaml file to HostController.xaml.

	 3.	 Open the App.xaml file in the Code And Text Editor window and change the StartupUri
attribute of the Application element to HostController.xaml, as shown in bold in the
following:

<Application x:Class="ProductsServiceHost.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 StartupUri="HostController.xaml"

 >

 <Application.Resources>

 </Application.Resources>

</Application>

	 4.	 Open the HostController.xaml file in the Code And Text Editor window. In the pane
displaying the XAML description of the form, change the Class attribute to Products
ServiceHost.HostController, change the Title attribute to Products Service Host,
change the Height and Width of the window, and add the following code (shown in
bold) to the form.

<Window x:Class="ProductsServiceHost.HostController"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Products Service Host" Height="300" Width="350">

 <Grid>

 <Button Height="23" HorizontalAlignment="Left" Margin="51,60,0,0"

 Name="start" VerticalAlignment="Top" Width="75"

 Click=" start_Click">Start</Button>

 <Button Height="23" HorizontalAlignment="Right" Margin="0,60,56,0"

 Name="stop" VerticalAlignment="Top" Width="75" IsEnabled="False"

 Click=" stop_Click">Stop</Button>

Download from Wow! eBook <www.wowebook.com>

64	 Windows Communication Foundation 4 Step by Step

 <Label Height="23" HorizontalAlignment="Left" Margin="43,0,0,111"

 Name="label1" VerticalAlignment="Bottom" Width="88">Service Status:</Label>

 <TextBox IsReadOnly="True" Margin="133,0,59,107" Name="status"

 Text="Service Stopped" Height="26" VerticalAlignment="Bottom"></TextBox>

 </Grid>

</Window>

The code in the <Window> element changes the class reference to refer to the new
name of the form.

The code in the <Grid> element adds two buttons, a label, and a text box to the form. The
two buttons let users start and stop the WCF service, and the label and text box display
messages indicating the current state of the WCF service (running or stopped). If you
examine the Click attribute of the Start button, you can see that it invokes a method
called start_Click. Similarly, the Click attribute of the Stop button invokes a method called
stop_Click. You will write the code that implements these methods in the next exercise.

In the Design View window, verify that your form looks like the following image:

Notice that the Stop button is initially disabled. You will write code to enable it when the
service has started.

	 5.	 In Solution Explorer, expand the HostController.xaml node and double-click the Host
Controller.xaml.cs file to display it in the Code And Text Editor window. In this file,
change all three occurrences of MainWindow to HostController, to match the class
named in the XAML description of the form, as shown in bold in the following:

namespace ProductsServiceHost

{

 /// <summary>

 /// Interaction logic for HostController.xaml

 /// </summary>

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 65

 public partial class HostController : Window

 {

 public HostController()

 {

 InitializeComponent();

 }

 }

}

You have created a simple form that will act as the user interface for the service host. Now
you can add the code that actually starts and stops the service.

Add Logic to Start and Stop the WCF Service

	 1.	 In the ProductsServiceHost project, add a reference to the System.ServiceModel
assembly.

	 2.	 Add a reference to the ProductsServiceLibrary project.

	 3.	 In the Code And Text Editor window displaying the C# code behind the HostController
window, add the following using statements to the list at the top of the file:

using System.ServiceModel;

using Products;

	 4.	 Add the following ServiceHost variable shown in bold in the following to the Host
Controller class:

public partial class HostController : Window

{

 private ServiceHost productsServiceHost;

 public HostController()

 {

 InitializeComponent();

 }

}

You will use this variable to control the ProductsService service.

	 5.	 In the HostController class, add the handleException method shown in bold in the fol-
lowing immediately after the HostController() constructor:

public partial class HostController : Window

{

 ...

 public HostController()

 {

 InitializeComponent();

 }

Download from Wow! eBook <www.wowebook.com>

66	 Windows Communication Foundation 4 Step by Step

 private void handleException(Exception ex)

 {

 MessageBox.Show(ex.Message, "Exception",

 MessageBoxButton.OK, MessageBoxImage.Error);

 }

}

This method simply displays the message for an exception in a message box. You will
make use of this method to handle any exceptions when you start and stop the service.

	 6.	 After the handleException method, add the start_Click method shown in bold in the fol-
lowing to the HostController class:

public partial class HostController : Window

{

 ...

 private void handleException(Exception ex)

 {

 ...

 }

 private void start_Click(object sender, RoutedEventArgs e)

 {

 try

 {

 productsServiceHost = new ServiceHost(typeof(ProductsServiceImpl));

 productsServiceHost.Open();

 stop.IsEnabled = true;

 start.IsEnabled = false;

 status.Text = "Service Running";

 }

 catch (Exception ex)

 {

 handleException(ex);

 }

 }

}

This method runs when the user clicks the Start button. The first statement in this
method creates a new ServiceHost object. The parameter to the ServiceHost constructor
is the type that implements the data contract for the service. The ServiceHost object will
retrieve the endpoint details with the binding information containing the address from
the application configuration file, which you will add in the next exercise. The second
statement starts the service host listening to this endpoint by calling the Open method.
The remaining statements enable the Stop button on the form, disable the Start button,
and modify the service status displayed in the window.

If an exception occurs while starting the service, the handleException method displays
the reason for the exception.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 67

	 7.	 Add the stop_Click method shown in bold in the following to the HostController class:

public partial class HostController : Window

{

 ...

 private void start_Click(object sender, RoutedEventArgs e)

 {

 ...

 }

 private void stop_Click(object sender, EventArgs e)

 {

 try

 {

 productsServiceHost.Close();

 stop.IsEnabled = false;

 start.IsEnabled = true;

 status.Text = "Service Stopped";

 }

 catch (Exception ex)

 {

 handleException(ex);

 }

 }

 }

This method runs when the user clicks the Stop button. The Close method of the
ServiceHost class stops it from listening for more requests. The other statements re-
enable the Start button, disable the Stop button, and update the service status displayed
in the window.

As before, the code calls the handleException method to report any exceptions that
occur while stopping the service.

	 8.	 Build the solution.

The final step is to provide a configuration file and add the endpoint and binding information
for the WCF service.

Configure the Windows Host Application

	 1.	 Add the App.config file located in the Microsoft Press\WCF Step By Step\Chapter 2
folder to the ProductsServiceHost project.

This file contains the connection string and the <serviceModel> configuration from the
Web.config file used previously.

Download from Wow! eBook <www.wowebook.com>

68	 Windows Communication Foundation 4 Step by Step

Note  The Add Existing Item – ProductsServiceLibrary dialog box does not display configu-
ration files by default. To display them, click the drop-down list adjacent to the File Name
text box and select All Files (*.*).

	 2.	 Open the App.config file in the Code And Text Editor window.

Previously, when you hosted the service in IIS and WAS, you did not need to provide an
endpoint definition in the configuration file. This was because the WCF runtime could
deduce default values for each of the items that constituted the endpoint; the address
was determined by concatenating the name of the .svc file to the virtual folder holding
the service, the binding was assumed to be basic HTTP, and the service defined only a
single service contract. When you build a custom host application, these assumptions
are no longer valid, so you must specify them in the configuration file.

Configuring a WCF service can be a complex task. However, Visual Studio provides a
tool called the Service Configuration Editor as part of the Microsoft Windows SDK Tools,
which you can use to configure a WCF service graphically.

	 3.	 Close the App.config file in the Code And Text Editor window, and then reopen it by
using the Service Configuration Editor, as follows:

❏❏ In Solution Explorer, right-click the App.config file, and then click Edit WCF
Configuration.

Note  If the Edit WCF Configuration command does not appear when you right-click
the App.config file, select WCF Service Configuration Editor from the Tools menu. As
soon as the Service Configuration Editor starts, close it immediately. If you right-click
the App.config file, the Edit WCF Configuration command should now appear.

	 4.	 In the Service Configuration Editor, in the Configuration pane, click Services. In the Ser-
vices pane, click Create A New Service.

The New Service Element Wizard appears.

	 5.	 On the What Is The Service Type Of Your Service? page, click Browse.

The Type Browser dialog box appears.

	 6.	 In the Type Browser dialog box, double-click the bin folder, double-click the Debug
folder, click the ProductsServiceLibrary assembly, and then click Open.

The Type Browser dialog box displays the type Products.ProductsServiceImpl. This is the
type that implements the ProductsService service. If the assembly contained more than
one WCF service, they would all be listed.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 69

	 7.	 In the Type Browser dialog box, click Products.ProductsServiceImpl, and then click
Open.

	 8.	 On the “What Is The Service Type Of Your Service?” page, click Next.

	 9.	 On the “What Service Contract Are You Using?” page, verify that the contract
Products.IProductsService is selected, and then click Next.

	 10.	 On the “What Communications Mode Is Your Service Using?” page, select TCP, and then
click Next.

	 11.	 On the “What Is The Address Of Your Endpoint?” page, in the Address box type net.
tcp://localhost:8080/TcpService, and then click Next.

This address indicates that the service will listen for TCP requests on port 8080. The
identifier TcpService is just a logical name chosen for this exercise and does not corre-
spond to a physical file or folder.

	 12.	 On the “The Wizard Is Ready To Create A Service Configuration Page,” review the end-
point settings; if you are satisfied with them, click Finish.

A service called Products.ProductsServiceImpl appears in the Configuration pane of the
Service Configuration Editor.

	 13.	 Expand the Endpoints node under the Products.ProductsServiceImpl service.

An anonymous endpoint appears (it is labeled Empty Name)

	 14.	 Click the anonymous endpoint.

The right pane displays the configuration information for the service endpoint. You can
use this pane to change the settings and modify the configuration if necessary.

	 15.	 In the Name field at the top of the Service Endpoint pane, type
NetTcpBinding_IProductsService.

This action gives the endpoint a name, following the conventions used by the Add
Service Reference Wizard in Visual Studio.

	 16.	 From the File menu, choose Save to save the configuration file, and then close the
Service Configuration Editor.

Note  When you return to Visual Studio, if you had the App.config file open in a code view
window, Visual Studio will detect that the contents of the file have changed and alert you
with a message box displaying “The file has been modified outside the source editor. Do
you want to reload it?” If this happens, click Yes; otherwise, you risk losing the changes you
have made by using the Service Configuration Editor.

Download from Wow! eBook <www.wowebook.com>

70	 Windows Communication Foundation 4 Step by Step

	 17.	 In Visual Studio, open the App.config file in the ProductsServiceHost project to display
it in the Code And Text Editor window. Examine the <system.ServiceModel> section. It
should now contain a <services> section with the definition of a service called Products.
ProductsServiceImpl, as shown in bold in the following:

<?xml version="1.0"?>

<configuration>

 <connectionStrings>

 ...

 </connectionStrings>

	 <system.serviceModel>

 <services>

 <service name="Products.ProductsServiceImpl">

 <endpoint address="net.tcp://localhost:8080/TcpService"

 binding="netTcpBinding"

 bindingConfiguration="" name="NetTcpBinding_IProductsService"

 contract="Products.IProductsService" />

 </service>

 </services>

 <behaviors>

 ...

 </behaviors>

 ...

	 </system.serviceModel>

</configuration>

	 18.	 In the <serviceBehaviors> section, change the value of the httpGetEnabled attribute or
the <serviceMetadata> element to false.

The service does not expose an endpoint that uses the HTTP protocol, so it cannot pub-
lish its metadata over an HTTP connection.

	 19.	 Build the solution.

When you execute the ProductsServiceHost application, it provides the host environment
for your service. Your service is now running within the ProductsServiceHost application, and
other client applications can access this service just as they could if it was hosted by using IIS
or WAS. You can test the newly-hosted version of the ProductsService WCF service by using
the same client application as before. All you need to do is configure it to connect to the new
address.

Test the Windows Host Application

	 1.	 Add the ProductsClient project located in the Microsoft Press\WCF Step By Step\
Chapter 2\ProductsClient\ProductsClient folder to the ProductsServiceHost project.

	 2.	 Open the app.config file for the ProductsClient project in the Code And Text Editor
window.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 71

	 3.	 In the <client> section, change the address of the NetTcpBinding_IProductsService end-
point to net.tcp://localhost:8080/TcpService, as shown in bold in the following:

<?xml version="1.0"?>

<configuration>

 <system.serviceModel>

 <bindings>

 ...

 </bindings>

 <client>

 <endpoint address="http://localhost/ProductsService/Service.svc"

 ... />

 <endpoint address="net.tcp://localhost:8080/TcpService"

 binding="netTcpBinding" contract="ProductsService.IProductsService"

 name="NetTcpBinding_IProductsService" />

 </client>

 </system.serviceModel>

</configuration>

This is the address specified for the host application to which the ProductsService WCF
service is set to listen.

Note  The address, binding, and contract of the client endpoint must match that of the ser-
vice endpoint. However, the endpoint name can be different; this attribute is used only by
the code in the client application to refer to the endpoint by name.

	 4.	 Open the Program.cs file for the ProductsClient project in the Code And Text Editor
window. Add the statements shown in bold in the following to the start of the Main
method.

static void Main(string[] args)

{

 Console.WriteLine("Press ENTER when the service has started");

 Console.ReadLine();

 // Create a proxy object and connect to the service

 ProductsServiceClient proxy = new

 ProductsServiceClient("NetTcpBinding_IProductsService");

 ...

}

This code waits for the user to press the Enter key before creating the proxy object that
connects to the service. This will give you time to start the service running.

	 5.	 Build the solution.

	 6.	 In Solution Explorer, right-click the ProductsServiceLibrary solution, and then click Set
StartUp Projects.

Download from Wow! eBook <www.wowebook.com>

72	 Windows Communication Foundation 4 Step by Step

	 7.	 In the Solution ‘ProductsServiceLibrary’ Property Pages dialog box, click Multiple Startup
Projects, set the Action for the ProductsClient and the ProductsServiceHost projects to
Start, set the Action for the ProductsServiceLibrary project to None, and then click OK.

	 8.	 From the Debug menu, choose Start Without Debugging to start both projects running.

	 9.	 In the Products Service Host window, click Start, and wait for the Service Status text box
to change to Service Running.

Note  If you are running Windows Firewall, a Windows Security Alert will appear. In the
alert, click Allow Access to allow the service to open the TCP port.

	 10.	 In the console window that’s running the ProductsClient application, press Enter. The
application should run exactly as before, displaying a list of product numbers, displaying
the details of product WB-H098, and then displaying and updating the stock level for
this product.

	 11.	 Press Enter again to close the ProductsClient application.

	 12.	 In the Products Service Host window, click Stop, and then close the application.

Reconfiguring the Service to Support Multiple Endpoints
In the same way that a WCF service hosted by using WAS can support multiple protocols, so
can a service that you host in an ordinary Windows application. While, as mentioned earlier,
the TCP protocol is a good choice for connecting client applications and services that run
within the same organization, on the same local area network, you might find that you also
need to support client applications running on a remote network and that connect over the
Internet. If you want to maintain connectivity and network performance inside and outside
an organization, you should consider providing multiple endpoints: one for external clients
accessing the service by using HTTP, and another for internal clients accessing the service by
using TCP. This is what you will do in the next set of exercises.

Add an HTTP Endpoint to the WCF service

	 1.	 In Solution Explorer, in the ProductsServiceHost project, right-click the App.config file
for the ProductsServiceHost project, and then click Edit WCF Configuration.

	 2.	 In the Service Configuration Editor, in the Configuration pane, expand the Services
folder, expand Products.ProductServiceImpl, and then expand the Endpoints folder. The
existing endpoint is listed, with the name NetTcpBinding_IProductsService.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 73

	 3.	 In the Configuration pane, right-click the Endpoints folder, and then click New Service
Endpoint.

	 4.	 In the Service Endpoint pane, set the properties of the endpoint using the values in the
following table:

Property Value

Name BasicHttpBinding_IProductsService

Address http://localhost:8000/ProductsService/Service.svc

Binding basicHttpBinding

Contract Products.IProductsService

Tip  If you click the ellipses button in the Contract field, you can search for the assembly
containing the contract using the Contract Type Browser.

The address used here specifies port 8000. IIS uses the default port for the HTTP proto-
col (port 80). Attempting to create a new ServiceHost object that listens for an address
on port 80 will result in an exception unless you stop IIS first.

Also notice that the address still appears to reference the Service.svc service defini-
tion file. However, you have not added this file to the service host application. In
fact, a service definition file is used only by IIS and is optional if you are creating your
own custom host application. This is because the information required to identify the
assembly containing the class that implements the service is specified in the ServiceHost
constructor. The address that you specify following the scheme, machine, and port
(“ProductsService/Service.svc” in this example) is really just a logical identifier that the
WCF service uses to advertise the service to clients, and to which clients can connect.
As long as it has valid syntax for a Web URL, this part of the address can be almost any-
thing. For consistency, when using the HTTP scheme, it is worthwhile retaining the service
definition file element as part of the address—in case you want to revert to using IIS to
host the service. However, this comment applies only to endpoints that use the HTTP
and HTTPS transports. If you use a different mechanism, such as TCP, avoid referencing
what looks like a filename in addresses.

	 5.	 Save the updated configuration, and then exit the Service Configuration Editor.

	 6.	 Examine the App.config file for the ProductsServiceHost project by opening it in
the Code And Text Editor window. Notice that the new endpoint has been added
to the <service> section, as shown in bold in the following:

...

<services>

 <endpoint address="net.tcp://localhost:8080/TcpService"

 bindingConfiguration="" name="NetTcpBinding_IProductsService"

 contract="Products.IProductsService" />

Download from Wow! eBook <www.wowebook.com>

74	 Windows Communication Foundation 4 Step by Step

 <endpoint address="http://localhost:8000/ProductsService/Service.svc"

 binding="basicHttpBinding" name="BasicHttpBinding_IProductsService"

 contract="Products.IProductsService" />

 </service>

</services>

...

When the host application instantiates the ServiceHost object, it automatically creates an
endpoint for each entry in the configuration file.

Reconfigure the Client Application to Connect to the HTTP Endpoint

	 1.	 In Solution Explorer, edit the app.config file for the ProductsClient project by using the
Service Configuration Editor.

Notice that you can use the Service Configuration Editor to configure WCF client
applications as well as services. You do this by adding endpoint definitions to the Client
folder.

	 2.	 In the Service Configuration Editor, in the Configuration pane, expand the Client folder,
and then expand the Endpoints folder.

You should see the definitions for two endpoints, called BasicHttpBinding_IProducts
Service and NetTcpBinding_IProductsService. These are the endpoint definitions that you
previously added to the app.config file.

	 3.	 Click the BasicHttpBinding_IProductsService endpoint. In the Client Endpoint pane,
change the value of the Address field to http://localhost:8000/ProductsService/
Service.svc.

	 4.	 Save the client configuration file and exit the Service Configuration Editor.

	 5.	 Examine the app.config file for the ProductsClient application by opening it in the Code
And Text Editor window. Notice that the new endpoint has been added to the client, as
follows in bold:

<client>

 <endpoint address="http://localhost:8000/ProductsService/Service.svc"

 binding="basicHttpBinding"

 bindingConfiguration="BasicHttpBinding_IProductsService"

 contract="ProductsClient.ProductsService.IProductsService"

 name="BasicHttpBinding_IProductsService" />

 <endpoint address="net.tcp://localhost:8080/TcpProductsService"

 binding="netTcpBinding"

 contract="ProductsClient.ProductsService.IProductsService"

 name="NetTcpBinding_IProductsService" />

</client>

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 75

	 6.	 Edit the Program.cs file in the ProductsClient project. In the Main method, modify the
statement that instantiates the proxy object to use the HTTP endpoint, as follows:

static void Main(string[] args)

{

 ...

 // Create a proxy object and connect to the service

 ProductsServiceClient proxy = new

 ProductsServiceClient("BasicHttpBinding_IProductsService");

 ...

}

	 7.	 Build the solution.

Unlike using TCP ports, if you wish to listen on a port by using the HTTP protocol, Windows
insists that the account you are using to run a service has been granted access to the port
specified by the HTTP address. This is for security purposes; starting a service that can accept
requests from the outside world over an HTTP connection is a potential security risk, and the
service listening for these requests and auctioning them must be trusted not to do horrible
things to your computer.

Windows provides the netsh command that you can use to specify that an account should
be granted access to a network resource, such as an HTTP port or URL, and reserve it for a
named account. This account will have exclusive access to the resource. In the following pro-
cedure you will use the netsh command to reserve HTTP port 8000 for the account you are
using to run the ProductsServiceHost application.

More Info  The netsh command provides an extensive set of features with which you can con-
figure network communications components and privileges. This book makes use of various netsh
commands from time to time, but the details of how these commands work is outside the scope
of this volume. If you want more information about the netsh command, see the “Network Shell
(Netsh)” page on the Microsoft TechNet Web site at http://technet.microsoft.com/en-us/library/
cc754753(WS.10).aspx.

Reserve HTTP Port 8000

	 1.	 Open a command prompt window as Administrator, as follows:

	 a.	 On the Windows Start menu, in the Search Programs And Files box, type cmd (do
not press Enter).

	 b.	 In the Programs list, right-click cmd, and then click Run As Administrator. Enter
the administrator password if prompted.

Download from Wow! eBook <www.wowebook.com>

76	 Windows Communication Foundation 4 Step by Step

	 2.	 In the command prompt window, type the following command (replace UserName with
the name of your Windows account):

netsh http add urlacl url=http://+:8000/ user=UserName

Verify that the command responds with the message “URL reservation successfully
added.”

Tip  If you are unsure of the name of your account, run the command, whoami, in the com-
mand prompt window first.

Note  You can remove the port reservation when you have finished with it by using the
following command:

netsh http delete urlacl url=http://+:8000/

You are now in a position to start the ProductsService WCF service listening for HTTP requests.

Test the New Service Endpoint

	 1.	 From the Debug menu, select Start Without Debugging to start both projects running.

	 2.	 In the Products Service Host window, click Start and wait for the Service Status text box
to change to “Service Running.”

	 3.	 In the console window running the ProductsClient application, press Enter. The applica-
tion should run exactly as before. This time, however, the client is connecting to the
service by using the HTTP endpoint.

	 4.	 Press Enter again to close the ProductsClient application. Stop the service and close the
Products Service Host window.

Understanding Endpoints and Bindings
By now, you should appreciate that endpoints and bindings are important parts of the frame-
work provided by WCF. An endpoint specifies the point of contact for a service; it provides the
address that the service listens to, the binding that the client must use to connect to the ser-
vice, and the contract that defines the functionality exposed by the service. This is the infor-
mation that a client application must specify to successfully connect to the service.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 77

The binding itself is a curious beast because it can contain many pieces of crucial information.
As described earlier, it helps to define the policy that client applications must respect if they
wish to use the service. This policy includes items such as the transport mechanism (TCP, HTTP,
named pipes, MSMQ, etc.), security requirements of the service (how does a client application
identify itself, and how should messages be encrypted), the transactional specifications of the
service, how the service supports reliable communications, and so on.

In technical terms, a WCF binding consists of one or more binding elements. A binding ele-
ment handles one particular non-functional aspect of a service, such as whether it supports
transactions or how the service implements security. You compose binding elements together
in various combinations to create a binding. Every binding should have a single binding ele-
ment describing the transport protocol, and a binding should also contain a binding element
that handles message encoding. You can add further optional binding elements to provide or
enforce further features in a service. A binding element corresponds to a channel. Remember
that when a host opens a service, the WCF runtime uses each binding element in the bind-
ing configuration to create the channel stack. A client also creates a channel stack when it
connects to the service by opening a proxy object. To ensure that a client application can
communicate successfully with a service, it should use a binding configuration that provides
binding elements that match those implemented by the service.

The WCF Predefined Bindings
The WCF library contains a number of classes in the System.ServiceModel.Channels namespace
that implement binding elements. Examples include the BinaryMessageEncodingBinaryElement
class that performs binary encoding and decoding for XML messages, the AsymmetricSecurity
BindingElement class with which you can enforce security by performing asymmetric encryp-
tion, the HttpsTransportBindingElement that uses the HTTPS transport protocol for transmit-
ting messages, and the ReliableSessionBindingElement that you can use to implement reliable
messaging. Most binding elements also provide properties that you can use to modify the
way in which the binding elements work. For example, the AsymmetricSecurityBindingElement
class has a property called DefaultAlgorithmSuite with which you can specify the message
encryption algorithm to use. WCF also lets you define custom binding elements if none of the
predefined binding elements meets your requirements. (Creating custom binding elements is
beyond the scope of this book.)

The composability of binding elements into bindings provides a great deal of flexibility, but
clearly not all combinations of binding elements make sense. Additionally, if you are building
solutions for a global environment, it is worth remembering that not all client applications
and services in a distributed solution will necessarily have been developed using WCF; you
should use bindings that are interoperable with services and applications developed using
other technologies.

Download from Wow! eBook <www.wowebook.com>

78	 Windows Communication Foundation 4 Step by Step

The WS-* Specifications and the WS-I Basic Profile
As described in Chapter 1, many specifications and protocols have been defined with
the goal of ensuring interoperability between Web services. Examples include the WS-
Security specification, which defines how Web services can communicate in a secure
manner; WS-Transactions, which specify how to implement transactions across a dispa-
rate collection of Web services; and WS-ReliableMessaging, which describes a protocol
that allows messages to be delivered reliably between distributed applications, even in
the event of software component, system, or network failures. Collectively, these speci-
fications are known as the WS-* specifications. To ensure interoperability, you should
create Web services that conform to these specifications. Fortunately, the library of
binding elements and preconfigured bindings provided with WCF abide by these speci-
fications, but if you create your own custom binding elements you should be aware that
you might be compromising interoperability.

Another point to bear in mind is that when you create a Web service, you make use
of a number of technical standards, such as XML, WSDL, SOAP, and the various WS-*
specifications. New versions of these standards are continually emerging and will inevi-
tably become adopted in the future. This poses a challenge. For example, if you create a
Web service that exposes its interface by using WSDL 2, and a client application is using
WSDL 1.1, will the client application still work? If you factor in the possibility that various
applications could potentially support different versions or subsets of the various stan-
dards then interoperability, which is one of the most important value propositions of
Web services, becomes difficult to achieve. This is where the WS-I Basic Profile comes in.

WS-I—the Web Services Interoperability organization—defines a specific list of stan-
dards, versions, and additional rules that Web services and their clients should adopt to
maintain interoperability. WS-I groups these items together into what is referred to as
a profile. The current WS-I profile is called the WS-I Basic Profile 1.2 (although the WS-I
Basic Profile 2.0 is currently being developed). Web services that conform to the
WS-I Basic Profile 1.2 should automatically be compatible with client applications and
other Web services that also conform to the WS-I Basic Profile 1.2, regardless of how the
Web services and client applications are implemented or what technologies they use.

For a complete description of the WS-I Basic Profile 1.2, see the WS-I Basic Profile page
at http://ws-i.org/profiles/BasicProfile-1.2-WGD.html.

The designers of WCF have provided a selection of predefined bindings in the WCF library, in
the System.ServiceModel namespace. You have already used two of them: BasicHttpBinding and
NetTcpBinding. Some of these bindings are aimed at clients and services primarily running on
the Windows platform, but others (mainly the Web services bindings) are compatible with the
WS-* specifications and the WS-I Basic Profile 1.1 and 1.2. Table 2-3 describes the bindings
available in the WCF library:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 79

Table 2-3  WCF Predefined Bindings

Binding Description

BasicHttpBinding This binding conforms to the WS-I Basic Profile 1.1 (for maximum
backward compatibility with older Web services and client applica-
tions). It can use the HTTP and HTTPS transport protocols and encodes
messages as XML text. Use this binding to build services that are com-
patible with client applications previously developed to access ASMX-
based Web services.

BasicHttpContextBinding This binding is similar to the BasicHttpBinding binding, except that it
supports the use of HTTP cookies for storing and transmitting contex-
tual information. This feature lets you build services that can transpar-
ently store state information with a client application and provide this
state information whenever the client application sends messages to
the service. It is useful for building conversational services, where the
service needs to be able to correlate requests from different clients.
This feature is described more in Chapter 7.

WS2007HttpBinding This binding conforms to the WS-* specifications that support distrib-
uted transactions and secure, reliable sessions. It supports the HTTP
and HTTPS transport protocols. Messages can be encoded as XML
text or by using the Message Transmission Optimization Mechanism
(MTOM). MTOM is an efficient encoding mechanism for transporting
messages that contain binary data. You will learn more about MTOM
in Chapter 13.

WSHttpBinding This binding conforms to the pre-2007 draft of the WS-* specifications.
It is provided so you can build client applications and services that
are backward compatible with systems based on previous versions of
WCF and the .NET Framework. You should use the WS2007HttpBinding
binding for all new development.

WSHttpContextBinding This binding extends the WSHttpBinding binding with support for
transparently sending and receiving context information by using
the headers in SOAP messages (not cookies). As with the BasicHttp
ContextBinding binding, it is useful where the service needs to be able
to correlate requests from different clients.

WSDualHttpBinding This binding is similar to WS2007HttpBinding, but it is suitable for
handling duplex communications. Duplex messaging allows a client
and service to perform two-way communication without requiring any
form of synchronization (the more common pattern of communication
is the request/reply model where a client sends a request and waits for
a reply from the service). You will learn more about using duplex mes-
saging in Chapter 14, “Discovering Services and Routing Messages.”
Using this binding, messages can be encoded as XML Text or by using
MTOM. However, this binding supports only the HTTP transport proto-
col, not HTTPS.

Download from Wow! eBook <www.wowebook.com>

80	 Windows Communication Foundation 4 Step by Step

Binding Description

WebHttpBinding This binding supports Web services that implement the Represen-
tational State Transfer (REST) model and that expose data directly
through HTTP requests and responses rather than by using SOAP
messages. You will learn more about build REST Web services in
Chapter 15, “Building REST Services.”

WS2007FederationHttpBinding This binding supports the WS-Federation specification. This specifica-
tion enables Web services operating in different security realms to
agree on a common mechanism for identifying users. A collection of
cooperating Web services acting in this way is called a federation. An
end-user that successfully connects any member of the federation has
effectively logged into all of the members. WS-Federation defines sev-
eral models for providing federated security, based on the WS-Trust,
WS-Security, and WS-SecureConversation specifications. You will learn
more about federation in Chapter 17, “Managing Identity with Win-
dows CardSpace.”

WSFederationHttpBinding This binding supports the pre-2007 draft of the WS-Federation specifi-
cation. Like the WSHttpBinding binding, it is provided so you can build
solutions that are compatible with older WCF services.

NetTcpBinding This binding uses the TCP transport protocol to transmit messages
using a binary encoding. It offers higher performance than the bind-
ings based on the HTTP protocols but less interoperability. It supports
transactions, reliable sessions, and secure communications. This bind-
ing is ideally suited for use in a local area network and between com-
puters using the Windows operating system.

NetTcpContextBinding This binding extends the NetTcpBinding binding with the ability to
transparently send and receive context data in SOAP headers.

NetPeerTcpBinding This binding supports peer-to-peer communications between applica-
tions using the TCP protocol. It supports secure communications and
reliable, ordered delivery of messages. Messages are transmitted by
using a binary encoding. Using peer-to-peer communications is out-
side the scope of this book, but for more information, see the “Peer to
Peer Networking” section in the Windows SDK Documentation.

NetNamedPipeBinding This binding uses named pipes to implement high-performance com-
munication between processes running on the same computer. It sup-
ports secure, reliable sessions and transactions. You cannot use this
binding to connect to a service across a network.

NetMsmqBinding This binding uses Microsoft Message Queue (MSMQ) as the transport
to transmit messages between a client application and a service—both
implemented by using WCF. It enables temporal isolation; messages
are stored in a message queue, so the client and the service do not
need to be running simultaneously. This binding supports secure, reli-
able sessions and transactions. Messages use a binary encoding.

MsmqIntegrationBinding With this binding, you can build a WCF application that sends or
receives messages from an MSMQ message queue. It is intended for
use with existing applications that use MSMQ message queues (the
NetMsmqBinding binding uses MSMQ as a transport between a WCF
client and service).

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 81

Configuring Bindings
Later in this chapter, you will see that you can programmatically instantiate a binding and use
it to create an endpoint for a service by using the AddServiceEndpoint method of the Service
Host class. Similarly, you can write code to add a binding in a client application (you will see
examples of these in Chapter 11, “Programmatically Controlling the Configuration and Com-
munications”). However, as you have already seen, it is common to use a configuration file
to specify the binding configuration information for a client and service. You can also set the
binding properties either programmatically or using configuration. As an example, examine
the app.config file for the ProductsClient application. It looks like this:

<?xml version="1.0"?>

<configuration>

 <system.serviceModel>

 <bindings>

 <basicHttpBinding>

 <binding name="BasicHttpBinding_IProductsService" closeTimeout="00:01:00"

 openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00"

 allowCookies="false" bypassProxyOnLocal="false"

 hostNameComparisonMode="StrongWildcard"

 maxBufferSize="65536" maxBufferPoolSize="524288" maxReceivedMessageSize="65536"

 messageEncoding="Text" textEncoding="utf-8" transferMode="Buffered"

 useDefaultWebProxy="true">

 <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384"

 maxBytesPerRead="4096" maxNameTableCharCount="16384" />

 <security mode="None">

 <transport clientCredentialType="None" proxyCredentialType="None"

 realm="" />

 <message clientCredentialType="UserName" algorithmSuite="Default" />

 </security>

 </binding>

 </basicHttpBinding>

 </bindings>

 <client>

 <endpoint address="http://localhost:8000/ProductsService/Service.svc"

 binding="basicHttpBinding"

 bindingConfiguration="BasicHttpBinding_IProductsService"

 contract="ProductsService.IProductsService"

 name="BasicHttpBinding_IProductsService" />

 <endpoint address="net.tcp://localhost:8080/TcpService" binding="netTcpBinding"

 contract="ProductsService.IProductsService"

 name="NetTcpBinding_IProductsService" />

 </client>

 </system.serviceModel>

</configuration>

To recap from earlier, the <client> section specifies the endpoints for the client application.
Each endpoint indicates the binding to use. Notice that the value specified in the binding attri-
bute refers to the name of one of the predefined WCF bindings described earlier, although
in the schema used by the configuration file they are specified by following the camelCase
convention (with a lower-case initial letter.) The <bindings> section of the configuration
file sets the properties of each binding—this section is optional if you are happy to use the

Download from Wow! eBook <www.wowebook.com>

82	 Windows Communication Foundation 4 Step by Step

default values for a binding. The previous example explicitly sets the values for some of the
common properties of the BasicHttpBinding binding used by the client endpoint. You will
learn a lot more about the properties of various bindings in subsequent chapters, and you can
find a full list of the properties for each binding in the “<bindings>” section of the “Windows
Communication Foundation Configuration Schema” topic in the Windows SDK Documentation
provided with Visual Studio.

There is one additional feature that you should be aware of when configuring a binding; you
can specify your own default binding configuration options. The following example adds a
binding configuration for the NetTcpBinding binding that sets the transferMode property of
the binding to Streamed (you will learn about how to implement streaming in a WCF service
in Chapter 13). Notice that the binding is anonymous; it has no name attribute specified. The
StreamingService service is configured to use the NetTcpBinding binding. It does not reference
any particular binding configuration by name, so it will be configured with the system-defined
default options. However, the anonymous binding configuration will then be applied and
override the system-defined default setting for the transferMode property. Furthermore, this
configuration will be applied to any other NetTcpBinding bindings implemented by the same
service host unless they explicitly reference a named binding configuration, which would then
be used instead.

<?xml version="1.0"?>

<configuration>

 <system.serviceModel>

 <bindings>

 <netTcpBinding>

 <binding transferMode="Streamed">

 </netTcpBinding>

 </bindings>

 <services>

 <service name="StreamingService">

 <endpoint address="net.tcp://localhost:8080/StreamedTcpService"

 binding="netTcpBinding"

 contract="ProductsService.IProductsService"

 name="NetTcpBinding_IProductsService" />

 </service>

 </services>

 </system.serviceModel>

</configuration>

Default Endpoints
When you created the first version of the ProductsService WCF service in Chapter 1, you did
not specify any endpoint or binding information in the Web.config file. Instead, when the host
environment (in this case IIS) started the service, it created a default endpoint definition based
on the transport scheme implemented by the host (HTTP) and the URL defined by the logi-
cal address of the virtual folder holding the service. In fact, the host environment called the
AddDefaultEndpoints method of the ServiceHost class to generate the details of this endpoint.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 83

The AddDefaultEndpoints method adds an endpoint for all base addresses defined by the ser-
vice for each service contract implemented by the service. So, for example, if the base address
of a service is http://localhost/ProductsService, and the service implements a contract called
Products.IProductsService, the AddDefaultEndpoints method generates an endpoint using the
BasicHttpBinding binding, with an address generated from the base address of the service
combined with the name of the .svc file provided with the service and the Products.IProducts
Service contract. If a service implements two service contracts, the AddDefaultEndpoints
method generates two endpoints, one for each contract. Similarly, if a service is configured
with two base addresses and implements two contracts, the AddDefaultEndpoints method
generates four endpoints (one endpoint for each combination of address and contract).

There is one small question that arises from this discussion; how does the AddDefaultEndpoints
method actually know which binding to use. You have seen that the default binding for the
HTTP transport is the BasicHttpBinding binding, which makes sense (for reasons of backward
compatibility). But how does the AddDefaultEndpoints method come to this conclusion, rather
than, for example, selecting the WSHttpBinding binding, which is also valid for the HTTP trans-
port? The answer lies in the default protocol mapping specified in the machine.config file.

The machine.config file contains global configuration settings for the computer (not just WCF
configuration settings). It is located in the C:\Windows\Microsoft.NET\Framework\vx.x.xxxx\
Config folder on your computer, where vx.x.xxxx is the version of the .NET Framework that
you have installed. This file contains a <protocolMapping> section that specifies the default
mapping from network schemes to bindings, as follows:

<system.ServiceModel>

 ...

 <protocolMapping>

 <clear />

 <add scheme="http" binding="basicHttpBinding" bindingConfiguration="" />

 <add scheme="net.tcp" binding="netTcpBinding" bindingConfiguration="" />

 <add scheme="net.pipe" binding="netNamedPipeBinding" bindingConfiguration="" />

 <add scheme="net.msmq" binding="netMsmqBinding" bindingConfiguration="" />

 </protocolMapping>

 ...

</system.ServiceModel>

If you wish to change the default binding for a network scheme for a service, you can add a
<protocolMapping> section to the Web.config or app.config file for the service and override
the mapping in the machine.config file (do not change the machine.config file). For example,
the following configuration changes the default binding for the HTTP scheme for a service to
the WSHttpBinding binding.

<system.ServiceModel>

 ...

 <protocolMapping>

 <add scheme="http" binding="wsHttpBinding" bindingConfiguration="" />

 </protocolMapping>

 ...

</system.ServiceModel>

Download from Wow! eBook <www.wowebook.com>

84	 Windows Communication Foundation 4 Step by Step

Also, notice that you can override the default configuration for a binding by providing a
named binding configuration, and then referencing that configuration from the binding
Configuration attribute, as described in the “Configuring Bindings” section on page 81.

Hosting a WCF Service in a Windows Service
To finish this chapter, you’ll look at another option for hosting a WCF service and learn more
about adding endpoints to a service programmatically. You’ll also see another commonly
used binding.

Hosting a WCF Service in a user application relies on the user starting and stopping the
service—and not logging off. A better solution is to host a WCF service in a Windows service.
This way, you can configure the Windows service to run automatically when Windows starts,
but an administrator can still stop and restart the service if required.

In the exercises in this section, you will create a Windows service to act as a host for the
ProductsService service. This service will limit requests to only client applications running on
the same computer, so you will configure it to use the named pipe transport, listening to a
fixed address.

More Info  The exercises in this section assume you are familiar with how Windows services func-
tion and that you understand how to use Windows Service Visual Studio template to create a new
service. Windows services are distinct from WCF services, and a detailed discussion of how they
work is outside the scope of this book. For further information about creating Windows services
see the “Windows Service Applications” section in the Visual Studio 2010 Help documentation.

Create a New Windows Service to Host the WCF Service

	 1.	 Using Visual Studio, create a new solution using the information in the following table:

Item Value

Template Windows Service (in the Windows folder in the Installed Templates pane)

Name WindowsProductsService

Location Microsoft Press\WCF Step By Step\Chapter 2

	 2.	 In Solution Explorer, change the name of the Service1.cs file to ServiceHostController.cs.
When prompted, click Yes to change all references to Service1 to ServiceHostController
instead.

	 3.	 Add a reference to the System.ServiceModel, System.Runtime.Serialization, and System.
Data.Entity assemblies.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 85

	 4.	 Add a reference to the ProductsEntityModel assembly, located in the Microsoft Press\
WCF Step By Step\Chapter 2 folder.

	 5.	 Add the IProductsService.cs, ProductsService.cs, and app.config files located in the
Microsoft Press\WCF Step By Step\Chapter 2 folder to the project.

	 6.	 Open the App.config file in the Code And Text Editor and set the value of the
httpGetEnabled attribute of the serviceMetadata element in the <serviceBehaviors>
section to false, as shown in bold in the following:

<?xml version="1.0"?>

<configuration>

 ...

 <system.ServiceModel>

 <behaviors>

 <serviceBehaviors>

 <behavior>

 ...

 <serviceMetadata httpGetEnabled="false" />

 ...

 </behavior>

 </serviceBehaviors>

 </behaviors>

 </system.ServiceModel>

</configuration>

	 7.	 Build the solution.

In the previous set of exercises, you saw that you had to specify an address when you used the
NetTcpBinding binding with a service. You provided this information in the configuration file,
together with binding information. In this set of exercises, you will bind the service to an end-
point by using code; the Windows service will use a named pipe for its endpoint because you
want to restrict access to local client applications only.

Add Logic to Start and Stop the Windows Service

	 1.	 Open the ServiceHostController.cs file. In the Design View window, click the link to
switch to the code view in the Code And Text Editor window.

	 2.	 In the Code And Text Editor window, add the following using statements to the list at
the top of the file:

using System.ServiceModel;

using Products;

	 3.	 Add the variable shown in bold in the following to the ServiceHostController class:

public partial class ServiceHostController : ServiceBase

{

 private ServiceHost productsServiceHost;

Download from Wow! eBook <www.wowebook.com>

86	 Windows Communication Foundation 4 Step by Step

 public ServiceHostController()

 {

 ...

 }

 ...

}

You will use this variable to control the ProductsService service.

	 4.	 Add the following statements shown in bold in the following to the ServiceHost
Controller constructor:

public partial class ServiceHostController : ServiceBase

{

 private ServiceHost productsServiceHost;

 public ServiceHostController()

 {

 InitializeComponent();

 // The name of the service that appears in the Registry

 this.ServiceName = "ProductsService";

 // Allow an administrator to stop (and restart) the service

 this.CanStop = true;

 // Report Start and Stop events to the Windows event log

 this.AutoLog = true;

 }

 ...

}

	 5.	 Add the statement shown in bold in the following to the OnStart method of the Service
HostController class:

public partial class ServiceHostController : ServiceBase

{

 ...

 public ServiceHostController()

 {

 ...

 }

 protected override void OnStart(string[] args)

 {

 productsServiceHost = new ServiceHost(typeof(ProductsServiceImpl));

 }

 ...

}

This statement creates a new instance of the ProductsService service—but remember
that the App.config file does not specify an address or binding. You will supply the end-
point information for the service in the next step.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 87

	 6.	 Add the statements shown in bold in the following to the OnStart method:

protected override void OnStart(string[] args)

{

 productsServiceHost = new ServiceHost(typeof(ProductsServiceImpl));

 NetNamedPipeBinding binding = new NetNamedPipeBinding();

 productsServiceHost.AddServiceEndpoint(typeof(IProductsService),

 binding, "net.pipe://localhost/ProductsServicePipe");

 productsServiceHost.Open();

}

The first statement creates a NetNamedPipeBinding object. The second statement
creates a new endpoint using this binding object. It associates the binding with the
“//localhost/ProductsServicePipe” named pipe, and it specifies that the service listening
to the pipe implements the IProductsService service contract. The code then opens the
service and waits for clients to connect.

	 7.	 Add the code shown in bold in the following to the OnStop method of the ServiceHost
Controller class:

public partial class ServiceHostController : ServiceBase

{

 ...

 protected override void OnStart(string[] args)

 {

 ...

 }

 protected override void OnStop()

 {

 productsServiceHost.Close();

 }

}

This statement closes the ProductsService service when the Windows service is shut
down. Remember that WCF closes services gracefully, so the Close method can take
some time to execute.

	 8.	 Build the solution.

In the next exercise, you will add an installer for the Windows service. You will configure the
service to run using the LocalSystem account. If you want to select a different account, ensure
that the account you specify has access to the tables in the AdventureWorks database.

Create the Service Installer

	 1.	 In Solution Explorer, double-click the ServiceHostController.cs file to display it in the
Design View window.

Download from Wow! eBook <www.wowebook.com>

88	 Windows Communication Foundation 4 Step by Step

	 2.	 Right-click anywhere in the Design View window, and then click Add Installer.

The service installer is created and displays the serviceProcessInstaller1 and
serviceInstaller1 components in the Design View window.

	 3.	 Click the serviceInstaller1 component. In the Properties window, set the ServiceName
property to ProductsService, and set the StartType property to Automatic.

Tip  If the Properties window is not visible, from the View menu, select Properties Window.

	 4.	 In the Design View window, click the serviceProcessInstaller1 component. In the Properties
window, set the Account property to LocalSystem.

	 5.	 Build the solution.

The next stage is to install the service and start it running.

Install the Windows Service

	 1.	 Open a Visual Studio Command Prompt window as Administrator.

❏❏ On the Windows Start menu, click All Programs, click Microsoft Visual Studio 2010,
click Visual Studio Tools, right-click Visual Studio Command Prompt (2010), and
then click Run as Administrator. Enter the administrator password if prompted.

	 2.	 In the Visual Studio Command Prompt window, move to the folder Microsoft Press\WCF
Step By Step\Chapter 2\WindowsProductService\WindowsProductService\bin\Debug.

	 3.	 Run the following command to install the WindowsProductsService service:

installutil WindowsProductsService.exe

The installutil utility outputs a number of messages indicating the progress of the instal-
lation process. Verify that the service installed successfully, without reporting any errors.

	 4.	 Run the following command to start the Windows Services applet:

services.msc

	 5.	 In the Services window, verify that the ProductsService service is present and configured
using the property values specified by the service installer, as shown in the following
image:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 89

	 6.	 Start the service.

Tip  If the service fails to start, check the Windows Application Event log. When a service
fails, Windows reports exceptions and errors to this log.

In the final exercise of this chapter, you will use another copy of the ProductsClient application
to test the Windows service. You will reconfigure the ProductsClient application to connect to
the Windows service and verify that the service functions correctly.

Test the Windows Service

	 1.	 Return to Visual Studio. Add the ProductsClient project in the Microsoft Press\WCF Step
By Step\Chapter 2\ProductsClient\ProductsClient folder to the WindowsProductsService
solution.

	 2.	 Edit the app.config file for the ProductsClient project by using the Service Configuration
Editor.

	 3.	 In the Client folder, right-click the Endpoints node, and then click New Client Endpoint.
Add a new client endpoint using the following property values:

Property Value

Name NetNamedPipeBinding_IProductsService

Address net.pipe://localhost/ProductsServicePipe

Binding netNamedPipeBinding

Contract ProductsService.IProductsService

Download from Wow! eBook <www.wowebook.com>

90	 Windows Communication Foundation 4 Step by Step

	 4.	 Save the client configuration file and exit the Service Configuration Editor.

	 5.	 Edit the Program.cs file for the ProductsClient project. In the Main method, modify the
statement that instantiates the proxy object to use the named pipe endpoint, as shown
in bold in the following:

static void Main(string[] args)

{

 // Create a proxy object and connect to the service

 ProductsServiceClient proxy = new

 ProductsServiceClient("NetNamedPipeBinding_IProductsService");

	 6.	 Build the solution.

	 7.	 In Solution Explorer, right-click the ProductsClient project, and then click Set as StartUp
Project.

	 8.	 From the Debug menu, select Start Without Debugging to start the client application
running. Press Enter in the client console window.

Again, the ProductsClient application should run exactly as before. This time, however,
the client is communicating with the WCF service running in the Windows service by
using a named pipe.

	 9.	 Press Enter to close the ProductsClient application.

	 10.	 Return to the Services applet and stop the ProductsService service.

If you want to verify that the client application uses the Windows service and not some
other instance of the ProductsService service that might be running (such as the Web
service), try running the client after stopping the Windows service. It should fail with an
EndpointNotFoundException exception stating that there is no endpoint listening at the
address net.pipe://localhost/ProductsServicePipe.

Tip  You can uninstall the WindowsProductsService service by executing the command
installutil /u WindowsProductsService.exe in a Visual Studio Command Prompt Window,
in the bin\Debug folder for the WindowsProductsService project.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 2  Hosting a WCF Service	 91

Summary
This chapter has shown you how to create an application that hosts a WCF service. You have
seen the different types of applications that you can use for this purpose, and you have built
a WPF application and a Windows service. You have also learned a lot more about how
WCF uses bindings to specify the transport protocol, encoding mechanism, and other non-
functional aspects of a service, such as reliability, security, and support for transactions. You
have been introduced to the predefined bindings available in the WCF library. You have
learned how to add multiple bindings to a service by using multiple endpoints. And finally,
you have seen how to specify binding information by using a configuration file and how to
specify a binding and endpoint for a service by using code.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

93

Chapter 3

Making Applications and Services
Robust

After completing this chapter, you will be able to:

■■ Explain how the WCF runtime can convert common language runtime exceptions into SOAP
fault messages to transmit exception information from a WCF service.

■■ Use the FaultContract attribute in a service to define strongly typed exceptions as SOAP
faults.

■■ Catch and handle SOAP faults in a client application.

■■ Describe how to configure a WCF service to propagate information about unanticipated
exceptions to client applications for debugging purposes.

■■ Describe how to detect the Faulted state in a WCF service host application and how to
recover from this state.

■■ Explain how to detect and log unrecognized messages sent to a service.

Detecting and handling exceptions is an important part of any professional application. In a
complex desktop application, many different situations can raise an exception, ranging from
programming errors or events such as unexpected or malformed user input, to failure of one
or more hardware components in the computer running the application. In a distributed envi-
ronment, the scope for exceptions is far greater. This is due to the nature of networks and the
fact that, in some cases, neither the application nor the development or administrative staff
has control over how the network functions or its maintenance (who is responsible for mak-
ing sure that the Internet works?). If you factor in the possibility that your application might
also access services written by some third party, who may modify or replace the service with
a newer version (possibly untested!), or remove the service altogether, then you might begin
to wonder whether your distributed applications will ever be able to work reliably.

This chapter shows you how to handle exceptions in client applications and services devel-
oped using WCF. You will see how to specify the exceptions that a WCF service can raise and
how to propagate information about exceptions from a WCF service to a WCF client. You will
also explore the states that a service can be in, how to determine when a host application
switches from one state to another, and how to recover a service that has failed. Finally, you
will see how to detect unrecognized messages sent to a service by client applications.

Download from Wow! eBook <www.wowebook.com>

94	 Windows Communication Foundation 4 Step by Step

CLR Exceptions and SOAP Faults
A WCF service is a managed application that runs by using the .NET Framework common
language runtime, or CLR. One important feature of the CLR is the protection that it provides
when an error occurs; the CLR can detect many system-level errors and raise an exception if
necessary. A managed application can endeavor to catch these exceptions and either attempt
some form of recovery or at least fail in a graceful manner, reporting the reason for the
exception and providing information that can help a developer to understand the cause of
the exception in order to take steps to rectify the situation in the future.

CLR exceptions are specific to the .NET Framework. WCF is intended to build client applica-
tions and services that are interoperable with other environments. For example, a Java client
application would not understand the format of a CLR exception raised by a WCF service
or how to handle it. Part of the SOAP specification describes how to format and send errors
in SOAP messages by using SOAP faults. The SOAP specification includes a schema for for-
matting SOAP faults as XML text and encapsulating them in a SOAP message. A SOAP fault
must specify an error code and a text description of the fault (called the “reason”), and it
can include other optional pieces of information. Interoperable services built using the WCF
should convert .NET Framework exceptions into SOAP faults and follow the SOAP specifica-
tion for reporting these faults to client applications.

More Info  For a detailed description of the format and contents of a SOAP fault, see the World
Wide Web Consortium Web site at http://www.w3.org/TR/soap12-part1/#soapfault.

Throwing and Catching a SOAP Fault
The WCF library provides the FaultException class in the System.ServiceModel namespace. If a
WCF service throws a FaultException object, the WCF runtime generates a SOAP fault message
that is sent back to the client application.

In the first set of exercises in this chapter, you will add code to the WCF ProductsService
service that detects selected problems when accessing the AdventureWorks database and
uses the FaultException class to report these issues back to the client application.

Modify the WCF Service to Throw SOAP Faults

	 1.	 Using Visual Studio, open the ProductsServiceFault solution located in the Microsoft
Press\WCF Step By Step\Chapter 3\ProductsServiceFault folder (within your Documents
folder).

This solution contains a copy of the ProductsServiceLibrary, ProductsServiceHost, and
ProductsClient applications that you created in Chapter 2, “Hosting a WCF Service.”

Download from Wow! eBook <www.wowebook.com>

	 Chapter 3  Making Applications and Services Robust	 95

	 2.	 In the ProductsServiceLibrary project, open the ProductsService.cs file to display the
code for the service in the Code And Text Editor window.

	 3.	 Locate the ListProducts method in the ProductsServiceImpl class.

You should recall from Chapter 1, “Introducing Windows Communication Foundation,”
that this method uses the Entity Framework to connect to the AdventureWorks database
and retrieve the product number of every product in the Product table. The product
numbers are stored in a list which is returned to the client application. Notice that the
exception handler for this method currently ignores all exceptions.

	 4.	 Modify the exception handler, as shown in bold in the following:

public List<string> ListProducts()

{

 ...

 try

 {

 ...

 }

 catch (Exception e)

 {

 // Edit the Initial Catalog in the connection string in app.config

 // to trigger this exception

 if (e.InnerException is System.Data.SqlClient.SqlException)

 {

 throw new FaultException(

 "Exception accessing database: " +

 e.InnerException.Message, new FaultCode("Connect to database"));

 }

 else

 {

 throw new FaultException(

 "Exception reading product numbers: " +

 e.Message, new FaultCode("Iterate through products"));

 }

 }

 // Return the list of product numbers

 return productsList;

}

If an exception occurs, this code examines the cause. If the InnerException property of
the Exception object is a SqlExecption, then the exception was caused by the code that
accesses the database in the Entity Framework. If the exception is some other type, then
the problem must lie in the code that iterates through the list of products retrieved from
the database. In both cases, this code creates a new System.ServiceModel.FaultException
object with the details of the exception and throws it. The operation will stop running
and will instead generate a SOAP fault containing a description of the fault and a fault
code (which for the purposes in this example simply specifies a name for identification).
This SOAP fault is sent back to the client.

Download from Wow! eBook <www.wowebook.com>

96	 Windows Communication Foundation 4 Step by Step

Note  If you don’t create a FaultCode object, the WCF runtime will itself automatically gen-
erate a FaultCode object named “Client” and add it to the SOAP fault sent back to the client.

	 5.	 Build the solution.

Modify the WCF Client Application to Catch SOAP Faults

	 1.	 In the ProductsClient project, open the file Program.cs to display the code for the client
application in the Code And Text Editor window.

	 2.	 In the Main method, add a try/catch block around the code that calls the operations in
the WCF service, as shown in bold in the following:

static void Main(string[] args)

{

 ...

 // Test the operations in the service

 try

 {

 // Obtain a list of all products

 ...

 // Fetch the details for a specific product

 ...

 // Query the stock level of this product

 ...

 // Modify the stock level of this product

 ...

 // Disconnect from the service

 ...

 }

 catch (FaultException e)

 {

 Console.WriteLine("{0}: {1}", e.Code.Name, e.Reason);

 }

 Console.WriteLine("Press ENTER to finish");

 Console.ReadLine();

}

If any of the operations generate a SOAP fault, the WCF runtime on the client creates a
FaultException object. The catch handler for the FaultException object displays the fault
code and reason. The name of the fault code is the value specified by the FaultCode
constructor in the service, and the Reason string is the text description of the fault pro-
vided by the service.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 3  Making Applications and Services Robust	 97

Test the FaultException Handler

Important  Before you perform this exercise, make sure that you still have port 8000
reserved for your application, as described in the exercise “Reserve HTTP Port 8000” in
Chapter 2. To reserve this port, open a command prompt as Administrator, and run the
following command (replace UserName with your Windows user name):

netsh http add urlacl url=http://+:8000/ user=UserName

	 1.	 In the ProductsServiceHost project, edit the App.config file. The <connectionStrings>
section of this file contains the information used by the Entity Framework to connect to
the AdventureWorks database.

	 2.	 In the <add> element of the <connectionStrings> section, change the Initial Catalog
part of the connectionString attribute to refer to the Junk database, as follows (do not
change any other parts of the connectString attribute):

<connectionStrings>

 <add ... connectionString="...;Initial Catalog=Junk;..." />

</connectionStrings>	

	 3.	 Build and run the solution without debugging.

The Products Service Host window and the ProductsClient console window should both
start.

	 4.	 In the Products Service Host window, click Start.

If a Windows Security Alert message box appears, click Allow Access.

	 5.	 When the service status in the Products Service Host window displays the message
“Service Running,” press Enter in the ProductsClient console window.

After a short delay, the ProductsClient application reports an exception similar to the
following when performing Test 1 (your message might vary if you are attempting to
connect to the database as a different user):

Download from Wow! eBook <www.wowebook.com>

98	 Windows Communication Foundation 4 Step by Step

The ProductsService service failed when attempting to connect to the database—the
SOAP fault code is “Connect to database.”

	 6.	 Press Enter to close the ProductsClient console.

	 7.	 Click Stop in the Products Service Host window, and then close the application.

	 8.	 In the App.config file for the ProductsServiceHost application, change the database
back to AdventureWorks in the <connectionString> attribute.

	 9.	 In the ListProducts method in the ProductsService.cs file, comment out the code that
instantiates the productsList object and replace it with code that sets this object to null.
In the body of the try block, add a statement that clears the productsList object before
assigning it the data retrieved from the database, as shown in bold in the following:

public List<string> ListProducts()

{

 // Create a list for holding product numbers

 List<string> productsList = null; // new List<string>();

 try

 {

 // Fetch the product number of every product in the database

 var products = from product in database.Products

 select product.ProductNumber;

 productsList.Clear();

 productsList = products.ToList();

 }

 catch (Exception e)

 {

 ...

 }

 ...

}

Note  The statement that calls Clear is actually redundant and is only used by this exercise
to illustrate generating an exception that results in a SOAP fault.

	 10.	 Build and run the solution again, without debugging.

	 11.	 In the Products Service Host window, click Start.

	 12.	 When the service is running press Enter in the ProductsClient console window.

The ProductsClient application reports a different exception when performing Test 1:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 3  Making Applications and Services Robust	 99

This time, the ProductsService service failed when clearing the list of products prior
to iterating through the items retrieved from the database and adding them to the
productsList collection (which is now set to null)—the SOAP fault code is “Iterate
through products”; the reason explains that an object reference was not initialized
correctly.

	 13.	 Press Enter to close the ProductsClient console window.

	 14.	 Click Stop in the Products Service Host form, and then close the application.

Note  Do not change the code in the Listproducts method back to the correct version
just yet.

Using Strongly Typed Faults
Throwing a FaultException is very simple but is actually not as useful as it first appears. A client
application must examine the FaultException object that it catches to determine the cause of
the error, so it is not easy to predict what possible exceptions could occur when invoking a
WCF service. In such situations, all developers can do is write generalized catch handlers with
very limited scope for recovering from specific exceptions. You can think of this as analogous
to using the System.Exception type to throw and handle exceptions in regular .NET Framework
applications. A better solution is to use strongly typed SOAP faults.

In Chapter 1, you saw that a service contract for a WCF service contains a series of operation
contracts defining the methods, or operations, that the service implements. A service contract
can additionally include information about any faults that might occur when executing an
operation. If an operation in a WCF service detects an exception, it can generate a specific
SOAP fault message that it can send back to the client application. The SOAP fault message
should contain sufficient detail so the user or an administrator can understand the reason for
the exception and, if possible, take any necessary corrective action. A client application can
use the fault information in the service contract to anticipate faults and provide specific han-
dlers that can catch and process each different fault. These are strongly typed faults.

Download from Wow! eBook <www.wowebook.com>

100	 Windows Communication Foundation 4 Step by Step

You specify the possible faults that can occur by using the FaultContract attribute in a service
contract. This is what you will do in the next set of exercises.

Note  You can only apply the FaultContract attribute to operations that return a response. You
cannot use them with one-way operations. You will learn more about one-way operations in
Chapter 12, “Implementing One-Way and Asynchronous Operations.”

Use the FaultContract Attribute to Specify the SOAP Faults an Operation Can Throw

	 1.	 In the ProductsServiceFault solution, in the ProductsServiceLibrary project, open the
IProductsService.cs file.

	 2.	 In the IProductsService.cs file, add the following classes shown in bold to the Products
Service namespace:

namespace ProductsService

{

 // Classes for passing fault information back to client applications

 [DataContract]

 public class SystemFault

 {

 [DataMember]

 public string SystemOperation { get; set; }

 [DataMember]

 public string SystemReason { get; set; }

 [DataMember]

 public string SystemMessage { get; set; }

 }

 [DataContract]

 public class DatabaseFault

 {

 [DataMember]

 public string DbOperation { get; set; }

 [DataMember]

 public string DbReason { get; set; }

 [DataMember]

 public string DbMessage { get; set; }

 }

 // Data contract describing the details of a product

 ...

 // Service contract describing the operations provided by the WCF service

 ...

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 3  Making Applications and Services Robust	 101

These classes define types that you will use for passing the details of SOAP faults as
exceptions from a service back to a client. Note that although both classes have a simi-
lar shape, you can pass almost any type of information in a SOAP fault; the key point is
that the type and its members must be serializable. These two classes use the Data
Contract and DataMember attributes to specify how they should be serialized.

	 3.	 Locate the IProductsService interface at the end of the IProductsService.cs file.

Remember that this interface defines the service contract for the ProductsService.

	 4.	 In the IProductsService interface, modify the definition of the ListProducts operation, as
shown in bold in the following code:

// Service contract describing the operations provided by the WCF service

[ServiceContract]

public interface IProductsService

{

 // Get the product number of every product

 [FaultContract(typeof(SystemFault))]

 [FaultContract(typeof(DatabaseFault))]

 [OperationContract]

 List<string> ListProducts();

 // Get the details of a single product

 ...

 // Get the current stock level for a product

 ...

 // Change the stock level for a product

 ...

}

The FaultContract attributes indicate that the ListProducts method can generate SOAP
faults, which a client application should be prepared to handle. The parameter to the
FaultContract attribute specifies the information that the SOAP fault will contain. In this
case, the ListProducts operation can generate two types of SOAP faults: one based on
the SystemFault type, and the other based on the DatabaseFault type.

Modify the WCF Service to Throw Strongly Typed Faults

	 1.	 In the ProductsService.cs file, locate the ListProducts method in the ProductsServiceImpl
class.

	 2.	 Replace the code in the catch block that traps SqlException exceptions, as shown in bold
in the following:

Download from Wow! eBook <www.wowebook.com>

102	 Windows Communication Foundation 4 Step by Step

public List<string> ListProducts()

{

 ...

 try

 {

 ...

 }

 catch (Exception e)

 {

 // Edit the Initial Catalog in the connection string in app.config

 // to trigger this exception

 if (e.InnerException is System.Data.SqlClient.SqlException)

 {

 DatabaseFault dbf = new DatabaseFault

 {

 DbOperation = "Connect to database",

 DbReason = "Exception accessing database",

 DbMessage = e.InnerException.Message

 };

 throw new FaultException<DatabaseFault>(dbf);

 }

 else

 {

 ...

 }

 }

 ...

}

This block creates and populates a DatabaseFault object with the details of the excep-
tion. The throw statement creates a new FaultException object based on this Database
Fault object. Note that in this case, the code makes use of the generic FaultException
class; the type parameter specifies a serializable type with the type-specific details of the
exception. At runtime, WCF uses the information in this object to create a SOAP fault
message. The FaultException constructor is overloaded, and you can optionally specify
a reason message and a fault code as well as the DatabaseFault object.

	 3.	 Replace the code in the else part of the catch block with that shown in bold, as follows:

public List<string> ListProducts()

{

 ...

 try

 {

 ...

 }

 catch (Exception e)

 {

 // Edit the Initial Catalog in the connection string in app.config

 // to trigger this exception

 if (e.InnerException is System.Data.SqlClient.SqlException)

Download from Wow! eBook <www.wowebook.com>

	 Chapter 3  Making Applications and Services Robust	 103

 {

 ...

 }

 else

 {

 SystemFault sf = new SystemFault

 {

 SystemOperation = "Iterate through products",

 SystemReason = "Exception reading product numbers",

 SystemMessage = e.Message

 };

 throw new FaultException<SystemFault>(sf);

 }

 }

 ...

}

This block of code is similar to the previous catch code, except that it creates a System
Fault object and throws a FaultException based on this object. The rationale behind using
a different type for the exception is that the kinds of exceptions that could arise when
accessing a database are fundamentally different from the exceptions that could occur
when reading configuration information. Although not shown in this example, the infor-
mation returned by a database access exception could be quite different from the
information returned by a system exception.

	 4.	 Build the solution.

You can now modify the client application to handle the exceptions thrown by the service.
However, first you must regenerate the proxy class that the client uses to communicate with
the service. The service is not currently running, so you cannot use the Update Service Refer-
ence feature of Visual Studio. Instead, you will use the svcutil utility to generate the proxy class
from the assembly containing the ProductsService service.

Regenerate the Proxy Class for the WCF Client Application

	 1.	 Open a Visual Studio command prompt window and move to the folder \Microsoft
Press\WCF Step By Step\Chapter 3\ProductsServiceFault\ProductsServiceLibrary\bin\
Debug folder.

	 2.	 Run the following command:

svcutil ProductsServiceLibrary.dll

This command runs the svcutil utility to extract the definition of the ProductsService
service and the other types from the ProductsServiceLibrary assembly. It generates the
following files:

Download from Wow! eBook <www.wowebook.com>

104	 Windows Communication Foundation 4 Step by Step

❏❏ Products.xsd  This is an XML schema file that describe the structure of the,
DatabaseFault, SystemFault, and ProductData types. The svcutil utility uses the
information specified in the data contracts for these types to generate this file.
Part of this file, displaying the DatabaseFault type, is shown in the following:

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns:tns="http://schemas.datacontract.org/2004/07/Products"

elementFormDefault="qualified"

targetNamespace="http://schemas.datacontract.org/2004/07/Products"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="DatabaseFault">

 <xs:sequence>

 <xs:element minOccurs="0" name="DbMessage" nillable="true"

 type="xs:string" />

 <xs:element minOccurs="0" name="DbOperation" nillable="true"

 type="xs:string" />

 <xs:element minOccurs="0" name="DbReason" nillable="true"

 type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 <xs:element name="DatabaseFault" nillable="true" type="tns:DatabaseFault" />

 ...

</xs:schema>

❏❏ Tempuri.org.xsd  This is another XML schema file. This schema describes the
messages that a client can send to, or receive from, the ProductsService service.
You will see later (in the WSDL file for the service) that each operation in the ser-
vice is defined by a pair of messages; the first message in the pair specifies the
message that the client must send to invoke the operation, and the second mes-
sage specifies the response sent back by the service. This file references the data
contract in the Products.xsd file to obtain the description of the ProductData type
used by the response message of the GetProduct operation. The portion of this file
that defines the messages for the ListProducts and GetProduct operations appears
as follows:

<?xml version="1.0" encoding="utf-8"?>

 ...

 <xs:element name="ListProducts">

 <xs:complexType>

 <xs:sequence />

 </xs:complexType>

 </xs:element>

 <xs:element name="ListProductsResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="ListProductsResult" nillable="true"

 xmlns:q1="http://schemas.microsoft.com/2003/10/Serialization/Arrays"

 type="q1:ArrayOfstring" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

Download from Wow! eBook <www.wowebook.com>

	 Chapter 3  Making Applications and Services Robust	 105

 <xs:element name="GetProduct">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="productNumber" nillable="true"

 type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="GetProductResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="GetProductResult" nillable="true"

 xmlns:q2="http://schemas.datacontract.org/2004/07/Products"

 type="q2:ProductData" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 ...

</xs:schema>

Note  The name of this file and the namespace of the types in this file are dictated by the
ServiceContract attribute of the interface implemented by the service. The name Tempuri.org
is the default namespace. You can change it by specifying the Namespace parameter in the
ServiceContract attribute, like this:

[ServiceContract (Namespace="Adventure-Works.com")]

❏❏ Schemas.microsoft.com.2003.10.Serialization.Arrays.xsd  This file is another
XML schema that describes how to represent an array of strings in a SOAP mes-
sage. The ListProducts operation references this information in the ListProducts
Response message. The value returned by the ListProducts operation is a list of
strings containing product numbers. As described in Chapter 1, the .NET Frame-
work generic List<> type is serialized as an array when transmitted as part of a
SOAP message.

❏❏ Schemas.microsoft.com.2003.10.Serialization.xsd  This XML schema file
describes how to represent the primitive types (such as float, int, decimal, and
string) in a SOAP message, as well as some other built-in types frequently used
when sending SOAP messages.

❏❏ Tempuri.org.wsdl  This file contains the WSDL description of the service,
describing how the messages and data contracts are used to implement the
operations that a client application can invoke. It references the XML schema
files to define the data and messages that implement operations. Notice that the
definition of the ListProducts operation includes the two fault messages that you
defined earlier:

Download from Wow! eBook <www.wowebook.com>

106	 Windows Communication Foundation 4 Step by Step

...

<wsdl:operation name="ListProducts">

 <soap:operation soapAction="http://tempuri.org/IProductsService/ListProducts"

style="document" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 <wsdl:fault name="DatabaseFaultFault">

 <soap:fault name="DatabaseFaultFault" use="literal" />

 </wsdl:fault>

 <wsdl:fault name="SystemFaultFault">

 <soap:fault name="SystemFaultFault" use="literal" />

 </wsdl:fault>

</wsdl:operation>

You can use the WSDL file and the XML schema files to generate the proxy class.

	 3.	 In the Visual Studio command prompt window, type the following command:

svcutil /namespace:*,ProductsClient.ProductsService tempuri.org.wsdl *.xsd

Note  The character between the asterisk (*) and the string ProductsClient.ProductsService
is a comma (,).

This command runs the svcutil utility again, but this time it uses the information in the
WSDL file and all the schema files (*.xsd) to generate a C# source file containing a class
that can act as a proxy object for the service. The namespace parameter specifies the C#
namespace generated for the class (the namespace shown here has been selected to be
the same as that generated by Visual Studio in the exercises in Chapter 1, to minimize
the changes required to the code in the client application; however, you will need to
modify the client configuration file to match this namespace). The svcutil utility creates
two files:

■■ Products.cs  This is the source code for the proxy class.

■■ Output.config  This is an example application configuration file that the client
application could use to configure the proxy to communicate with the service.
By default, the configuration file generates an endpoint definition with the
basicHttpBinding binding.

Note  You can also use the svcutil utility to generate a proxy directly from a Web service
endpoint rather than generating the metadata from an assembly. This is what Visual Studio
does when you use the Add Service Reference feature. For more information about the
svcutil utility, see the “ServiceModel Metadata Utility Tool” on the Microsoft Web site at
http://msdn.microsoft.com/en-us/library/aa347733.aspx.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 3  Making Applications and Services Robust	 107

	 4.	 In Visual Studio, in the ProductsClient project, copy the app.config file and paste
the copied file back into the ProductsClient project with the default name, Copy of
app.config. This step is necessary because the next step will remove some important
information from the app.config file that you will need later.

	 5.	 In the ProductsClient project, delete the ProductsService service from the Service Refer-
ences folder. As well as removing the service reference, this action also deletes the con-
figuration information for accessing the service from the app.config file, which is why
you made a copy of the original version of this file in the previous step.

	 6.	 Add the file Products.cs that you have just created to the ProductsClient project. This
file is located in the Microsoft Press\WCF Step By Step\Chapter 3\ProductsServiceFault\
ProductsServiceLibrary\bin\Debug folder.

	 7.	 Delete the app.config file from the ProductsClient project and rename the file Copy of
app.config as app.config.

	 8.	 Open the app.config file in the Code And Text Editor window. Change the contract for
both client endpoints to ProductsClient.ProductsService.IProductsService, as shown
in bold in the following.

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.serviceModel>

 <bindings>

 ...

 </bindings>

 <client>

 <endpoint address="http://localhost:8000/ProductsService/Service.svc"

 binding="basicHttpBinding"

 bindingConfiguration="BasicHttpBinding_IProductsService"

 contract="ProductsClient.ProductsService.IProductsService"

 name="BasicHttpBinding_IProductsService" />

 <endpoint address="net.tcp://localhost:8080/TcpService" binding="netTcpBinding"

 contract="ProductsClient.ProductsService.IProductsService"

 name="NetTcpBinding_IProductsService" />

 </client>

 </system.serviceModel>

</configuration>

This change is necessary as you generated the types for the proxy in the ProductsClient.
ProductsService namespace when you ran the svcutil utility.

Note  You could have copied the output.config file generated by the svcutil utility to the
ProductsClient project and renamed it as app.config rather than preserving and editing the
original app.config file. However, although the output.config file specifies the correct type
name for the contract attribute of the endpoint, it does include the address of the service,
so you would have had to edit the file and add this information. Additionally, the output.
config file only contains the definition of a single BasicHttpBinding endpoint, so you would
also have needed to add the definition of the NetTcpBinding endpoint. It was simpler to
modify the existing app.config file!

Download from Wow! eBook <www.wowebook.com>

108	 Windows Communication Foundation 4 Step by Step

Modify the WCF Client Application to Catch Strongly Typed Faults

	 1.	 In the ProductsClient project, open the Program.cs file in the Code And Text Editor
window.

	 2.	 Add the following catch handlers shown in bold after the try block in the Main method
(leave the existing FaultException handler in place as well):

static void Main(string[] args)

{

 ...

 try

 {

 ...

 }

 catch (FaultException<SystemFault> sf)

 {

 Console.WriteLine("SystemFault {0}: {1}\n{2}",

 sf.Detail.SystemOperation, sf.Detail.SystemMessage,

 sf.Detail.SystemReason);

 }

 catch (FaultException<DatabaseFault> dbf)

 {

 Console.WriteLine("DatabaseFault {0}: {1}\n{2}",

 dbf.Detail.DbOperation, dbf.Detail.DbMessage,

 dbf.Detail.DbReason);

 }

 catch (FaultException e)

 {

 Console.WriteLine("{0}: {1}", e.Code.Name, e.Reason);

 }

 ...

}

These two handlers catch the SystemFault and DatabaseFault faults. Notice that the
fields containing the exception information that are populated by the ProductsService
(SystemOperation, SystemMessage, SystemReason, DbOperation, DbMessage, and
DbReason) are located in the Detail field of the FaultException object.

Important  You must place these two exception handlers before the non-generic
FaultException handler. The non-generic handler would attempt to catch these exceptions
if it occurred first, and the compiler would not let you build the solution.

	 3.	 Build and run the solution without debugging.

	 4.	 When the Products Service Host window appears, click Start to run the service.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 3  Making Applications and Services Robust	 109

	 5.	 When the service has started, in the client application console window, press Enter.

The code in the ListProducts method in the ProductsService service still generates a
null reference exception. The service throws a FaultException, containing a SystemFault
object, which is serialized as a SOAP fault. The client application catches this fault and
displays the details.

	 6.	 Press Enter to close the client application. Stop the service and close the Products Ser-
vice Host window.

	 7.	 Edit the ProductsService.cs file in the ProductsServiceHost project. In the ListProducts
method, restore the statement that initializes the productsList variable back to its origi-
nal state and remove the code in the try block that calls the Clear method, as shown in
the following:

public List<string> ListProducts()

{

 // Create a list for holding product numbers

 List<string> productsList = new List<string>();

 try

 {

 // Connect to the AdventureWorks database by using the Entity Framework

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 // Fetch the product number of every product in the database

 var products = from product in database.Products

 select product.ProductNumber;

 productsList = products.ToList();

 }

 }

 catch (Exception e)

 {

 ...

 }

 ...

}

	 8.	 Edit the App.config file in the ProductsServiceHost project by using the Code And Text
Editor window, and change the Initial Catalog part of the connectionString attribute to
refer to the Junk database, as you did earlier:

<connectionStrings>

 <add ... connectionString="...;Initial Catalog=Junk;..." />

</connectionStrings>

	 9.	 Build and run the solution without debugging.

	 10.	 When the Products Service Host window appears, click Start to run the service.

Download from Wow! eBook <www.wowebook.com>

110	 Windows Communication Foundation 4 Step by Step

	 11.	 When the service has started, in the client application console window, press Enter.

The application configuration file for the service host application again refers to an
invalid database. This “mistake” causes the service to generate a SOAP fault containing
a DatabaseFault with details of the failure. The ProductsClient application catches this
exception in the FaultException<DatabaseFault> handler.

	 12.	 Press Enter to close the client application. Stop the service and close the Products Ser-
vice Host window.

	 13.	 Correct the Initial Catalog attribute in the app.config file for the ProductsServiceHost
project and set it back to refer to the AdventureWorks database, as follows:

<connectionStrings>

 <add ... connectionString="...;Initial Catalog=AdventureWorks;..." />

</connectionStrings>

	 14.	 Build and run the solution without debugging.

	 15.	 In the Products Service Host window, start the service. Press Enter in the client applica-
tion console window. Verify that the code now runs without any exceptions. Close the
client console window, stop the service, and close the Products Service Host window
when you have finished.

Reporting Unanticipated Exceptions
Specifying the possible exceptions that a service can throw when performing an operation
is an important part of the contract for a service. If you use strongly-typed exceptions, you
must specify every exception that an operation can throw in the service contract. If a service
throws a strongly-typed exception that is not specified in the service contract, the details
of the exception are not propagated to the client—the exception does not form part of the
WSDL description of the operation used to generate the client proxy. There will inevitably be
situations where it is difficult to anticipate the exceptions that an operation could throw. In
these cases, you should catch the exception in the service, and if you need to send it to the
client, raise an ordinary (non-generic) FaultException as you did in the first set of exercises in
this chapter.

While you are developing a WCF service, it can be useful to send information about all excep-
tions that occur in the service—anticipated or not—to the client application for debugging
purposes. You will see how you can achieve this in the next set of exercises.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 3  Making Applications and Services Robust	 111

Modify the WCF Service to Throw an Unanticipated Exception

	 1.	 In the ProductsServiceFault solution, in the ProductsServiceLibrary project, edit the
ProductsService.cs file.

	 2.	 Add the following statement (shown in bold) as the first line of code in the ListProducts
method in the IProductsImpl class:

public List<string> ListProducts()

{

 int i = 0, j = 0, k = i / j;

 ...

}

This statement will generate a DivideByZeroException. Note that the method does not
trap this exception, and it is not mentioned in the service contract.

	 3.	 Build and run the solution without debugging.

	 4.	 In the Products Service Host window, click Start. In the client application console win-
dow, press Enter to connect to the service and invoke the ListProducts operation.

The service throws the DivideByZero exception. However, the details of the exception are
not forwarded to the client application. Instead, the WCF runtime generates a very non-
descript SOAP fault that is caught by the DefaultException handler in the client:

This lack of detail is actually a security feature. If the service provided a complete
description of the exception to the client, then, depending on the information provided,
a malicious user could glean potentially useful information about the structure of the
service and its internal workings.

	 5.	 Close the client console window. Stop the service and close the Products Service Host
window.

In the next exercise you will configure the host server to provide detailed information about
unanticipated exceptions.

Download from Wow! eBook <www.wowebook.com>

112	 Windows Communication Foundation 4 Step by Step

Configure the WCF Service to Send Details of Exceptions

	 1.	 In the ProductsServiceHost project, edit the App.config file by using the Code And Text
Editor window.

	 2.	 In the <serviceBehaviors> section, edit the <serviceDebug> element in the <behavior>
section and set the includeExceptionDetailInFaults attribute to true:

<?xml version="1.0"?>

<configuration>

 ...

 <system.serviceModel>

 ...

 <behaviors>

 <serviceBehaviors>

 <behavior>

 <!-- To avoid disclosing metadata information, set the value below to

 false and remove the metadata endpoint above before deployment -->

 <serviceMetadata httpGetEnabled="false"/>

 <!-- To receive exception details in faults for debugging purposes, set

 the value below to true. Set to false before deployment to avoid

 disclosing exception information -->

 <serviceDebug includeExceptionDetailInFaults="true"/>

 </behavior>

 </serviceBehaviors>

 </behaviors>

 ...

 </system.serviceModel>

</configuration>

Setting the includeExceptionDetailInFaults attribute to true causes WCF to transmit the
full details of exceptions when it generates SOAP faults for unanticipated errors.

	 3.	 Build and run the solution with debugging.

	 4.	 In the Products Service Host window, click Start. In the client application console win-
dow, press Enter.

The service throws the DivideByZero exception. This time, the client is sent specific infor-
mation about the exception and reports it:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 3  Making Applications and Services Robust	 113

	 5.	 Close the client console window. Stop the service and close the Products Service Host
window.

	 6.	 In the ProductsServiceLibrary project, edit the ProductsService.cs file.

	 7.	 In the ListProducts method, comment out the line of code that causes the DivideBy
ZeroException exception.

	 8.	 In the App.config file for the ProductsServiceHost project, set the includeException
DetailInFaults attribute of the <serviceDebug> element to false.

	 9.	 Build and run the solution without debugging.

	 10.	 In the Products Service Host window, start the service. Press Enter in the client applica-
tion console window. Verify that the code runs without any exceptions. Close the client
console window and the Products Service Host window when you have finished.

The previous exercise used the application configuration file to specify the serviceDebug
behavior for the service. You can perform the same task by using the ServiceBehavior attribute
of the class that implements the service, like this:

[ServiceBehavior(IncludeExceptionDetailInFaults=true)]

public class ProductsServiceImpl : IProductsService

{

 ...

}

However, it is recommended that you enable this behavior only by using the application con-
figuration file. There are a couple of good reasons for this:

■■ You can turn the behavior on and off in the configuration file without rebuilding the
application. You should not deploy an application to a production environment with this
behavior enabled, and it is very easy to forget that you have enabled this behavior if
you use the ServiceBehavior attribute in code.

■■ If you enable this behavior in code, you cannot disable it by altering the application
configuration file. Rather more confusingly, if you disable this behavior in code, you can
enable it in the application configuration file. The general rule is that if the Include
ExceptionDetailInFaults behavior is enabled either in code or in the application configu-
ration file, it will work. It must be disabled in both places to turn it off. Keep life simple
by only specifying this behavior in one place—the application configuration file.

Download from Wow! eBook <www.wowebook.com>

114	 Windows Communication Foundation 4 Step by Step

Managing Exceptions in Service Host Applications
In Chapter 2, you saw how to create a host application for a WCF service and use this applica-
tion to control the lifecycle of the service. A service host application uses a ServiceHost object
to instantiate and manage a WCF service. The ServiceHost class implements a finite-state
machine. A ServiceHost object can be in one of a small number of states, and there are well-
defined rules that determine how the WCF runtime transitions a ServiceHost object from one
state to another. Some of these transitions occur as the result of specific method calls, while
others are caused by exceptions in the service, in the communications infrastructure, or in
the objects implementing the channel stack. A service host application should be prepared to
handle these transitions and attempt recovery to ensure that the service is available whenever
possible.

ServiceHost States and Transitions
When you instantiate a ServiceHost object, it starts in the Created state. In this state, you can
configure the object; for example, you can use the AddServiceEndpoint method to cause the
ServiceHost object to listen for requests on a particular endpoint. A ServiceHost object in this
state is not ready to accept requests from client applications.

You start a ServiceHost object listening for requests by using the Open method (or the Begin
Open method if you are using the asynchronous programming model). The ServiceHost object
moves to the Opening state while it creates the channel stacks specified by the bindings for
each endpoint and starts the service. If an exception occurs at this point, the object transitions
to the Faulted state. If the ServiceHost object successfully opens the communication channels
for the service, it moves to the Opened state. Only in this state can the object accept requests
from client applications and direct them to the service.

You stop a ServiceHost object from listening for client requests by using the Close (or Begin-
Close) method. The ServiceHost object enters the Closing state. Currently running requests
are allowed to complete, but clients can no longer send new requests to the service. When
all outstanding requests have finished, the ServiceHost object moves to the Closed state. You
can also stop a service by using the Abort method. This method closes the service immedi-
ately without waiting for the service to finish processing client requests. Stopping or aborting
the service disposes the service object hosted by the ServiceHost object and reclaims any
resources it was using. To start the service, you must recreate the ServiceHost object with a
new instance of the service and then execute the Open method to reconstruct the channel
stacks and start listening for requests again.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 3  Making Applications and Services Robust	 115

A ServiceHost object enters the Faulted state either when it fails to open correctly or if it
detects an unrecoverable error in a channel used by the ServiceHost object to communicate
with clients (for example, if some sort of protocol error occurs). When a ServiceHost object
is in the Faulted state, you can examine the properties of the object to try and ascertain the
cause of the failure, but you cannot send requests to the service. To recover the service, you
should use the Abort method to close the service, recreate the ServiceHost object, and then
execute the Open method again. Figure 3-1 summarizes the state transitions for a ServiceHost
object along with the methods and conditions that cause the object to move between states.

Tip  You can determine the current state of a ServiceHost object by examining the value of the
State property.

Created
new()

Open()
BeginOpen()

Close()
Abort()
BeginClose()

Error
detected

EndOpen() EndClose()
Abort()

new()

Opening

Opened

Faulted Closed

Closing

Figure 3-1  State transition diagram for the ServiceHost class.

Handling Faults in a Host Application
When a ServiceHost object moves from one state to another, it can trigger an event. These
events were described in Table 2-2 in Chapter 2. From an error-handling perspective, the
most important of these is the Faulted event, which occurs when a ServiceHost object enters
the Faulted state. You should subscribe to this event, and provide a method that attempts to
determine the cause, and then abort and restart the service, like this:

Download from Wow! eBook <www.wowebook.com>

116	 Windows Communication Foundation 4 Step by Step

// ServiceHost object for hosting a WCF service

ServiceHost productsServiceHost;

productsServiceHost = new ServiceHost(...);

...

// Subscribe to the Faulted event of the productsServiceHost object

productsServiceHost.Faulted += (eventSender, eventArgs) =>

 {

 // FaultHandler method

 // Runs when productsServiceHost enters the Faulted state

 // Examine the properties of the productsServiceHost object

 // and log the reasons for the fault

 ...

 // Abort the service

 productsServiceHost.Abort();

 // Recreate the ServiceHost object

 productsServiceHost = new ServiceHost(...);

 // Start the service

 productsServiceHost.Open();

 };

...

Note  You can use the Close method rather than Abort in the fault handler, but a service in the
faulted state will not be able to continue processing current requests or receive new ones. Using
the Abort method to close the service can reduce the time required in the FaultHandler method to
restart the service.

Handling Unexpected Messages in a Host Application
One other exceptional circumstance that can arise in a host application is an unexpected
message from a client. Client applications built by using the WCF library typically communi-
cate with the service by using a proxy object, generated by using the svcutil utility. The proxy
object provides a strongly-typed interface to the service that specifies the operations the cli-
ent can request (and therefore the messages that the client sends). It is unlikely that a WCF
client using a correctly generated proxy object will send an unexpected message. However,
remember that a WCF service is simply a service that accepts SOAP messages, and developers
building client applications can use whatever means they see fit for sending these messages.
Developers building Java client applications will typically use Java-specific tools and libraries
for constructing and sending SOAP messages. WCF also provides a low-level mechanism that
allows developers to open a channel to a service, create SOAP messages, and then send them
to the service, as shown in this fragment of code:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 3  Making Applications and Services Robust	 117

// Create a binding and endpoint to communicate with the ProductsService

BasicHttpBinding binding = new BasicHttpBinding();

EndpointAddress address = new EndpointAddress(

 "http://localhost:8000/ProductsService/Service.svc");

ChannelFactory<IRequestChannel> factory = new

 ChannelFactory<IRequestChannel>(binding, address);

// Connect to the ProductsService service

IRequestChannel channel = factory.CreateChannel();

channel.Open();

// Send a ListProducts request to the service

Message request = Message.CreateMessage(MessageVersion.Soap11,

 "http://tempuri.org/IProductsService/ListProducts");

Message reply = channel.Request(request);

// Process the reply

// (should be a SOAP message with a list of product numbers)

...

// Release resources and close the connection

reply.Close();

channel.Close();

factory.Close();

Don’t worry too much about the details of this block of code—you will learn more about
using Message and Channel objects in Chapter 11, “Programmatically Controlling the Con-
figuration and Communications.” The key statement is the line that creates the message sent
to the ProductsService service:

Message request = Message.CreateMessage(MessageVersion.Soap11,

 "http://tempuri.org/IProductsService/ListProducts");

The second parameter to the CreateMessage method specifies the action that identifies the
message sent to the service. If you recall the earlier discussion in this chapter describing the use
of the svcutil utility to generate the client proxy, one of the files generated contained the WSDL
description of the service. The WSDL description includes the definitions of each of the opera-
tions exposed by the service and the messages that an application sends to invoke these
operations. Here is part of the WSDL describing the ListProducts operation:

<wsdl:operation name="ListProducts">

 <wsdl:input wsaw:Action="http://tempuri.org/IProductsService/ListProducts"

message="tns:IProductsService_ListProducts_InputMessage" />

 ...

</wsdl:operation>

Download from Wow! eBook <www.wowebook.com>

118	 Windows Communication Foundation 4 Step by Step

When the service receives a message identified by the action http://tempuri.org/IProducts
Service/ListProducts, it performs the ListProducts operation. If a client application sends a
message specifying an action that the service does not recognize, the service host applica-
tion raises the UnknownMessageReceived event. The host application can catch this event and
record the unrecognized message, like this:

// ServiceHost object for hosting a WCF service

ServiceHost productsServiceHost;

productsServiceHost = new ServiceHost(...);

...

// Subscribe to the UnknownMessageReceived event of the

// productsServiceHost object

productsServiceHost.UnknownMessageReceived += (eventSender, eventArgs) =>

 {

 // UnknownMessageReceived event handler

 // Log the unknown message

 ...

 // Display a message to the administrator

 MessageBox.Show(string.Format(

 "A client attempted to send the message: {0} ",

 eventArgs.Message.Headers.Action));

 };

...

There could be a perfectly innocent explanation for a client sending a message such as this, or
it could be part of a more concerted attack by a malicious user trying to probe a service and
gather information about the operations it supports.

Important  The default value for the httpGetEnabled property of the serviceMetadata behavior
is false, so unless you explicitly set it to true, WCF services do not publish their metadata. It is also
worth noting that if you create a WCF service by using Visual Studio, the WCF Service template
sets httpGetEnabled to true. Unless you explicitly need client applications to be able to access the
metadata of a service, you should make sure that you reset this property to false when you deploy
the service to a production environment.

One other possibility is that a WCF client application is using an out-of-date proxy object
for sending messages to the service. If a developer modifies the service contract for a WCF
service, she might change the messages that the service sends and receives. If any client
applications that use the service are not updated, they might send messages that the service
no longer understands. Therefore, if you update a service, you should ensure that you retain
backward compatibility with existing clients. The same issues can arise with data contracts.
You will learn more about how to update data contracts for a WCF service safely in Chapter 6,
“Maintaining Service Contracts and Data Contracts.”

Download from Wow! eBook <www.wowebook.com>

	 Chapter 3  Making Applications and Services Robust	 119

Summary
In this chapter, you have seen how to use the FaultException class to send information about
exceptions back to client applications as SOAP faults. You have seen how to use the Fault
Contract attribute to specify the faults that a service can send and how to catch these faults
in a client application. You have also seen how to propagate information about unanticipated
exceptions from a service to a client for debugging purposes. You should understand how
to make a service host application robust by tracking the states of a service, recovering from
faults, and handling unexpected messages sent by client applications.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

121

Chapter 4

Protecting an Enterprise WCF Service
After completing this chapter, you will be able to:

■■ Describe the different aspects of security that you should consider when implementing a
WCF service.

■■ Explain how to provide privacy and integrity of messages at the message level and at the
transport level when communicating between a client application and a WCF service.

■■ Explain how to configure a WCF service to authenticate users when running in a Windows
environment and how a client application can provide a user’s credentials to a WCF service
for authentication.

■■ Describe how to define and use roles to authorize access to operations in a WCF service.

■■ Summarize how a WCF service can use impersonation to provide fine-grained access control
over resources to authorized users.

Security is a fundamentally important aspect of any system, especially when a system com-
prises distributed applications and services. Security is also a very broad topic. For this reason,
you are going to consider how to implement security in several different scenarios, spread
across three chapters. This chapter concentrates on managing security within a single orga-
nization. In this environment, there is usually an inherent degree of trust between the com-
puters running client applications and those hosting services. Users running applications are
frequently members of the same, well-defined security domain. Services have access to the
information in this security domain and can use it to authenticate users directly. In Chapter 5,
“Protecting a WCF Service over the Internet,” you will look at how to enforce security when
client applications and services run in different security domains separated by an insecure
network, where it is neither possible nor desirable to authenticate users directly. In Chapter 17,
“Managing Identity with Windows CardSpace,” you will see how to implement an identity
meta-system to help authenticate users in a federated environment.

What Is Security?
Security is concerned with protecting users running client applications, services, and the
messages that pass between them. Security encompasses a range of issues. The most
common and familiar aspects of security include authentication—proof of identity—and

Download from Wow! eBook <www.wowebook.com>

122	 Windows Communication Foundation 4 Step by Step

authorization—access to resources based on identity. However, in a distributed environment,
security has many other facets. These include:

■■ Maintaining confidentiality of communications between a client application and a
service.  It is possible for applications to eavesdrop on the data being transmitted
across the network. For example, take a look at the number of software and hardware
network analyzers available—many administrators use them for tracking connectivity
and bandwidth problems in a network, but an unscrupulous user could also track the
packets passing over the network for malicious purposes. The information in these pack-
ets could include private financial data or confidential personal information that should
not be common knowledge, even to other members of the same organization. Typically,
you achieve confidentiality by encrypting messages.

■■ Preventing tampering or corruption of messages.  In an environment where message
confidentiality is assured, it is still possible for a malicious user to intercept messages
and corrupt them before sending them to their final destination. You can use techniques
such as message hashing to generate a digital signature for the message, which a ser-
vice can use to help detect corrupt or modified messages.

■■ Ensuring verifiable delivery of messages.  Even if a malicious user cannot decipher inter-
cepted messages, the possibility of interception means that messages could either be
diverted and not delivered at all or delivered repeatedly (known as a “replay attack”).
Several schemes are available that can help detect replay attacks, including using a time
stamp within a message (if the timestamp is outside reasonable limits when the service
receives the message, it can discard the message) and assigning unique identifiers to
messages (if the service receives two messages with the same identifier, it knows that
there is a problem). Similarly, using a reliable message protocol can help to ensure that
messages are either delivered to the destination within a reasonable time or that the
sender will be alerted if they are not. You will learn more about reliable messaging in
Chapter 10, “Implementing Reliable Sessions.”

■■ Preventing impersonation of services.  Although not so common inside an enterprise
as it is when using the Internet, it is possible for one service to impersonate another to
obtain confidential data from a user. This phenomenon is sometimes known as “spoof-
ing.” The user running the client application believes they are communicating with the
real service but are actually sending their details and other information to an entirely
different service that happens to respond in a similar manner. This means that it can
be as important for a client application to authenticate the service and verify that it is
genuine as it is for a service to authenticate the user running the client application. in
Chapter 5, you will look at how you can implement this form of two-way authentication
by using certificates.

It is worth remembering that there is no such thing as absolute security. Hackers and fraud-
sters can invariably devise new and interesting ways to intercept, compromise, or otherwise

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 123

disrupt the message flow. The important point is to be aware of the threats and have a plan
for introducing countermeasures that can reduce their effects. Fortunately, WCF provides a
highly extensible model that can adapt and evolve to meet many current security issues and
(hopefully) counter new threats as they appear. The WCF implementation of security is also
relatively unobtrusive. Through careful design and configuration, you can separate many of
the security-related aspects of a client application and service from the business logic aspects,
letting you modify or extend the security of your system without the need to rewrite large
chunks of code.

Authentication and Authorization in a Windows Environment
To authenticate a user, a service must provide a means for a user to identify herself and then
prove that identity. Many organizations maintain a single database of users and their means
of identification. In a Windows environment, this typically means using Active Directory. In
a single organization, it is not unreasonable to expect that all services and client applica-
tions have access to the same Active Directory database, so this database defines the security
domain for the system. A service can be configured to use information held in the Active
Directory database to authenticate users. When the user runs an application that accesses the
service, the application can prompt the user for her user name and password and transmit this
information to the service. The service can query Active Directory to verify that the user name
is valid and the password is correct.

Note  Many of the discussions in this chapter that refer to Active Directory also apply to Win-
dows computers that are not actually part of a domain but that maintain their own local users and
groups database. The exercises in this chapter have been tested on a stand-alone computer run-
ning Microsoft Windows 7.

In a Windows domain, a service can also identify users using the Kerberos protocol; a WCF client
application can verify the identity of a service by using the same protocol. However, Kerberos is
available only if you have access to a Windows Server domain controller. This chapter does not
describe how to configure a WCF service and client application to perform Kerberos authenti-
cation. For a brief summary of how Kerberos authentication works, see the “How the Kerberos
Version 5 Authentication Protocol Works” page at http://technet.microsoft.com/en-us/library/
cc772815(WS.10).aspx. The article was originally written for Windows Server 2003, but it still
applies to Windows Server 2008 and Windows 7.

This approach works regardless of where the user is actually running the client application; for
example, it could be executing on a computer in the user’s bedroom, connecting to the ser-
vice across an Intranet link. However, a user located in the office might already have logged
on to an organization’s security domain, so prompting them for a user name and password
again becomes cumbersome. Why should they need to keep on logging on? Fortunately, the
Windows operating system provides support for this very common scenario. After a user suc-
cessfully logs on to a security domain, Windows caches the details of the user’s credentials in

Download from Wow! eBook <www.wowebook.com>

124	 Windows Communication Foundation 4 Step by Step

the user’s logon process. When the user runs an application that requires authentication by a
service, Windows can provide those details to the application, which can then forward them
to the service. This mechanism is known as Windows Integrated Security.

Note  In a very large organization, the security domain might span several Active Directory data-
bases that are managed independently by administrators in different parts of the organization. It
is possible to configure trust relationships between these separate domains, effectively presenting
them as a single security domain.

After a service has verified the identity of the user running the client application, it must then
determine whether the user has the appropriate authority to invoke the specified operations.
Typically, administrators assign users to roles, and the service developer can indicate which
roles are allowed to access which operations. WCF can use .NET Framework declarative secu-
rity to associate roles with operations and use a role provider to determine the roles to which
a user belongs. The .NET Framework provides three role providers that you can use for storing
role information:

■■ Windows Token Role Provider, which uses roles based on Active Directory groups.

■■ ASP.NET Role Provider, which uses roles stored in a SQL Server database.

■■ Authorization Store Role Provider, which uses roles defined by using the Microsoft
Authorization Manager tool. This tool lets you store role information in either Active
Directory or XML files.

More Info  For detailed information on using Microsoft Authorization Manager to define and
implement roles, see the “Authorization Manager” page at http://technet.microsoft.com/en-us/
library/cc732077(WS.10).aspx.

In this chapter, you will use the Windows Token Role Provider. This provider is ideal for use
inside an enterprise that uses Windows Integrated Security for authentication. In Chapter 5,
you will see how to use the ASP.NET Role Provider, which is better suited to Internet-based
services.

Transport-Level and Message-Level Security
User identity information must be transported from a client application to a service. This
information is sensitive, so it must be transmitted in as secure a manner as possible, which
typically means encrypting these details. After a user has been authenticated, the contents of
messages passing between the client application and service might also require some form
of encryption, depending on the sensitivity of the information in these messages. There are
many ways that client applications and services can achieve this goal, but the important point

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 125

is that the client applications and the service must agree on the encryption mechanism that
they use, and each must be able to decrypt messages sent by the other. Various standard-
ization efforts have led to the use of public/private key cryptography to make the transfer
secure.

More Info  For a good introduction to public key cryptography, visit the “Understanding Public
Key Cryptography” page at http://technet.microsoft.com/en-us/library/aa998077(EXCHG.65).aspx.
This page relates to Windows Exchange Server 2003, but the mechanism and principles apply to
any system that implements public keys to protect messages and data.

When building Web services, you can perform authentication and encryption at two points
when sending and receiving messages: at the transport level and at the message level.

Transport-Level Security
Transport-level authentication is typically implemented at the operating system level before
the application or service receiving the message even knows that there is a message to
receive. A service can specify the type of credentials it requires, but it is the operating system’s
responsibility to ensure that the correct credentials are provided and to validate them.

Many communications protocols can encrypt and decrypt data as it is sent and received.
The most common example of such a protocol is HTTPS, which uses a technology called the
Secure Sockets Layer (SSL) to encrypt and decrypt data by using keys provided in certificates.
When a client application connects to a service using the HTTPS protocol, the underlying trans-
port infrastructure for the client application and service negotiate the degree of encryption to
perform. They then exchange a certificate containing keys that each can use to encrypt and
decrypt messages. Because all this happens at the transport level, it is transparent to the client
application and service; all they have to do is specify that they will communicate using the
HTTPS protocol. However, an administrator must install and configure the appropriate certifi-
cates for the service host application.

More Info  In this chapter, you will configure HTTPS for use with a self-hosted WCF service. If
you are hosting a WCF service in IIS, the configuration process is a little different. You will learn
more about configuring HTTPS with IIS in Chapter 5.

Not surprisingly, you can also use transport-level security with the TCP protocol; the Windows
operating system implements Transport Layer Security (TLS) over TCP. TLS is a successor to SSL
and provides similar functionality. However, unlike using SSL with the HTTP bindings, the TCP
bindings in WCF make use of TLS automatically.

Named pipes also support transport-level security but not message-level security.

Download from Wow! eBook <www.wowebook.com>

126	 Windows Communication Foundation 4 Step by Step

Message-Level Security
Authentication at the message level is the responsibility of the service. The user credentials
are included in messages sent to the service, and the service must verify that they are valid.
Additionally, message-level privacy and integrity is also the responsibility of the client applica-
tion and service—they encrypt and decrypt messages themselves using an agreed encryp-
tion algorithm and a negotiated set of encryption keys. Standards such as the WS-Security
specification from OASIS describe the message-level security schemes that many Web services
implementations have adopted. By following the WS-Security recommendations you can help
to ensure the interoperability of your client applications and services with those developed by
using technologies other than WCF.

Transport-level security has the advantage over message-level security in that it can often rely
on hardware support and can be very efficient—encrypting and decrypting data can be a
resource-intensive process, so anything that improves performance is very welcome. Addition-
ally, transport-level authentication checks are enforced before the client application actually
starts sending application-level messages, so performing authentication at this level detects
authentication failures more quickly and with less network overhead.

The primary disadvantage of transport-level security is that it operates on a point-to-point
basis; by the time the service receives a message, it has already been decrypted by the under-
lying transport mechanism. In a situation where a service should simply forward a message
on to another service rather than process it, the intermediate service has full access to the
message contents, meaning that the service could modify the message or extract confidential
information before forwarding it. Using message-level encryption can help to mitigate this
problem.

Message-level security provides end-to-end encryption. A client application and the service
acting as the final destination can agree on an encryption key and an encryption algorithm to
use for messages. When a message arrives at the intermediate service, it is still encrypted. If
the intermediate service does not have access to the encryption key or it has no knowledge of
the selected encryption algorithm, it cannot easily decrypt the message.

Implementing message-level security sounds like it could add quite a lot of work to the devel-
opment effort required for building a service. However, WCF greatly simplifies matters and
reduces the development effort required by incorporating much of the code required as part
of the standard bindings that you can specify when configuring an endpoint for a service. All
you need to do is set the properties of your selected binding appropriately (you will see sev-
eral examples throughout this chapter).

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 127

Implementing Security in a Windows Domain
In the following exercises, you will see how to use transport-level and message-level security
in some common scenarios that can arise within a single organization. Because it is easier
to demonstrate and explain the concepts in this sequence, you will start by learning how to
implement message confidentiality by encrypting messages. You will then see how to authen-
ticate users running in a Windows environment, and finally, how to use the Windows Token
Role provider to authorize access to operations.

Protecting a TCP Service at the Message Level
The NetTcpBinding binding automatically encrypts data at the transport level by using Trans-
port Layer Security (TLS) over TCP. The NetTcpBinding binding also supports encryption at the
message level, giving you a greater degree of control over the encryption algorithm used. You
will use message-level security to implement message encryption in the first exercise.

Enable Message-Level Encryption for the NetTcpBinding Binding for the WCF Service

	 1.	 Using Visual Studio, open the solution file ProductsService.sln located in the Microsoft
Press\WCF Step By Step\Chapter 4\ProductsService folder (within your Documents
folder).

This solution contains three projects: the ProductsService service, the ProductsServiceHost
application, and the ProductsClient. These projects are configured to catch and handle
SOAP faults, as described in Chapter 3, “Making Applications and Services Robust.”

	 2.	 Expand the ProductsServiceHost project in Solution Explorer, right-click the App.config
file, and then select Edit WCF Configuration from the context menu to open the con-
figuration file in the Service Configuration Editor.

Tip  If the Edit WCF Configuration command does not appear, from the Visual Studio Tools
menu, select WCF Service Configuration Editor, and then immediately close the Service
Configuration Editor window. The Edit WCF Configuration command should now appear.

	 3.	 In the Service Configuration Editor, in the Configuration pane, right-click the Bindings
folder, and then click New Binding Configuration.

	 4.	 In the Create A New Binding dialog box, select the netTcpBinding binding type, and then
click OK.

The WCF Service Configuration Editor generates a binding configuration with the
default settings for the NetTcpBinding binding.

	 5.	 In the right pane of the Service Configuration Editor, change the Name property of the
binding to ProductsServiceTcpBindingConfig.

Download from Wow! eBook <www.wowebook.com>

128	 Windows Communication Foundation 4 Step by Step

Note  This name does not conform to the pattern used for binding names generated by
the Add Service Reference utility. This is because the Add Service Utility tends to generate
bindings with the same names as endpoints. While this is perfectly legal, it can be confusing
to an administrator for maintaining the configurations of a large number of services, end-
points, and bindings.

	 6.	 In the right pane, click the Security tab.

	 7.	 Change the Mode property to Message. Change the AlgorithmSuite property to
Basic128. Leave the MessageClientCredentialType property set to Windows.

These settings cause the binding to use message-level security. Users will be expected to
provide a valid Windows user name and password, and all messages will be encrypted
by using the Advanced Encryption Standard (AES) 128-bit algorithm. This is a widely
used algorithm that performs relatively quickly, but should provide sufficient privacy for
messages inside an organization. However, if you are sending messages across a public
wide area network such as the Internet, you might prefer to use Basic256, which is the
default algorithm.

Note  If you set the Mode property to None, the binding will not encrypt data and any
settings you specify for transport-level or message-level security will be ignored. The Trans-
port mode selects transport-level security (SSL) rather than message-level security, and the
TransportWithMessageCredential mode implements message-level security to provide the
identity of the user for authorization purposes, while performing encryption at the transport
level. Transport-level encryption is usually more efficient than message-level encryption,
although it requires more configuration on the part of the administrator, as you will see later
in this chapter.

	 8.	 In the Configuration pane of the Service Configuration Editor, expand the Products.
ProductsServiceImpl service in the Services folder, expand the Endpoints folder, and then
click the NetTcpBinding_IProductsService endpoint.

	 9.	 In the Service Endpoint pane, set the BindingConfiguration property to ProductsService
TcpBindingConfig.

This action associates the binding configuration with the binding. All messages sent by
using the ProductsServiceTcpBinding binding will use message-level security and will be
encrypted.

	 10.	 Save the configuration, and then exit the Service Configuration Editor.

	 11.	 In Visual Studio, open the file App.config in the ProductsServiceHost project. In the
<system.serviceModel> section, you should see the new binding configuration and the
reference to this configuration in the ProductsServiceTcpBinding endpoint, as follows:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 129

...

<system.serviceModel>

 <bindings>

 <netTcpBinding>

 <binding name="ProductsServiceTcpBindingConfig">

 <security mode="Message">

 <message algorithmSuite="Basic128" />

 </security>

 </binding>

 </netTcpBinding>

 </bindings>

 <services>

 <service behaviorConfiguration="ProductsBehavior"

 name="Products.ProductsServiceImpl">

 <endpoint address="net.tcp://localhost:8080/TcpService" binding="netTcpBinding"

 bindingConfiguration="ProductsServiceTcpBindingConfig"

 name="NetTcpBinding_IProductsService" contract="Products.IProductsService" />

 ...

 </service>

 </services>

 …

</system.serviceModel>

Be careful not to change anything in this file. Close the App.config file when you have
finished examining it.

The service will expect clients that connect to the endpoint for this binding to use the same
message-level security settings. You will configure the client next.

Enable Message-Level Encryption for the NetTcpBinding Binding in the WCF Client

	 1.	 In the ProductsClient project, edit the app.config file by using the Service Configuration
Editor.

	 2.	 In the Service Configuration Editor, right-click the Bindings folder, and then click New
Binding Configuration.

Note  The client configuration file already contains a binding configuration for the
basicHttpBinding binding that was generated in Chapter 1, “Introducing Windows Commu-
nication Foundation.” Be careful not to modify this binding configuration by mistake!

	 3.	 In the Create A New Binding dialog box, select the netTcpBinding binding type, and then
click OK.

	 4.	 In the right pane of the Service Configuration Editor, change the Name property of the
binding to ProductsClientTcpBindingConfig.

	 5.	 Click the Security tab.

Download from Wow! eBook <www.wowebook.com>

130	 Windows Communication Foundation 4 Step by Step

	 6.	 Change the Mode property to Message. Change the AlgorithmSuite property to
Basic128. Leave the MessageClientCredentialType property set to Windows.

Note  If you select a different algorithm suite for the client and server, they will not be
able to decipher each other’s communications. This will result in a runtime exception in the
channel stack. If you are curious about this, try setting the AlgorithmSuite to TripleDes (for
example) and examine the MessageSecurityException exception that occurs when you run
the solution later.

	 7.	 In the Configuration pane, click the NetTcpBinding_IProductsService node in the End-
points folder, under the Client folder.

	 8.	 In the right pane, set the BindingConfiguration property to ProductsClientTcpBinding
Config.

	 9.	 Save the configuration, and then exit the Service Configuration Editor.

If you examine the app.config file for the ProductsClient project, you will see that a
binding configuration has been added to the <bindings> section. This configuration
should be the same as that for the ProductsServiceHost project.

	 10.	 Edit the Program.cs file for the ProductsClient project in the Code And Text Editor win-
dow. In the Main method, change the statement that creates the proxy to connect to
the service by using the NetTcpBinding_IProductsService endpoint, as shown in bold in
the following:

static void Main(string[] args)

{

 Console.WriteLine("Press ENTER when the service has started");

 Console.ReadLine();

 // Create a proxy object and connect to the service

 ProductsServiceClient proxy = new

 ProductsServiceClient("NetTcpBinding_IProductsService");

 // Test the operations in the service

 ...

}

	 11.	 Start the solution without debugging.

	 12.	 In the Products Service Host window, click Start. If a Windows Security Alert dialog box
appears, click Allow Access to allow the service to access the TCP port.

	 13.	 In the client console window, press Enter. Verify that the client application runs exactly
as before.

	 14.	 Press Enter to close the client console window. Stop the service and close the Products
Service Host window.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 131

This exercise has shown you how easy it is to configure a WCF service and client application to
secure messages by performing encryption, but how do you actually know that the messages
have been encrypted? To answer this question, you can enable message tracing, and then
examine the messages as they flow in and out of the service.

Configure Message Tracing for the WCF Service

	 1.	 In Visual Studio, edit the App.config file for the ProductsServiceHost project by using
the Service Configuration Editor.

	 2.	 In the Configuration pane, expand the Diagnostics folder, and then click Message
Logging.

	 3.	 In the Message Logging pane displaying the message logging settings, set the following
properties to True:

❏❏ LogEntireMessage

❏❏ LogMessagesAtServiceLevel

❏❏ LogMessagesAtTransportLevel

The LogEntireMessage property specifies whether the trace output should include the
body of messages sent and received. Setting this property to True includes the body
of the message. The default value, False, only traces the message header. Setting the
LogMessagesAtServiceLevel property to True traces messages as they are presented to
the service and as they are output from the service. If you are using message-level secu-
rity, this trace will show the unencrypted messages after they have been received and
decrypted at the message level (for incoming messages) or before they are encrypted
(for outgoing messages). Setting the LogMessagesAtTransportLevel property to True
traces messages as they are sent to or received from the transport level. If you are using
message-level security, the messages traced at this point will be encrypted; although if
you are using transport-level security, messages will already have been decrypted (for
incoming messages) or not yet encrypted (for outgoing messages) at this point.

Important  Tracing at the message level records messages in their unencrypted form.
These messages could contain sensitive information. You should ensure that you protect the
trace files that are generated and only let authorized users examine this data.

	 4.	 In the left pane, under the Diagnostics folder, right-click the Sources folder, and then
click New Source.

All tracing information for WCF is received from one or more trace sources. In this case,
you will use the MessageLogging source provided with WCF, which traces messages.
You can also use other sources. For example, the ServiceModel source traces events that
occur in a service, such as tracking when a service starts listening, receives requests, and

Download from Wow! eBook <www.wowebook.com>

132	 Windows Communication Foundation 4 Step by Step

sends responses. You can even implement your own custom trace sources, although the
details of how to do this are outside the scope of this book.

	 5.	 In the Trace Source pane, set the Name property to System.ServiceModel.Message
Logging. Set the Trace level property to Verbose.

	 6.	 In the Configuration pane, under the Diagnostics folder, right-click the Listeners folder,
and then click New Listener.

A listener object is responsible for receiving data from the trace sources, formatting and
filtering them, and then sending them to a destination.

	 7.	 In the Trace Listener pane, perform the following tasks:

❏❏ In the Name property, type MessageLog.

❏❏ In the InitData property, click the ellipses button. In the Save Log As dialog box,
move to the Microsoft Press\WCF Step By Step\Chapter 4 folder. within your Doc-
uments folder. In the File name box, type ProductsService.svclog, and then click
Save.

❏❏ The InitData property specifies the name of the file that the listener will use for
saving trace data. When tracing starts, if this file does not exist, the listener will
create it; otherwise, it will append trace information to the end of any existing
data in the file.

❏❏ In the TraceOutputOptions property, click the drop-down arrow, and then clear all
items in the list. The trace output options are useful if you are tracing messages
for multiple client applications and you need to be able to correlate the different
request and response messages. In this example, you will be running a single client
application, so this additional information is not really necessary.

❏❏ Verify that the TypeName property is set to System.Diagnostics.XmlWriterTrace
Listener. The listener can output data in several formats. However, you will be
using another tool called the Service Trace Viewer to examine the trace output,
and this tool expects the data to be in XML format.

❏❏ Click Add at the bottom of the Trace Listener pane. In the Add Tracing Source
dialog box, select the System.ServiceModel.MessageLogging source, and then
click OK.

	 8.	 Save the configuration, and then exit the Service Configuration Editor.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 133

Run the WCF Client and Service to Examine the Trace Output

	 1.	 Start the solution without debugging.

	 2.	 In the Products Service Host window, click Start.

	 3.	 In the client console window, press Enter. Verify that the client application still runs
correctly.

	 4.	 Press Enter to close the client console window. Stop the service and close the Products
Service Host window.

	 5.	 On the Windows Start menu, click All Programs, click Microsoft Visual Studio 2010, click
Microsoft Windows SDK Tools, and then click Service Trace Viewer.

	 6.	 In the Service Trace Viewer window, on the File menu, click Add.

	 7.	 In the Open dialog box, move to the Microsoft Press\WCF Step By Step\Chapter 4\
ProductsService folder within your Documents folder, select the file ProductsService.
svclog, and then click Open.

	 8.	 In the Service Trace Viewer window, in the left pane, click the Message tab. You will see
a list of messages sent and received by the service, identified by their Action values.

Tip  Expand the left pane and then expand the Action column in this pane to see more of
the name for each action.

At the top of this list are a number of messages in the http://schemas.xmlsoap.org/
ws/2005/02/trust namespace. These messages are concerned with sending and verify-
ing the user’s identity and negotiating the encryption mechanism and encryption keys
that the client application and WCF service will use for sending and receiving messages.
These messages are followed by the application messages received and sent by the WCF
service, identified by the http://tempuri.org namespace.

	 9.	 Click the first message with the action http://tempuri.org/IProductsService/ListProducts.
Note that each action occurs twice. This is because you traced each message twice: once
at the message level and once at the transport level.

	 10.	 In the lower-right pane, click the Message tab. The window will display the entire SOAP
message. This is the version of the message passed from the transport level to the mes-
sage level. The message has a rather lengthy SOAP header, which you can examine at
your leisure. The interesting part is the SOAP body at the end of the message. This is the
encrypted ListProducts request received from the client application. The <e:CipherValue>
element contains the data for the request, as highlighted in the image that follows.

Download from Wow! eBook <www.wowebook.com>

134	 Windows Communication Foundation 4 Step by Step

	 11.	 In the left pane, click the second message with the action http://tempuri.org/
IProductsService/ListProducts. In the right pane, scroll to the end of the Message
pane. The <body> element contains is the unencrypted version of the message passed
from the message level to the service, as shown in the following:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 135

	 12.	 In the left pane, click the first message with the action http://tempuri.org/IProductsService/
ListProductsResponse. In the lower-right pane, examine the message body in the Message
pane. You can see that this is an unencrypted message containing the list of products
returned in response to the ListProducts request. This message is the output from the
service to the message level, and so it has not yet been encrypted.

	 13.	 In the left pane, click the second message with the action http://tempuri.org/
IProductsService/ListProductsResponse. In the lower-right pane, scroll to the bottom of
the Message pane and examine the message body. This time you can see that this is the
encrypted response sent by the message level to the transport level for transmission
back to the client.

	 14.	 Examine the other messages. When you have finished, close the Service Trace Viewer.

Protecting an HTTP Service at the Transport Level
If you recall, the ProductsServiceHost application exposes two endpoints to which clients
connect: one based on the TCP protocol, and the other using HTTP. The HTTP endpoint is
configured to use the BasicHttpBinding binding. The BasicHttpBinding binding conforms to
the WS-BasicProfile 1.1 specification and is intended for use with existing legacy Web services
and clients. It is fully interoperable with ASP.NET Web services. By default, this binding pro-
vides minimal security; for example, it does not support message-level encryption or authen-
tication. To implement message confidentiality and remain interoperable with ASP.NET Web
services, you should use transport-level security. This requires you to configure HTTPS. This is
what you will do in the next set of exercises.

Note  The BasicHttpBinding binding also supports message-level security. Ordinary ASP.NET Web
services and client applications do not implement the WS-Security specification, and so they will
not be able to communicate with a service that implements message-level security. However,
Microsoft Web Services Enhancements (WSE) does support WS-Security, so Web services that you
have created by using WSE can communicate with a WCF service through an endpoint based on
the BasicHttpBinding binding by using message-level security.

Specify Transport-Level Security for the BasicHttpBinding Binding for the WCF Service

	 1.	 In Visual Studio, in the ProductsServiceHost project in Solution Explorer, edit the App.
config file by using the Service Configuration Editor.

	 2.	 In the Service Configuration Editor, in the Configuration pane, right-click the Bindings
folder, and then click New Binding Configuration.

	 3.	 In the Create A New Binding dialog box, select the basicHttpBinding binding type, and
then click OK.

Download from Wow! eBook <www.wowebook.com>

136	 Windows Communication Foundation 4 Step by Step

	 4.	 In the right pane of the Service Configuration Editor, change the Name property of the
binding to ProductsServiceBasicHttpBindingConfig.

	 5.	 Click the Security tab.

	 6.	 Set the Mode property to Transport.

In this mode, message security is provided by using HTTPS. You must configure SSL for
the service by using a certificate. The client authenticates the service by using the ser-
vice’s SSL certificate. The service authenticates the client by using the mechanism speci-
fied by the TransportClientCredentialType property. The default value of None does not
provide any authentication—you will examine some of the other values that you can
specify for this property later in this chapter.

	 7.	 In the Configuration pane, expand the ProductsServicesImpl service in the Services
folder, expand the Endpoints folder, and then click the BasicHttpBinding_IProductsService
endpoint.

	 8.	 In the Service Endpoint pane, set the BindingConfiguration property to
ProductsServiceBasicHttpBindingConfig.

	 9.	 HTTP Web services that implement transport-level security must specify the https
scheme, so change the Address property, as shown in bold in the following:

https://localhost:8000/ProductsService/Service.svc

	 10.	 Save the configuration, and then exit the Service Configuration Editor.

	 11.	 Rebuild the ProductsServiceHost project.

The next step is to reconfigure and modify the client to connect to the service by using the
endpoint corresponding to the BasicHttpBinding binding.

Specify Transport-Level Security for the BasicHttpBinding Binding for the WCF Client

	 1.	 In the ProductsClient project, edit the app.config file by using the Service Configuration
Editor.

	 2.	 In the Configuration pane, expand the Bindings folder, and then click the BasicHttp
Binding_IProductsService binding.

	 3.	 In the right pane of the Service Configuration Editor, change the Name property of
the binding to ProductsClientBasicHttpBindingConfig. (This is to make the name
of the binding consistent with the other bindings you have created.)

	 4.	 Click the Security tab.

	 5.	 Change the Mode property to Transport.

	 6.	 In the Configuration pane, click the BasicHttpBinding_IProductsService endpoint in the
Endpoints folder, within the Client folder.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 137

	 7.	 In the Client Endpoint pane, change the Address property to use the https scheme, as
shown below, and verify that the BindingConfiguration property has changed to refer to
the ProductsClientBasicHttpBindingConfig binding configuration

https://localhost:8000/ProductsService/Service.svc

	 8.	 Save the configuration, and then exit the Service Configuration Editor.

	 9.	 In Visual Studio, open the Program.cs file for the ProductsClient project in the Code And
Text Editor window.

	 10.	 In the Main method, switch the statement that creates the proxy object to connect to
the WCF service back to the endpoint named BasicHttpBinding_IProductsService, as
shown in bold in the following code sample:

static void Main(string[] args)

{

 Console.WriteLine("Press ENTER when the service has started");

 Console.ReadLine();

 // Create a proxy object and connect to the service

 ProductsServiceClient proxy = new

 ProductsServiceClient("BasicHttpBinding_IProductsService");

 // Test the operations in the service

 ...

}

	 11.	 Rebuild the ProductsClient project.

Although you have updated the WCF service and the client application, you have not yet
configured transport security for the HTTPS protocol. If you try to run the service at this point,
you will receive an error. In the next exercise, you will create a certificate for the WCF service
and configure SSL for the service by using the netsh utility.

Configure the WCF HTTP Endpoint with an SSL Certificate

	 1.	 Open a Visual Studio Command Prompt window as an administrator, as follows:

	 a. 	On the Windows Start menu, click All Programs, click Microsoft Visual Studio 2010,
and then click Visual Studio Tools. Right-click Visual Studio Command Prompt
(2010), and then click Run as administrator.

	 b.	 Enter the administrator password if prompted.

	 2.	 In the Visual Studio Command Prompt window, type the following command:

makecert -sr LocalMachine -ss My -n CN=HTTPS-Server -sky exchange -sk HTTPS-Key

Verify that this command responds with the message “Succeeded.”

Download from Wow! eBook <www.wowebook.com>

138	 Windows Communication Foundation 4 Step by Step

The makecert utility is a useful tool for creating test certificates that you can use for
development purposes. The command shown here creates a certificate that is stored in
the Personal certificates store for the LocalMachine account. For detailed information
about the options for the makecert utility, see the “Certificate Creation Tool” page on
the Microsoft Web site at http://msdn.microsoft.com/en-us/library/bfsktky3.aspx.

Important  Certificates that you create by using the makecert utility should not be used
in a production environment as they are not certified by a verifiable certification author-
ity. Remember that the service uses this certificate to prove its identity. The client must be
able to trust that this certificate was created by a reliable source that can verify the veracity
of the service. When deploying a production service, you should obtain your certificates
from a recognized certification authority, such as VeriSign or Thawte. Alternatively, you can
use Active Directory Certificate Services, which enables an enterprise to generate its own
certificates.

To use the netsh utility to configure SSL for the service, you need to find the thumbprint
of the certificate. The thumbprint is a hexadecimal string that uniquely identifies the
certificate. You can obtain this information by using the Certificates Microsoft Manage-
ment Console snap-in.

	 3.	 In the command prompt window, type the following command:

mmc

This command starts the Microsoft Management Console, displaying the default
Console Root window.

	 4.	 On the File menu, click Add/Remove Snap-In.

	 5.	 In the Add Or Remove Snap-Ins dialog box, in the Available Snap-Ins list, click Certifi-
cates, and then click Add.

	 6.	 In the Certificates Snap-In dialog box, select the Computer account, and then click
Next.

	 7.	 In the Select Computer dialog box, select Local computer, and then click Finish.

	 8.	 In the Add Or Remove Snap-Ins dialog box, click OK.

	 9.	 In the Console Root window, expand the Certificates node, expand the Personal folder,
and then click the Certificates folder.

The HTTPS-Server certificate that you created by using the makecert utility should be
displayed (you may have other certificates installed on your computer, as well):

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 139

	 10.	 Double-click the HTTPS-Server certificate.

	 11.	 In the Certificate window, click the Details tab. Scroll to the bottom of the window dis-
playing the details of the certificate. Click the Thumbprint property, and make a note of
the hexadecimal string displayed in the lower window (your thumbprint will not be the
same as that shown in the following image):

Download from Wow! eBook <www.wowebook.com>

140	 Windows Communication Foundation 4 Step by Step

Tip  You might find it useful to simply select the text in the lower window and copy it to the
Windows clipboard.

	 12.	 Click OK, close the Microsoft Management Console window without saving the console
settings, and return to the Visual Studio Command Prompt window.

	 13.	 In the Visual Studio Command Prompt window, type the command shown below on a
single line. Replace the hexadecimal string following the certhash parameter with the
digits from the thumbprint of your certificate (remove all spaces from the thumbprint
string):

netsh http add sslcert ipport=0.0.0.0:8000

 certhash=68969d3a7d1e1a843beec75fde266f5af4924c

 appid={00112233-4455-6677-8899-AABBCCDDEEFF}

If this command is successful, it should report the message “SSL Certificate successfully
added.”

Note  Be very careful to specify the correct thumbprint. If you receive the message “A spec-
ified logon session does not exist. It may already have been terminated,” then you probably
typed it incorrectly.

This command binds the certificate with the thumbprint indicated with the certhash
parameter to the port indicated by the ipport parameter. The port is specified as the
IP address of the computer followed by the port. Specifying an IP address of 0.0.0.0
denotes the local computer. The appid parameter is a GUID that identifies this binding
of the certificate to the port; you can use any unique GUID.

	 14.	 You also need to re-reserve port 8000 for the ProductsService WCF service. Previously
you registered this port for the HTTP endpoint for the service you created in Chapter 2,
“Hosting a WCF Service.” You must remove this reservation and create another for the
HTTPS endpoint of the ProductsService WCF service.

	 	 In the Visual Studio Command Prompt window, type the following command to remove
the existing HTTP reservation for port 8000:

netsh http delete urlacl url=http://+:8000/

This command should respond with the message “URL reservation successfully deleted.”
If you see the message “The parameter is incorrect,” make sure that you added the trail-
ing “/” character to the URL.

	 15.	 Type the following command to add a new HTTPS reservation for port 8000. Replace
UserName with the name of your Windows account. Make sure that you specify https
in the URL.

netsh http add urlacl url=https://+:8000/ user=UserName

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 141

Verify that the command responds with the message “URL reservation successfully
added.”

Leave the Visual Studio Command Prompt window open; you will use it again later in
this chapter.

Warning  When a client application receives a certificate from a server, the WCF runtime
attempts to ascertain that the certificate is valid and that the authority that issued it is trusted. The
WCF runtime will fail this check when using the certificate that you have just installed. The follow-
ing exercise shows how to force the WCF runtime to override this check and allow this certificate
to be used. Note that you should never do this in a production environment! The code is provided
as-is, and without further explanation (it is not the author’s work—it was written by developers at
Microsoft and is included in one of the WCF technology samples provided with Visual Studio). In
the real world, you should go out and buy a valid certificate.

Add Code to the WCF Client to Override Certificate Validation Checking

	 1.	 In Visual Studio, edit the Program.cs file for the ProductsClient project.

	 2.	 Add the following using statements to the list at the top of the file:

using System.Security.Cryptography.X509Certificates;

using System.Net;

	 3.	 Add the following class to the ProductsClient namespace, just below the Program class:

Note  If you don’t want to type the code in manually for this class, it is available in the
PermissiveCertificatePolicy.cs file in the Chapter 4 folder.

// WARNING: This code is only needed for test certificates such as those

// created by makecert. It is not recommended for production code.

class PermissiveCertificatePolicy

{

 string subjectName;

 static PermissiveCertificatePolicy currentPolicy;

 PermissiveCertificatePolicy(string subjectName)

 {

 this.subjectName = subjectName;

 ServicePointManager.ServerCertificateValidationCallback +=

 new System.Net.Security.RemoteCertificateValidationCallback

 (RemoteCertValidate);

 }

 public static void Enact(string subjectName)

 {

 currentPolicy = new PermissiveCertificatePolicy(subjectName);

 }

Download from Wow! eBook <www.wowebook.com>

142	 Windows Communication Foundation 4 Step by Step

 bool RemoteCertValidate(object sender, X509Certificate cert,

 X509Chain chain, System.Net.Security.SslPolicyErrors error)

 {

 if (cert.Subject == subjectName)

 {

 return true;

 }

 return false;

 }

}

	 4.	 Add the following statement (shown in bold) to the Main method of the Program class,
immediately before creating the proxy object:

static void Main(string[] args)

{

 Console.WriteLine("Press ENTER when the service has started");

 Console.ReadLine();

 // Create a proxy object and connect to the service

 PermissiveCertificatePolicy.Enact("CN=HTTPS-Server");

 ProductsServiceClient proxy = new

 ProductsServiceClient("BasicHttpBinding_IProductsService");

 // Test the operations in the service

 ...

}

Run the WCF Client and Service

	 1.	 Start the solution without debugging.

	 2.	 In the Products Service Host window, click Start. The service should start successfully. If it
fails, make sure that you have configured SSL correctly and reserved port 8000 on your
computer with a URL that specified the HTTPS protocol.

	 3.	 In the client console window, press Enter. Verify that the client application runs correctly.

	 4.	 Press Enter to close the client console window. Stop the service and close the Products
Service Host window.

Protecting an HTTP Service at the Message Level
You can configure the BasicHttpBinding binding to provide message-level security by select-
ing the Message security mode for the binding. In this mode, the service uses SOAP message-
level security to encrypt the message. The service must have a certificate installed, and the
client uses the public key from the service’s certificate to perform the encryption. The service
can send the certificate containing its public key at the start of the message exchange, or an

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 143

administrator can install the service certificate on the client computer before the client appli-
cation (in which case you must specify how to locate the service certificate in the client certifi-
cate store by adding a service behavior using the <serviceCredentials> element to the client
configuration file). You will learn more about this in Chapter 5. Additionally, the only authen-
tication mechanism supported by a WCF service that uses this mode requires that the client
application identifies itself with a certificate—you cannot use authentication mechanisms such
as Windows Integrated Security with this mode.

One other option is to use the TransportWithMessageCredential security mode. This is a
hybrid combination of message-level and transport-level security. The service uses the HTTPS
protocol and a certificate to provide message integrity and confidentiality at the transport
level. Client authentication is handled at the message level by using SOAP message security,
and the client application can provide a user name and password to identify the user. You will
learn more about this security mode in Chapter 5.

If you really want to implement message-level security for a WCF service with the minimum of
fuss and configuration, you can opt to use the WS2007HttpBinding binding. The WS2007Http
Binding binding conforms to the current WS-* specifications and follows the WS-Security
specification for encrypting messages and authenticating users by default. The following exer-
cises demonstrate how to use the WS2007HttpBinding binding to implement message-level
security over HTTP.

Configure the WCF Service with an Endpoint Based on the WS2007HttpBinding
Binding

	 1.	 In Visual Studio, edit the App.config file for the ProductsServiceHost project by using
the Service Configuration Editor.

	 2.	 In the Configuration pane, expand the Products.ProductsServiceImpl node under the
Services folder, right-click Endpoints, and then click New Service Endpoint.

	 3.	 In the Service Endpoint pane, set the properties of the endpoint to the values in the fol-
lowing table. Leave all other properties with their default value:

Property Value

Name WS2007HttpBinding_IProductsService

Address http://localhost:8010/ProductsService/Service.svc

Binding ws2007HttpBinding

Contract Products.IProductsService

Notice that the scheme used for the address of this endpoint is http, and not https.

	 4.	 Save the changes, and then exit the Service Configuration Editor.

	 5.	 Rebuild the ProductsServiceHost project.

Download from Wow! eBook <www.wowebook.com>

144	 Windows Communication Foundation 4 Step by Step

	 6.	 Return to the Visual Studio Command Prompt window and type the following com-
mand to add an HTTP reservation for port 8010 (replace UserName with the name of
your Windows account):

netsh http add urlacl url=http://+:8010/ user=UserName

Verify that the command responds with the message “Url Reservation Successfully
Added.”

Configure the WCF Client to Connect to the WS2007HttpBinding Endpoint

	 1.	 Edit the app.config file for the ProductsClient project by using the Service Configuration
Editor.

	 2.	 In the Configuration pane, right-click Endpoints in the Client folder, and then click New
Client Endpoint.

	 3.	 In the right pane, set the properties of the endpoint to the values in the following table:

Property Value

Name WS2007HttpBinding_IProductsService

Address http://localhost:8010/ProductsService/Service.svc

Binding ws2007HttpBinding

Contract ProductsClient.ProductsService.IProductsService

	 4.	 Save the changes, and then exit the Service Configuration Editor.

	 5.	 In Visual Studio, open the Program.cs file in the ProductsClient project in the Code And
Text Editor window. In the Main method, change the code that creates the proxy object
to use the new binding, as follows:

static void Main(string[] args)

{

 ...

 ProductsServiceClient proxy = new

 ProductsServiceClient("WS2007HttpBinding_IProductsService");

 // Test the operations in the service

 ...

}

	 6.	 Rebuild the ProductsClient project.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 145

Run the WCF Client and Service to Examine the Trace Output

	 1.	 Using Windows Explorer, delete the existing trace file ProductsService.svclog in the
Microsoft Press\WCF Step By Step\Chapter 4\ProductsService folder.

	 2.	 In Visual Studio, start the solution without debugging.

	 3.	 In the Products Service Host window, click Start. In the client console window, press
Enter. Verify that the client application still runs correctly. Press Enter to close the client
console window. Stop the service and close the Products Service Host window.

	 4.	 Start the Service Trace Viewer utility and open the ProductsProducts.svclog file.

	 5.	 In the Service Trace Viewer window, in the left pane, click the Message tab.

	 6.	 Click the first message with the action http://tempuri.org/IProductsService/ListProducts.
In the lower-right pane, click the Message tab, and then scroll down to the end of the
message.

You should see that the message has been encrypted—the body element of the mes-
sage contains encrypted data in a <e:CipherData> section, as before. This is the mes-
sage encrypted at the message level. Unlike using the BasicHttpBinding binding or
NetTcpBinding binding, you did not need to specify any encryption settings when you
created the binding because the WS2007HttpBinding binding automatically encrypts
data at the message level.

	 7.	 In the left pane, click the second message with the action http://tempuri.org/IProducts
Service/ListProducts. In the right pane, scroll to the end of the Message window. This is
the unencrypted version of the message passed from the message level to the service.

	 8.	 Examine the two ListProductsResponse messages. As with the NetTcpBinding example
earlier in this chapter, you can see the unencrypted version of the message being output
by the service to the message level and the encrypted version of the message passing
from the message level to the transport level.

	 9.	 Close the Service Trace Viewer.

The WS2007HttpBinding binding uses the 256-bit version of the AES encryption algorithm to
encrypt data by default. You can select a different algorithm by creating a binding behavior
and specifying the algorithm to use in the AlgorithmSuite property of the behavior, as you did
when configuring message-level security for the NetTcpBinding binding earlier in this chapter.

Download from Wow! eBook <www.wowebook.com>

146	 Windows Communication Foundation 4 Step by Step

Authenticating Windows Users
So far, you have seen how to configure the NetTcpBinding, BasicHttpBinding, and
WS2007HttpBinding bindings to support confidentiality and privacy by encrypting messages.
However, transporting messages securely is only useful if a service can verify the identity of
the user running the client application. In the exercises that follow, you will look at how a ser-
vice can authenticate a user when the client application and service are both running within
the same Windows domain. In Chapter 5, you will see how to perform authentication when a
client and service are located in different (possibly non-Windows) security domains.

You will start by adding code to the ProductsService WCF service that displays the name of the
user calling the ListProducts operation. You will then be able to see the effect that the authen-
tication options available in WCF have on the identity passed from a client application to a
service.

Note  You can configure authentication to be largely transparent to the WCF service. You will see
in the exercises in this section that most of the actual authentication process is performed by the
WCF runtime executing the service. All the service needs to do is specify the type of authentica-
tion it requires.

Display the Name of the User Calling an Operation in the WCF Service

	 1.	 In Visual Studio, add a reference to the PresentationFramework, PresentationCore,
System.Xaml, and WindowsBase assemblies to the ProductsServiceLibrary project.

	 2.	 Open the ProductsService.cs file.

This file contains the code that implements the operations for the ProductsService
service.

	 3.	 Add the following using statements to the list at the top of the file:

using System.Threading;

using System.Windows;

	 4.	 Locate the ListProducts method in the ProductsServiceImpl class. Add the following
statements (shown in bold) as the first two lines of the method:

public List<string> ListProducts()

{

 string userName = Thread.CurrentPrincipal.Identity.Name;

 MessageBox.Show(string.Format("Username is {0}", userName),

 "ProductsService Authentication", MessageBoxButton.OK);

 ...

}

The first statement retrieves the name of the Windows user that the current thread is
running on behalf of. The second statement displays the user name in a message box.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 147

	 5.	 Edit the Program.cs file in the ProductsClient project. In the Main method, change the
code that creates the proxy object to use the BasicHttpBinding binding, as follows:

static void Main(string[] args)

{

 ...

 ProductsServiceClient proxy = new

 ProductsServiceClient("BasicHttpBinding_IProductsService");

 // Test the operations in the service

 ...

}

	 6.	 Start the solution without debugging.

	 7.	 In the Products Service Host window, click Start. In the client console window, press
Enter.

A message box appears, displaying the user name sent by the client application. The
user name will appear to be missing. This is not an error. By default, the BasicHttpBinding
binding does not transmit identity information about users. All messages are sent as the
anonymous user. This is not much use if you need to authenticate the user!

	 8.	 Click OK and verify that the client application still runs correctly.

	 9.	 Press Enter to close the client console window. Stop the service and close the Products
Service Host window.

In the next set of exercises, you will revisit the BasicHttpBinding binding and implement user
authentication. Many of the authentication options available for this binding apply to other
bindings, as well.

Configure the BasicHttpBinding Binding for the WCF Service to Implement Basic
Authentication

	 1.	 Edit the App.config file in the ProductsServiceHost project by using the Service
Configuration Editor.

	 2.	 In the Configuration pane, expand the Bindings folder, and then click the
ProductsServiceBasicHttpBindingConfig node.

Download from Wow! eBook <www.wowebook.com>

148	 Windows Communication Foundation 4 Step by Step

	 3.	 In the right pane, click the Security tab.

Notice that the TransportClientCredentialType property is currently set to None, so the
service is not expecting client applications to provide authentication information about
users, and anyone who can connect to the service can send it messages and invoke
operations.

	 4.	 Set the TransportClientCredentialType property to Basic.

When using Basic authentication, the client application must provide a user name and
password, which is transmitted to the service. The WCF runtime executing the service
can use this information to authenticate the user running the client application, and if
the user is valid, it will provide the identity of the user to the service.

	 5.	 Save the configuration, and then close the Service Configuration Editor.

	 6.	 Start the solution without debugging.

	 7.	 In the Products Service Host window, click Start. In the client console window, press
Enter.

The client now fails with a MessageSecurityException exception, “The HTTP request is
unauthorized with client authentication scheme ‘Anonymous’... .” The WCF runtime for
the service was expecting the client application to provide a user name and password,
which it has not done. You will correct this in the next exercise.

	 8.	 Close the client console window, stop the service, and close the Products Service Host
window.

Modify the WCF Client to Supply the User Credentials to the WCF Service

	 1.	 In Visual Studio, edit the app.config file in the ProductsClient project by using the
Service Configuration Editor.

	 2.	 In the Configuration pane, expand the Bindings folder and click the ProductsClientBasic
HttpBindingConfig node.

	 3.	 In the right pane, click the Security tab.

	 4.	 Set the TransportClientCredentialType property to Basic.

	 5.	 Save the configuration, and then close the Service Configuration Editor.

	 6.	 Open the Program.cs file in the ProductsClient project in the Code And Text Editor
window.

	 7.	 In the Main method, add the following statements shown in bold immediately after
the code that creates the proxy object (replace the text Domain with the name of your
domain or computer [if you are not currently a member of a domain], replace User-
Name with your user name, and replace Password with your password):

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 149

static void Main(string[] args)

{

 ...

 ProductsServiceClient proxy = new

 ProductsServiceClient("BasicHttpBinding_IProductsService");

 proxy.ClientCredentials.UserName.UserName = "Domain\\UserName";
 proxy.ClientCredentials.UserName.Password = "Password";

 // Test the operations in the service

 ...

}

The ClientCredentials property of a WCF proxy object presents a mechanism for a client
application to provide the credentials to send to the service. The UserName property of
the ClientCredentials property specifies the data for a UserName token, which can hold
a user name and password. Other properties are available, such as ClientCertificate, with
which you can supply different types of credentials information as required by the ser-
vice configuration.

Warning  This code is for illustrative purposes in this exercise only. In a production applica-
tion, you should prompt the user for their name and password. You should never hard-code
these details into an application.

	 8.	 Start the solution without debugging.

	 9.	 In the Products Service Host window, click Start. In the client console window, press
Enter.

The client now successfully connects to the ProductsService WCF service. A message
box appears, displaying the user name sent by the client application. This time, the user
name appears as expected, verifying that the operation is executing with the credentials
of the user (my user name is John, and my computer is called LON-DEV-01—your user
name and computer are probably different).

	 10.	 Click OK and verify that the client application still runs correctly.

	 11.	 Press Enter to close the client console window. Stop the service and close the Products
Service Host window.

Download from Wow! eBook <www.wowebook.com>

150	 Windows Communication Foundation 4 Step by Step

By using Basic authentication, you can provide the user name and password of the user, and
the WCF runtime executing the service will check that these credentials are valid. If you pro-
vide an invalid user name of password, the WCF runtime will reject the request and the client
will receive another MessageSecurityException exception with the message “The HTTP request
was forbidden… .”

Note  You can also configure the NetTCPBinding and WS2007HttpBinding bindings at the mes-
sage level to require Username authentication. This is very similar to Basic authentication at the
transport level as far as the client application is concerned, although somewhat different as far as
the service is concerned because the service takes responsibility for authenticating the user itself
(typically by using a custom database of user names and passwords). Additionally, if you are imple-
menting Basic authentication, user names and passwords are not encrypted at the message level,
so WCF insists that you configure the underlying transport to provide encryption to prevent the
credential details from being transmitted across an open network as clear text.

Basic authentication is a good solution if the user running the client application is not cur-
rently logged in to the security domain used by the service. However, if the user is logged
in to the domain, you can make use of Windows Integrated Security to provide the user’s
credentials automatically, rather than prompting the user for them again (or worse still, hard-
coding them in your application!). You will do this in the next exercise.

Configure the BasicHttpBinding Binding for the WCF Service and Client to use
Windows Authentication

	 1.	 Edit the App.config file in the ProductsServiceHost project by using the Service Configu-
ration Editor.

	 2.	 In the Configuration pane, expand the Bindings folder, and then click the Products
ServiceBasicHttpBindingConfig node.

	 3.	 In the right pane, click the Security tab.

	 4.	 Set the TransportClientCredentialType property to Windows.

	 5.	 Save the configuration, and then close the Service Configuration Editor.

	 6.	 In Visual Studio, edit the app.config file in the ProductsClient project by using the Ser-
vice Configuration Editor.

	 7.	 Repeat the process in steps 2 through 5, above, and set the TransportClientCredential
Type property of the ProductsClientBasicHttpBindingConfig binding configuration to
Windows.

	 8.	 Save the configuration, and then close the Service Configuration Editor.

	 9.	 Edit the Program.cs file in the ProductsClient project.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 151

	 10.	 In the Main method, comment out the two statements that add the user name and
password to the ClientCredentials property of the proxy object.

	 11.	 Start the solution without debugging.

	 12.	 In the Products Service Host window, click Start. In the client console window, press
Enter.

The message box appears displaying your Windows user name, which was sent by the
client application. However, rather than requiring you to supply the user name and pass-
word, the WCF runtime executing the client application picked up this information from
the user’s process automatically.

Note  If you did not comment out the lines that populated the ClientCredentials object, the
solution still works; the credentials provided are simply ignored. However, note the Client-
Credentials property has a Windows property that you can use to provide a domain, user
name, and password to the service if you want the service to run as a different Windows
user. Any values that you specify in the Windows property override those retrieved from the
user’s login process. The usual warnings about hard-coding user names and password in
your code still apply:

proxy.ClientCredentials.Windows.ClientCredential.Domain = "Domain";

proxy.ClientCredentials.Windows.ClientCredential.UserName = "UserName";

proxy.ClientCredentials.Windows.ClientCredential.Password = "Password";

	 13.	 Click OK in the message box and verify that the client application still runs correctly.

	 14.	 Press Enter to close the client console window. Stop the service and close the Products
Service Host window.

When you use Windows Integrated Security, user names and passwords are not transmit-
ted as clear text. You can use Windows Integrated Security at the message level with the
NetTCPBinding and WS2007HttpBinding bindings without the need to implement encryp-
tion at the transport level. The next exercise demonstrates this aspect of security for the
NetTcpBinding binding.

Examine the Authentication Mechanism used by the NetTcpBinding Binding

	 1.	 Edit the App.config file in the ProductsServiceHost project by using the Service Configu-
ration Editor.

	 2.	 In the Configuration pane, expand the Bindings folder, and then click the ProductsService
TcpBindingConfig node.

	 3.	 In the right pane, click the Security tab.

Download from Wow! eBook <www.wowebook.com>

152	 Windows Communication Foundation 4 Step by Step

	 4.	 Verify that the MessageClientCredentialType property is set to Windows.

You have been using Windows Integrated Security in earlier exercises without realizing
it!

Note  The WS2007HttpBinding binding also defaults to using Windows Integrated
Security.

	 5.	 Close the WCF Service Configuration Editor without saving changes.

	 6.	 Edit the Program.cs file for the ProductsClient project and modify the statement that
creates the proxy object to use the NetTcpBinding_IProductsService endpoint, as follows:

static void Main(string[] args)

{

 ...

 ProductsServiceClient proxy = new

 ProductsServiceClient("NetTcpBinding_IProductsService");

 // proxy.ClientCredentials.UserName.UserName = "Domain\\UserName";

 // proxy.ClientCredentials.UserName.Password = "Password";

 // Test the operations in the service

 ...

}

	 7.	 Start the solution without debugging.

	 8.	 In the Products Service Host window, click Start. In the client console window, press
Enter.

The familiar message box appears, displaying your Windows user name; this shows that
the NetTcpBinding automatically picks up your identity from Windows.

	 9.	 Click OK and allow the client application to finish. Press Enter to close the client console
window. Stop the service and close the Products Service Host window.

Authorizing Users
After a service has established the identity of the user, it can then determine whether the service
should perform the requested operations for the user. Different operations in a service could be
considered more privileged than others. For example, in the ProductsService WCF service, you
might wish to let any staff that work in the warehouse query the product information in the
AdventureWorks database but limit access to operations such as ChangeStockLevel (which mod-
ify data), to staff members who are stock controllers. WCF can use the features of the .NET

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 153

Framework so a developer can specify which users and roles have the authority to request
operations. You can perform this task declaratively (by using attributes) or imperatively (by
adding code to the operations).

The authorization mechanism implemented by WCF requires access to a database defining
users and the roles that they can fulfill. If you are performing authentication by using Active
Directory, it makes sense to use the Active Directory database to hold the roles for each user
as well. Therefore, the first step is to ensure that the WCF service is configured to retrieve roles
from Active Directory by using the Windows Token Role Provider.

Note  The following exercises require you to create new local users and groups on your computer.
This feature is only available on Windows 7 Professional, Enterprise, and Ultimate editions. If you
are running Windows 7 Home or Home Premium editions, you will need to skip over this exercise.

Configure the WCF Service to use the Windows Token Role Provider

	 1.	 Edit the App.config file in the ProductsServiceHost project by using the Service Configu-
ration Editor.

	 2.	 In the Configuration pane, expand the Advanced folder, expand the Service Behaviors
folder, and then click the (Empty Name) node.

The behavior currently implemented by the service contains the serviceMetadata and
serviceDebug elements that you saw in the previous chapters.

	 3.	 In the Behavior pane, click Add.

	 4.	 In the Adding Behavior Element Extension Sections dialog box, select serviceAuthorization,
and then click Add.

The serviceAuthorization behavior is added to the list of behaviors.

	 5.	 In the Configuration pane, click the serviceAuthorization element under the Products
Behavior node.

	 6.	 In the serviceAuthorization pane, verify that the PrincipalPermissionMode property is set
to UseWindowsGroups.

Note  By default, WCF uses the Windows Token Role Provider to authenticate users, so you
don’t actually need to perform these steps. However, you can configure the serviceBehavior
element to specify a different role provider, such as the ASP.NET Role Provider or the Autho-
rization Store Role Provider, mentioned earlier in this chapter, so it is instructional to see
how you can configure authorization. (You will configure the service to use the ASP.NET Role
Provider in Chapter 5.)

	 7.	 Save the configuration, and then close the Service Configuration Editor.

Download from Wow! eBook <www.wowebook.com>

154	 Windows Communication Foundation 4 Step by Step

The next step is to define the roles that can request the operations in the WCF service. When
using the Windows Token Role Provider, Active Directory groups correspond to roles, so you
define groups in the Active Directory database and add users to these groups. In the next
exercise you will also add two users called Fred and Bert who will be members of these groups.

Note  The following exercise assumes you do not have access to the Active Directory database for
your organization, so it uses the Windows local users and groups database instead. The principles
are the same, however.

Create Groups for Warehouse Staff and Stock Controller Staff

	 1.	 On the Windows Start menu, right-click Computer, and then click Manage. Enter the
administrator password if you are prompted.

The Computer Management console appears.

	 2.	 In the Computer Management console, under the System Tools node, expand the Local
Users And Groups node, right-click the Groups folder, and then click New Group.

	 3.	 In the New Group dialog box, type WarehouseStaff for the Group name, and then click
Create.

	 4.	 While still in the New Group dialog box, type StockControllers for the Group name,
and then click Create again.

	 5.	 Click Close to close the New Group dialog box.

	 6.	 In the left pane of the Computer Management console, right-click the Users folder, and
then click New User.

	 7.	 In the New User dialog box, use the values in the following table to set the properties of
the user, and then click Create.

Property Value

User name Fred

Password Pa$$w0rd

Confirm password Pa$$w0rd

User must change password at next logon Unchecked

	 8.	 Add another user by specifying the values in the following table, and then click Create
again.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 155

Property Value

User name Bert

Password Pa$$w0rd

Confirm password Pa$$w0rd

User must change password at next logon Unchecked

	 9.	 Click Close, and then close the New User dialog box.

	 10.	 In the left pane of the Computer Management console, click the Users folder.

The two new users should appear in the list in the right pane of the Computer Manage-
ment console.

	 11.	 In the right pane of the Computer Management console, right-click Bert, and then click
Properties.

	 12.	 In the Bert Properties dialog box, click the Member Of tab, and then click Add.

	 13.	 In the Select Groups dialog box, type WarehouseStaff in the text box, and then click
OK.

Bert is added to the WarehouseStaff group.

	 14.	 In the Bert Properties dialog box, click OK.

	 15.	 In the right pane of the Computer Management console, right-click Fred, and then click
Properties.

	 16.	 In the Fred Properties dialog box, click the Member Of tab, and then click Add.

	 17.	 In the Select Groups dialog box, type WarehouseStaff in the text box, and then click
OK.

	 18.	 Click Add again. In the Select Groups dialog box, type StockControllers in the text box,
and then click OK.

Fred is added to the WarehouseStaff and StockControllers groups—he has two roles.

	 19.	 In the Fred Properties dialog box, click OK.

	 20.	 Close the Computer Management console.

You can now use the groups you have just defined to specify the roles that can request each
of the operations in the ProductsService service. To show how to specify authorization declara-
tively and imperatively, you will use attributes to specify the role for the operations that sim-
ply query the AdventureWorks database, but you will write code to specify the role that can
modify the database.

Download from Wow! eBook <www.wowebook.com>

156	 Windows Communication Foundation 4 Step by Step

Specify the Roles for the WCF Service Operations

	 1.	 In Visual Studio, open the ProductsService.cs file (in the ProductsServiceLibrary project)
in the Code And Text Editor window.

	 2.	 Add the following using statements to the list at the top of the file:

using System.Security;

using System.Security.Permissions;

using System.Security.Principal;

	 3.	 Locate the ListProducts method in the ProductsServiceImpl class. Add the following attri-
bute (shown in bold) to this method:

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]

public List<string> ListProducts()

{

 ...

}

The PrincipalPermission attribute specifies the authorization requirements of the
method. In this case, the SecurityAction.Demand parameter indicates that the method
requires that the user meet the criteria specified by the following parameters. The Role
parameter indicates that the user must be a member of the WarehouseStaff role.

You can identify specific users by using the optional Name parameter. However, if you
specify Name and Role, the user must match both criteria to be granted access (if the
user is not a member of the specified role, they will not be allowed to invoke the opera-
tion). If you require users to be granted access to the method if they have a specific
name or are a member of a specific group, you can use the PrincipalPermission attribute
twice, like this:

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]

// LON-DEV-01\John is not a member of the WarehouseStaff group

[PrincipalPermission(SecurityAction.Demand, Name="LON-DEV-01\\John")]

public List<string> ListProducts()

{

 ...

}

You can also specify SecurityAction.Deny as the first parameter to the PrincipalPermission
attribute. If you do this, the specified users and roles will be explicitly denied access to
the method.

	 4.	 Apply the PrincipalPermission attribute with the WarehouseStaff group to the GetProduct
and CurrentStockLevel methods, as shown in bold in the following:

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]

public Product GetProduct(string ProductNumber)

{

 ...

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 157

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]

public int CurrentStockLevel(string ProductNumber)

{

 ...

}

	 5.	 Locate the ChangeStockLevel method. Add the following code (shown in bold) to the
start of this method:

public bool ChangeStockLevel(...)

{
 // Determine whether the user is a member of the StockControllers role

 WindowsPrincipal user = new WindowsPrincipal(

 (WindowsIdentity)Thread.CurrentPrincipal.Identity);

 if (!(user.IsInRole("StockControllers")))

 {

 // If the user is not in the StockControllers role,

 // throw a SecurityException
 throw new SecurityException("Access denied");

 }

 // Modify the stock level of the selected product.

 ...

}

The first statement retrieves the user identity information and uses it to create a Windows
Principal object. Note that the identity returned by the current thread must be cast to
a WindowsIdentity object. A WindowsPrincipal object is a representation of the user.
It exposes the IsInRole method that this code uses to determine whether the user is
a member of the StockControllers role. The IsInRole method returns true if the user is a
member of the role or false if otherwise. If the user is not a member of the role, the
code throws a SecurityException exception with the message “Access Denied.”

Warning  It is tempting to provide more detail in the SecurityException exception. This
practice is not recommended because it could provide an attacker with useful information
that they might be able to use to try and infiltrate your system. Keep the exception message
bland!

	 6.	 Edit the Program.cs file in the ProductsClient project. In the Main method, add the fol-
lowing exception handler (shown in bold) after the FaultException handler. This excep-
tion handler catches any exceptions that are not SOAP faults and displays them (this
includes any possible SecurityException exceptions that might be thrown by the service):

static void Main(string[] args)

{

 ...

 catch (FaultException e)

Download from Wow! eBook <www.wowebook.com>

158	 Windows Communication Foundation 4 Step by Step

 {

 Console.WriteLine("{0}: {1}", e.Code.Name, e.Reason);

 }

 catch (Exception e)

 {

 Console.WriteLine("General exception: {0}", e.Message);

 }

 ...

}

Test the Authorization for the WCF Service

	 1.	 Start the solution without debugging.

	 2.	 In the Products Service Host window, click Start. In the client console window, press
Enter.

Assuming that you are not currently logged in to Windows as Fred or Bert, the client
application stops and reports the message “Access is denied” when attempting to invoke
the ListProducts operation. This is because the authenticated Windows account for the
client application must be a member of the WarehouseStaff role:

	 3.	 Press Enter to close the client console window, and then stop the service and close the
Products Service Host window.

	 4.	 In Visual Studio, in the ProductsClient project, open the Program.cs file in the Code And
Text Editor window.

	 5.	 In the Main method, add the following statements (shown in bold) immediately after
the statement that creates the proxy object. Replace the value “Domain” specified in the
Domain property with the name of your computer:

static void Main(string[] args)

{

 ...

 ProductsServiceClient proxy = new

 ProductsServiceClient("NetTcpBinding_IProductsService");

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 159

 proxy.ClientCredentials.Windows.ClientCredential.Domain = "Domain";

 proxy.ClientCredentials.Windows.ClientCredential.UserName = "Bert";

 proxy.ClientCredentials.Windows.ClientCredential.Password = "Pa$$w0rd";

 ...

}

These statements explicitly set the Windows credentials for the user to those of Bert. The
WCF runtime on the client will send these credentials to the service rather than using
those in the user’s logon process.

	 6.	 Start the solution again, without debugging.

	 7.	 In the Products Service Host window, click Start. In the client console window, press
Enter.

This time, Bert is a member of the WarehouseStaff role and is granted access to the
ListProducts, GetProduct, and CurrentStockLevel operations.

When the ListProducts method runs, it displays the message box confirming that the
identity of the authenticated user is Bert. Click OK to continue execution.

The first three tests run successfully, but when the client application attempts to per-
form Test 4, which requires invoking the ChangeStockLevel operation, Bert has not been
granted access to this method, and so the test fails with the “Access is denied” message:

	 8.	 Press Enter to close the client console window, and then stop the service and close the
Products Service Host window.

	 9.	 Return to the Program.cs file in the Code And Text Editor window.

	 10.	 In the Main method, change the Windows user name of the user to Fred, as follows:

static void Main(string[] args)

{

 ...

 proxy.ClientCredentials.Windows.ClientCredential.Domain = "Domain";

 proxy.ClientCredentials.Windows.ClientCredential.UserName = "Fred";

 proxy.ClientCredentials.Windows.ClientCredential.Password = "Pa$$w0rd";

 ...

}

Download from Wow! eBook <www.wowebook.com>

160	 Windows Communication Foundation 4 Step by Step

	 11.	 Build and start the solution again without debugging.

	 12.	 In the Products Service Host window, click Start. In the client console window, press
Enter.

Fred is a member of the WarehouseStaff role and the StockControllers role, and so he is
able to invoke all the operations in the ProductsService WCF service.

	 13.	 When the ListProducts method displays the message box with the name of the authenti-
cated user, verify that the user name is Fred, and then click OK.

	 14.	 The client application performs all four tests successfully. Press Enter to close the client
console window, and then stop the service and close the Products Service Host window.

Using Impersonation to Access Resources
Authenticating a user establishes the identity of the user to the WCF service, which can then
perform authorization checks to verify that the user should be allowed to perform the
requested operation. The method that implements the operation might require access to
resources on the computer running the WCF service. By default, the service will attempt to
gain access to these resources by using its own credentials. For example, when a method in
the ProductsService WCF service connects to the AdventureWorks database, it does so as the
account running the service. When using Windows authentication, it is possible to specify that
the WCF service should access resources by using the authenticated identity of the user instead.
So, if Fred has been granted access to the AdventureWorks database, the WCF service can
connect to SQL Server as Fred and will have access to all the database resources to which Fred
has been granted access. If the user connects as Bert, the WCF service might be able to use a
different set of resources in the database, depending on Bert’s access rights. The same principle
applies to other resources, such as files, folders, and network shares. Using impersonation
gives an administrator fine-grained control over the ability of a WCF service to read or write
possibly sensitive information and can provide an additional degree of security—just because
the user can connect to the WCF service, they might not be able to perform operations that
retrieve or modify confidential data unless the administrator has explicitly granted the user
access to this data.

You can enable impersonation for an operation by setting the Impersonation property of the
OperationBehavior attribute, as shown in bold in the following:

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]

[OperationBehavior(Impersonation=ImpersonationOption.Required)]

public List<string> ListProducts

{

 ...

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 161

Specifying the value ImpersonationOption.Required enforces impersonation. The client appli-
cation must also agree to this requirement and specify the level of impersonation that the WCF
service application can use (you will see how to do this shortly). You can also specify either
ImpersonationOption.Allowed or ImpersonationOption.NotAllowed. ImpersonationOption.
Allowed (this is the default setting) enables the WCF service to impersonate the user if the
client application permits, but executes as the identity running the service application if not;
ImpersonationOption.NotAllowed disables impersonation.

WCF also provides an attribute of the serviceAuthorization service behavior element named
ImpersonateCallerForAllOperations. If you set this element to true, the WCF runtime verifies that
all operations in the service either support or require impersonation. It will also fail (and refuse
to start the service) if any operations are marked as ImpersonationOption.NotAllowed. You can
specify this attribute in the service configuration file, as shown in bold in the following:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 ...

 <system.serviceModel>

 ...

 <behaviors>

 <serviceBehaviors>

 <behavior>

 <serviceAuthorization principalPermissionMode="UseWindowsGroups"

 impersonateCallerForAllOperations="true" />

 </behavior>

 </serviceBehaviors>

 </behaviors>

 </system.serviceModel>

</configuration>

You configure the client application to indicate the level of impersonation that the service can
use by defining a behavior for the endpoint and specifying the AllowedImpersonationLevel
property. The following fragments of a client configuration file highlight the pertinent
elements:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.serviceModel>

 <behaviors>
 <endpointBehaviors>

 <behavior name="ImpersonationBehavior">

 <clientCredentials>

 <windows allowedImpersonationLevel="Impersonation" />

 ...

 </clientCredentials>

 </behavior>
 </endpointBehaviors>

 </behaviors>

 ...

Download from Wow! eBook <www.wowebook.com>

162	 Windows Communication Foundation 4 Step by Step

 <client>

 ...

 <endpoint

 address="http://localhost:8010/ProductsService/ProductsService.svc"

 behaviorConfiguration="ImpersonationBehavior"
 binding="ws2007HttpBinding"

 contract="ProductsClient.ProductsService.IProductsService"

 name="WS2007HttpBinding_IProductsService" />

 </client>

 </system.serviceModel>

</configuration>

You can specify one of the following values for the AllowedImpersonationLevel property:

■■ Impersonate  The service can use the user’s identity when accessing local resources
on the computer hosting the service. However, the service cannot access resources on
remote computers.

■■ Delegation  The service can use the user’s identity when accessing local resources on
the computer hosting the service and on remote computers. The service can pass the
identity of the user on to remote services, which may authenticate the user and perform
operations impersonating this user.

Warning  Use this setting with extreme caution. Essentially you are granting the service,
and any other services that it might invoke (and any further services that they invoke, and
so on) the ability to perform operations by using the identity and credentials of the user.
This can open up a whole raft of security concerns.

■■ Identify  The service can use the user’s credentials to authenticate the user and autho-
rize access to operations but cannot impersonate the user.

■■ Anonymous  The service does not use the user’s identity to authenticate the user but
can use the user’s credentials to perform access checks against resources accessed by
the service. This setting is only valid for transport mechanisms such as named pipes
that connect a client application to a service executing on the same computer. If the
service is running on a remote computer, the setting is handled in the same way as
the “Identify” option.

■■ None  The service does not attempt to impersonate the user.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 4  Protecting an Enterprise WCF Service	 163

Summary
In this chapter, you have seen how to use the features of three common WCF bindings to
control the degree of protection afforded to a WCF service. You have seen how to configure
encryption for messages flowing between a client application and a service, at the message
level and at the transport level. You have learned how to specify the authentication mode
for a binding and how to pass Windows credentials from a client application to a WCF ser-
vice. You have also learned how to authorize access to operations for authenticated users
and how to provide access to resources based on a user’s authenticated identity by using
impersonation.

You should now be aware that different bindings support different security configurations,
and have default settings that are optimized for specific scenarios. For example, if you are
deploying services that are accessible inside an organization you can use the NetTcpBinding
or NetNamedPipeBinding bindings and implement transport-level security. However, if a ser-
vice is intended to be accessible both inside an organization and externally, you may choose
to provide a NetTcpBinding binding and a binding based on the HTTP protocol (either the
BasicHttpBinding or WS2007HttpBinding binding), and implement either transport-level or
message-level security, depending on the requirements of your service and the need to main-
tain compatibility with existing client applications and services. If you are building a WCF
service that must be compatible with client applications and services that conform to the
Basic Profile 1.1, you should use the BasicHttpBinding binding and configure it to use Basic
authentication over transport-level security if authentication is required. If you need to build
a service that conforms to the requirements of the WS-Security specification, you should use
the WS2007HttpBinding binding and configure message-level security.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

165

Chapter 5

Protecting a WCF Service over the
Internet

After completing this chapter, you will be able to:

■■ Describe how to configure and use the ASP.NET Membership Provider and the ASP.NET Role
Provider to store and query user identity and role information for a WCF service.

■■ Explain how to configure a WCF service to authenticate users by using certificates.

■■ Describe how to use certificates to authenticate a WCF service to a client application.

Managing client application and WCF service security inside an organization requires some
thought, but WCF provides bindings and behaviors that you can use to simplify many of
the tasks associated with protecting communications. Together with the authentication and
authorization features included with the .NET Framework 4.0, you can help to ensure that
clients and services transmit messages in a confidential manner and have a reasonable degree
of confidence that only authorized users are submitting requests to services. However, bear in
mind that an organization’s internal network is a relatively benign environment because of its
inherent privacy—hackers might be able to penetrate your network, but this is an exceptional
circumstance rather than the norm. As long as your system and network administrators main-
tain the security of the organization’s infrastructure, you can assume a certain degree of trust
between client applications and services. Features such as message encryption, authentica-
tion, and authorization are important, but they can operate at the relatively unobtrusive level
described in Chapter 4 “Protecting an Enterprise WCF Service.”

When you start connecting client applications and services across a public network such as
the Internet, you can no longer make any assumptions about the trustworthiness of client
applications, services, or the communications passing between them. For example, how does
a client application verify that the service to which it is sending messages is the real service
and not some nefarious spoof that happens to have supplanted the real service? Or perhaps
it is simply intercepting and logging messages before forwarding them on to the real service?
Also, how does a service know that the user running the client application is who she says
she is? How does a service distinguish genuine requests sent by an authenticated client appli-
cation from those generated by some program written by an attacker? The attacker might
probe the service by sending it messages and seeing whether the service responds with any
error information that displays any potential security weaknesses.

Download from Wow! eBook <www.wowebook.com>

166	 Windows Communication Foundation 4 Step by Step

The Internet is a potentially hostile environment, and you must treat all communications pass-
ing over it with the utmost suspicion. In this chapter, you will examine some techniques that
you can use to help protect client applications, WCF services, and the information transmitted
between them.

Authenticating Users and Services in an Internet
Environment

Maintaining information about the users who can legitimately access a service and their cre-
dentials typically requires some form of database. In a Windows environment, Active Directory
provides just such a database. A WCF service can use Windows Integrated Security to help
authenticate users who are part of the same Windows domain as the service. When client
applications connect to the service across the Internet, this approach is not always feasible;
a client application will probably not be running using the same security domain as the ser-
vice (it might not even be a Windows application). In this environment, you can use several
alternative approaches for maintaining a list of authenticated users for a WCF service. For
example, you can employ the ASP.NET Membership Provider (to store a list of users and their
credentials in a SQL Server database) together with the ASP.NET Role Provider (to associate
users with roles). Alternatively, you can use the Authorization Store Role Provider to record
users and roles in XML files. In the exercises in this chapter, you will make use of the ASP.NET
Membership Provider and ASP.NET Role Provider.

Important  Chapter 4 described how to use impersonation to allow a service to access resources.
Impersonation requires that the service can identify the user as a Windows account in its local
security domain, so it is not available when alternative authentication mechanisms such as the ASP.
NET Membership Provider are used.

Authenticating and Authorizing Users by Using the ASP.NET
Membership Provider and the ASP.NET Role Provider
To make a WCF service available across the Internet, you would typically host it by using
Microsoft Internet Information Services (IIS) as described in Chapter 1, “Introducing Windows
Communication Foundation.” By hosting a WCF service in this way, you can use the ASP.NET
Web Site Administration Tool to easily create a SQL Server database containing the security
information for the service and, manage users and roles. You can then configure the WCF
service to use the ASP.NET Membership Provider to authenticate users, and the ASP.NET Role
Provider to retrieve role information for authorizing users. This is what you will do in the fol-
lowing set of exercises.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 5  Protecting a WCF Service over the Internet	 167

Additionally, it is good practice to use the Secure Sockets Layer (SSL) to protect communica-
tions when you build a service that is exposed to the Internet. Therefore, the first task is to
configure IIS to support SSL by adding a certificate to identify the service and encrypt infor-
mation passing to and from client applications. You can then bind this certificate to the Web
site that hosts your WCF services.

Configure IIS Bindings to Support SSL

	 1.	 Open the Internet Information Services Manager console as an administrator, as follows:

	 a.	 On the Windows Start menu, click Control Panel, click System And Security, and
then click Administrative Tools. Right-click Internet Information Services (IIS)
Manager, and then click Run As Administrator.

	 b.	 Enter the administrator password if prompted.

	 2.	 In the Internet Information Services (IIS) Manager console window, in the Connections
pane, click the node that corresponds to your computer.

	 3.	 In the middle pane, click the Features View tab.

	 4.	 In the Features View pane, in the IIS section, double-click Server Certificates.

The Server Certificates pane appears, displaying possible certificates that you can use to
configure IIS to use to implement SSL. It should display the HTTPS-Server certificate that
you created in Chapter 4. For the purposes of this chapter, you will create another cer-
tificate; it is not considered good practice to use the same certificate for multiple Web
sites.

	 5.	 In the Actions pane, click Create Self-Signed Certificate.

The Create Self-Signed Certificate dialog box appears. This wizard creates a certificate
in a manner similar to the makecert command that you used from the Visual Studio
Command Line in Chapter 4. The same warnings and caveats apply; you should not use
a self-signed certificate in a production environment. If you require a commercial-grade
certificate, you should click the Create Certificate Request link in the Actions pane, create
a certificate request that identifies your organization, and then send this request to a
certificate provider, such as Active Directory Certificate Services or a trusted third-party
organization to generate the certificate.

	 6.	 In the Create Self-Signed Certificate dialog box, in the Specify A Friendly Name For The
Certificate box, type the name of your computer, and then click OK.

Note  It is important that you give the certificate a friendly name that is the same as your
computer, otherwise you may run into some security errors later on when you attempt to
access the Web site.

Download from Wow! eBook <www.wowebook.com>

168	 Windows Communication Foundation 4 Step by Step

The certificate should be generated and added to the list in the Server Certificates pane,
as shown in the following image (the name of your computer will probably be different
from LON-DEV-01):

	 7.	 In the Connections pane, expand the node that corresponds to your computer, expand
Sites, right-click Default Web Site, and then click Edit Bindings.

The Site Bindings dialog box appears, as shown in the following image, listing the pro-
tocols that IIS and WAS support for the Web site (your list may vary from that shown in
the image):

	 8.	 In the Site Bindings dialog box, if https is not configured, click Add; otherwise, select
https, and then click Edit.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 5  Protecting a WCF Service over the Internet	 169

	 9.	 In the Add (or Edit) Site Binding dialog box, set Type to https, select the SSL certificate
that is named after your computer, and then click OK.

	 10.	 In the Site Bindings dialog box, click Close.

	 11.	 Leave the Internet Information Services (IIS) Manager console open.

You can now add a Web application to the Web site that uses SSL to protect communications.

Create the InternetProductsService Web Application

	 1.	 Start Windows Explorer as an administrator and create the following folder:

C:\inetpub\wwwroot\InternetProductsService

	 2.	 Return to the Internet Information Services (IIS) Manager console. In the Connections
pane, right-click Default Web Site, and then click Add Application.

	 3.	 In the Add Application dialog box, specify the values shown in the following table, and
then click OK.

Item Value

Alias InternetProductsService

Application Pool ASP.NET v4.0

Physical Path C:\inetpub\wwwroot\InternetProductsService

	 4.	 In the Connections pane, click the InternetProductsService application.

	 5.	 In the middle pane, click the Features View tab, and then double-click SSL Settings in
the IIS section.

	 6.	 In the SSL Settings pane, check Require SSL, and then in the Actions pane, click Apply.

	 7.	 Leave the Internet Information Services (IIS) Manager console open.

You can now create the WCF service and host it by using this Web site.

Download from Wow! eBook <www.wowebook.com>

170	 Book Title

Create an ASP.NET Web Site to Host the WCF Service

	 1.	 Start Visual Studio as an administrator.

	 2.	 Using Visual Studio, create a new Web site:

❏❏ Select New from the File menu, and then click Web Site.

	 3.	 In the New Web Site dialog box, click the WCF Service template. Set the Web loca-
tion to HTTP, and type https://YourComputer/InternetProductsService, where
YourComputer is the name of your computer, and then click OK.

Important  Make sure that you specify https as the scheme in this address.

	 4.	 In Solution Explorer, delete the Service.svc file and the Web.config file, and the IService.cs
and Service.cs files in the App_Code folder.

Note  Although the Web site is configured to use SSL and support transport-level security, you
can still perform message-level encryption as well if you need to provide end-to-end security
rather than point-to-point. However, remember that encryption is a necessarily expensive opera-
tion. Encrypting at two levels will impact performance. Transport-level encryption tends to be
much faster than message-level encryption. So, if performance is a limiting factor and you have to
make a choice, go for transport-level security.

You will implement a version of the ProductsService WCF service in the IIS Web site. To save
some time and avoid the need to retype the code, you will import the existing code for this
service into your project.

Import the Code for the WCF Service into the IIS Web Site

	 1.	 In Solution Explorer, right-click the project, and then click Add Existing Item. Add the
Web.config file located in the Microsoft Press\WCF Step By Step\Chapter 5 folder
(located within your Documents folder) to the Web site.

This configuration file contains the connection string for accessing the AdventureWorks
database and the default configuration information generated for a WCF Service.

	 2.	 Right-click the App_Code folder, and then click Add Existing Item. In the Add Exist-
ing Item dialog box, move to the Microsoft Press\WCF Step By Step\Chapter 5 folder,
select the ProductsService.cs file, and then click Add. Repeat this process for the
IProductsService.cs file.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 5  Protecting a WCF Service over the Internet	 171

The ProductsService.cs file contains the code for the ProductsService service. This is
almost the same code that you used in Chapter 4 (the statements that display the user
identity in the ListProducts method have been removed because you should not attempt
to display an interactive message box from a WCF service hosted by IIS).

	 3.	 Add a reference to the ProductsEntityModel assembly in the Microsoft Press\WCF Step
By Step\Chapter 5 folder to the project.

	 4.	 Build the Web site, and then verify that everything compiles without errors.

Now that you have built the WCF service, you must configure it with an appropriate end-
point and binding. For this service, you will use a WS2007HttpBinding binding that supports
transport-level security for protecting messages, but with message-level credentials for
authenticating and authorizing because this is the level at which the ASP.NET Role Provider
operates. You will implement configuration-based activation for the service (as described in
Chapter 1) so that you do not need to add a .svc file.

Configure the Activation and Binding for the WCF Service

	 1.	 Edit the Web.config file by using the Service Configuration Editor.

	 2.	 In the Configuration pane, expand the Advanced folder, expand the Hosting Environ-
ment folder, and then click the serviceActivations node.

	 3.	 In the Service Activations pane, click New.

	 4.	 In the Service Activation Editor dialog box, enter the values shown in the following
table, and then click OK.

Item Value

RelativeAddress Service.svc

Service Products.ProductsServiceImpl

Factory Leave blank

	 5.	 In the Configuration pane, click the Services folder.

	 6.	 In the Services pane, click Create A New Service.

	 7.	 Proceed through the New Service Element Wizard; use the information in the following
table to define the service. (When the warning messages concerning the service type
and contract appear, click Yes to proceed.)

Download from Wow! eBook <www.wowebook.com>

172	 Windows Communication Foundation 4 Step by Step

Page Prompt Value

What is the service type of
your service?

Service type Products.ProductsServiceImpl

What service contract are
you using?

Contract Products.IProductsService

What communications
mode is your service using?

HTTP

What method of interoper-
ability do you want to use?

Advanced Web Service interoperability (Sim-
plex communication)

What is the address of your
endpoint?

Address https://YourComputer/InternetProductsService/
Service.svc

	 8.	 In the Configuration pane, click the Bindings folder, and then click New Binding
Configuration in the Bindings pane.

	 9.	 In the Create A New Binding dialog box, select ws2007HttpBinding, and then click OK.

	 10.	 In the right pane, in the Name property, type ProductsServiceWS2007
HttpBindingConfig.

	 11.	 Click the Security tab. Set the Mode property of the binding to TransportWith
MessageCredential, set the MessageClientCredentialType property to UserName,
and set the TransportClientCredentialType to None.

The host Web site is configured to use the HTTPS protocol, so the WCF service must
be configured to support transport-level security. The TransportWithMessageCredential
mode uses HTTPS at the transport level to protect messages traversing the network
and uses the server certificate to authenticate with the client. The user’s credentials
are authenticated by using message-level security. The credentials are passed as a
UserName token (this is how the ASP.NET Role Provider presents them).

	 12.	 In the Configuration pane, expand the Endpoints folder under the Products.Products
ServiceImpl node and click the (Empty Name) endpoint. In the Service Endpoint pane,
set the BindingConfiguration property to ProductsServiceWS2007HttpBindingConfig.

	 13.	 In the Configuration pane, in the Advanced folder, expand the Service Behaviors folder,
expand the (Empty Name) node, and then click the serviceMetadata element.

	 14.	 In the serviceMetadata pane, set the HttpsGetEnabled property to True and set the
HttpGetEnabled property to False.

Note  If you are using the HTTPS protocol and you wish to enable the service to publish
metadata, you must set the HttpsGetEnabled property of the serviceMetadata behavior
to True. Additionally, you cannot set both the HttpGetEnabled and the HttpsGetEnabled
properties to True at the same time (either the service is using HTTPS or it isn’t).

Download from Wow! eBook <www.wowebook.com>

	 Chapter 5  Protecting a WCF Service over the Internet	 173

	 15.	 Save the changes, and then exit the Service Configuration Editor.

	 16.	 In Visual Studio, open the Web.config file in the Code And Text Editor window.

	 17.	 In the <serviceHostingEnvironment> element, set the multipleSiteBindingsEnabled
property to false, as shown in bold in the following.

<?xml version="1.0"?>

<configuration>

 ...

	 <system.serviceModel>

 ...

 <serviceHostingEnvironment multipleSiteBindingsEnabled="false">

 <serviceActivations>

 <add relativeAddress="Service.svc" service="Products.ProductsServiceImpl" />

 </serviceActivations>

 </serviceHostingEnvironment>

	 </system.serviceModel>

 ...

</configuration>

	 18.	 Save the Web.config file.

	 19.	 To quickly test that you have configured the service correctly, start Internet Explorer and
go to the Web site https://YourComputer/InternetProductsService/Service.svc (where
YourComputer is the name of your computer).

Note  If your computer is joined to a Windows domain, you may need to specify the fully
qualified name of your computer in Internet Explorer. This has the form YourComputer.Your-
Domain and may include an extension such as “.net” or “.com”. If you are not sure of the
fully qualified name of your computer, consult the system administrator who manages your
domain.

Internet Explorer opens the page https://YourComputer/InternetProductsService/
ProductsService.svc, as shown in the following image:

Download from Wow! eBook <www.wowebook.com>

174	 Windows Communication Foundation 4 Step by Step

Note  If Windows 7 displays an error page with the message “There is a problem with this
website’s security certificate,” this is because you might have mistyped the name of the
computer when you created the certificate, or you have attempted to use localhost rather
than the real name of your computer. If necessary, remove the certificate by using Internet
Information Services (IIS) Manager, create a new one with the correct name, and bind the
Default Web Site to this certificate as described earlier in this section.

	 20.	 Close Internet Explorer.

Now that you have deployed, configured, and tested the WCF service by using IIS, you
can use the ASP.NET Administration Tool to define the users and roles that will be permit-
ted to access the service. To keep things simple, you will create roles (WarehouseStaff and
StockControllers) and users (Fred and Bert) that mimic those you created by using Windows
in Chapter 4.

Define Users and Roles for the WCF Service

	 1.	 In Visual Studio, from the Website menu, choose ASP.NET Configuration.

The ASP.NET Web Site Administration Tool starts. This is actually another Web applica-
tion that runs by using the ASP.NET Development Server:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 5  Protecting a WCF Service over the Internet	 175

This tool provides pages with which you can add and manage users for your Web site,
specify Web application settings that you want to be stored in the application con-
figuration file (not WCF settings), and indicate how security information such as user
names and passwords are stored. By default, the ASP.NET Web Site Administration Tool
stores security information in a local SQL Server database called ASPNETDB.MDF that
it creates in the App_Data folder of your Web site.

	 2.	 Click the Security tab.

The Security page appears. You can use this page to manage users, specify the authenti-
cation mechanism that the Web site uses, define roles for users, and specify access rules
for controlling access to the Web site.

Note  The first time you click the Security link there will be a delay before the page is dis-
played. This is because the tool creates the ASPNETDB.MDF database at this point.

	 3.	 In the Users section of the page, click the Select Authentication Type link.

A new page appears asking how users will access your Web site. You have two options
available:

❏❏ From The Internet  With this option, you can define users and roles in the SQL
Server database. Users accessing your application must provide an identity that
maps to a valid user.

Download from Wow! eBook <www.wowebook.com>

176	 Windows Communication Foundation 4 Step by Step

Note  The explanation given for the From The Internet option on the page assumes you
are building an ASP.NET Web site rather than a WCF Web service, which is why it describes
using forms-based authentication. A client application connecting to a WCF service can pro-
vide the user’s credentials by populating the ClientCredentials property of the proxy object
being used to send requests to the WCF service.

❏❏ From A Local Network  This option is selected by default. It configures the Web
site to use Windows authentication; all users must be members of a Windows
domain that your Web site can access.

	 4.	 Select the From The Internet option, and then click Done.

You return to the Security page.

	 5.	 In the Users section, notice that the number of existing users that can access your Web
site is currently zero. Click the Create User link.

The Create User page appears.

	 6.	 In the Create User page, add a new user with the values shown in the following table
(see also the image following the table):

Prompt Response

User name Bert

Password Pa$$w0rd

Confirm password Pa$$w0rd

E-mail Bert@Adventure-Works.com

Security Question What was the name of your first pet?

Security Answer Tiddles

Download from Wow! eBook <www.wowebook.com>

	 Chapter 5  Protecting a WCF Service over the Internet	 177

Note  You must supply values for all fields in this screen. The E-mail, Security Question, and
Security Answer fields can be used by the ASP.NET PasswordRecovery control to recover or
reset a user’s password. Detailed discussion of the PasswordRecovery control is beyond the
scope of this book.

	 7.	 Ensure that the Active User check box is selected, and then click Create User.

The message “Complete. Your account has been successfully created.” appears in a new
page.

	 8.	 Click Continue. The Create User page reappears, in which you can add more users. Add
another user using the information shown in the following table:

Prompt Response

User name Fred

Password Pa$$w0rd

Confirm password Pa$$w0rd

E-mail Fred@Adventure-Works.com

Security Question What was the name of your first pet?

Security Answer Rover

Download from Wow! eBook <www.wowebook.com>

178	 Windows Communication Foundation 4 Step by Step

	 9.	 Again, ensure that the Active User check box is selected, and then click Create User.

	 10.	 Click Back to return to the Security page. Verify that the number of existing users is now
set to 2.

	 11.	 In the Roles section of the page, click the Enable Roles link.

	 12.	 When roles have been enabled, click the Create Or Manage roles link.

The Create New Role page appears.

	 13.	 In the New Role Name text box, type WarehouseStaff, and then click Add Role.

The new role appears on the page, together with links which you can use to add and
remove users to or from this role.

	 14.	 Click the Manage link.

Another page appears in which you can specify the users that are members of this role.
You can search for users or list users whose names begin with a specific letter, and then
add them to the role. Click the All link to display all users.

	 15.	 Select the User Is In Role check box for Bert and Fred, as shown in the following image:

	 16.	 Wait for the page to be redisplayed, and then click Back.

Important  If you click Back before the page is redisplayed, the users might not be added
to the roles correctly.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 5  Protecting a WCF Service over the Internet	 179

	 17.	 In the Create New Role page, in the New Role Name text box, type StockControllers,
and then click Add Role.

	 18.	 Click the Manage link for the StockControllers role. Add Fred to the StockControllers role,
wait for the page to be redisplayed, and then click Back.

	 19.	 Close the ASP.NET Web Site Administration Tool.

Note  The ASP.NET Web Site Administration Tool modifies the Web.config file of the WCF
service; it adds <roleManager> and <authentication> elements to the <system.Web> sec-
tion near the start of the file. When you return to Visual Studio, if you have the Web.config
file open for editing in the Code And Text Editor window, you will be alerted that the file has
been modified. In the message box, click Yes to reload the file; otherwise, you will lose the
new settings.

The next step is to modify the behavior of the WCF service to perform authorization by using
the users and roles defined in the SQL Server database created by the ASP.NET Role Provider
and the Membership Provider, rather than by using Windows users and groups.

Configure the WCF service to use the ASP.NET Role Provider and the ASP.NET
Membership Provider

	 1.	 In Visual Studio, edit the Web.config file by using the Service Configuration Editor.

	 2.	 In the Configuration pane, expand the Advanced folder, expand the Service Behaviors
folder, and then click the (Empty Name) node.

	 3.	 In the Behavior pane, click Add.

	 4.	 In the Adding Behavior Element Extension Sections dialog box, click serviceAuthorization,
and then click Add.

	 5.	 In the Configuration pane, click the serviceAuthorization node under the (Empty Name)
node, under Service Behaviors. In the serviceAuthorization pane, set the Principal
PermissionMode property to UseAspNetRoles and type AspNetSqlRoleProvider in
the RoleProviderName property.

The RoleProviderName property identifies a particular configuration for the identity role
provider that will be used to map users to roles. The value “AspNetSqlRoleProvider” is
actually defined in the Machine.config file and specifies the version of the ASP.NET Role
Provider to use to authorize users, together with information, about how to connect to
the database holding the user and role information.

	 4.	 In the Configuration pane, under Service Behaviors, right-click the (Empty Name) node
again, and then click Add Service Behavior Element Extension. In the Adding Behavior
Element Extension Sections dialog box, click serviceCredentials, and then click Add.

Download from Wow! eBook <www.wowebook.com>

180	 Windows Communication Foundation 4 Step by Step

	 5.	 In the Configuration pane, click the serviceCredentials node. In the serviceCredentials
pane, set the UserNamePasswordValidationMode property to MembershipProvider
and type AspNetSqlMembershipProvider in the MembershipProviderName property.

The membership provider is responsible for authenticating users based on their names
and passwords stored in the SQL Server database. The value “AspNetSqlMembership
Provider” is also defined in the Machine.config file.

Note  Try not to get too confused by the role provider and the membership provider. WCF
uses the membership provider for authenticating users, and it uses the role provider for
authorizing users’ access to resources after they have been authenticated.

	 6.	 Save the configuration file, and then exit the Service Configuration Editor.

Important  Depending on how you have configured the application pool used by the Internet-
ProductsService Web application in IIS, you may need to amend the identity used by the applica-
tion pool. The default configuration of the ASP.NET v4.0 application pool will result in a failure
when the WCF runtime attempts to access the SQL Server membership database (ASPNETDB.
MDF in the App_Data folder of the Web application). Rather confusingly, the error is reported by
the WCF runtime as “An unsecured or incorrectly secured fault was received from the other party,”
but if you examine the Windows Application Event Log you will find an exception with the mes-
sage “Failed to generate a user instance of SQL Server due to a failure in retrieving the user’s local
application data path. Please make sure the user has a local profile on the computer.” To circum-
vent this problem, you can run the ASP.NET v4.0 application pool with the NETWORK SERVICE
identity, as follows:

	 1.	 In the Internet Information Services (IIS) Manager console, in the Connections pane,
click Application Pools.

	 2.	 In the Application Pools pane, right-click the ASP.NET v4.0 application pool, and then
click Advanced Settings.

	 3.	 In the Advanced Settings dialog box, in the Process Model section, click Identity, and
then click the ellipsis button that appears on the right-hand side.

	 4.	 In the Application Pool Identity dialog box, click Built-In Account, select
NetworkService from the drop-down list, and then click OK.

	 5.	 In the Advanced Settings dialog box, click OK.

You can now test the WCF service by using the client application developed in the previous
chapters. First, you must make some changes so that the client application connects to the
WCF service by using the correct binding and address.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 5  Protecting a WCF Service over the Internet	 181

Modify the WCF Client Application to Connect to the Updated WCF Service

	 1.	 In Visual Studio, add the ProductsClient project located in the Microsoft Press\WCF Step
By Step\Chapter 5\ProductsClient folder (within your Documents folder) to the Internet-
ProductsService solution.

	 2.	 Open the app.config file for the ProductsClient project by using the Service Configura-
tion Editor.

	 3.	 In the Configuration pane, right-click the Bindings folder, and then click New Binding
Configuration. In the Create A New Binding dialog box, click ws2007HttpBinding, and
then click OK.

	 4.	 In the right pane, in the Name property, type ProductsClientWS2007HttpBinding
Config.

	 5.	 Click the Security tab, set the Mode property to TransportWithMessageCredential, set
the MessageClientCredentialType property to UserName, and set the TransportClient
CredentialType property to None.

	 6.	 In the Configuration pane, in the Endpoints folder under the Client folder, click the
WS2007HttpBinding_IProductsService endpoint.

	 7.	 In the Client Endpoint pane, change the Address property to https://YourComputer/
InternetProductsService/Service.svc and set the BindingConfiguration property to
ProductsClientWS2007HttpBindingConfig.

	 8.	 Save the configuration file, and then exit the Service Configuration Editor.

	 9.	 In Solution Explorer, open the Program.cs file in the ProductsClient project. In the
Code And Text Editor window, in the Main method, change the statement that calls the
PermissiveCertificatePolicy.Enact method to refer to the certificate named after your
computer (replace LON-DEV-01 shown in the code sample with the name of your com-
puter). Modify the statement that creates the proxy to refer to the WS2007HttpBinding_
IProductsService endpoint, as shown in bold in the following:

static void Main(string[] args)

{

 Console.WriteLine("Press ENTER when the service has started");

 Console.ReadLine();

 // Create a proxy object and connect to the service

 PermissiveCertificatePolicy.Enact("CN=LON-DEV-01");

 ProductsServiceClient proxy =

 new ProductsServiceClient("WS2007HttpBinding_IProductsService");

 ...

}

Download from Wow! eBook <www.wowebook.com>

182	 Windows Communication Foundation 4 Step by Step

	 10.	 Remove the three statements that set the Domain, UserName, and Password proper-
ties of the ClientCredentials.Windows.ClientCredential property of the proxy object and
replace them with the following statements:

proxy.ClientCredentials.UserName.UserName = "Bert";

proxy.ClientCredentials.UserName.Password = "Pa$$w0rd";

The client application uses message-level authentication to send the user’s credentials
to the WCF service. You specify the credentials to send by using the ClientCredentials.
UserName property of the proxy object.

Important  To reiterate the point made in Chapter 4, this code is for illustrative purposes
in this exercise only. You should never hard-code user names and passwords directly into an
application.

Test the WCF Service

	 1.	 In Solution Explorer, right-click the ProductsClient project, and then click Set As Startup
Project.

	 2.	 Start the solution without debugging. When the client console window appears, press
Enter to connect to the service.

The first three tests should run successfully, but the final test fails with the error shown
in the following image:

The PrincipalPermission attributes implementing security demands for the first three
methods automatically use the currently configured role provider. In Chapter 4, they
used the Windows Token Role Provider and authorized users based on their Windows
identity. In these exercises, they are using the ASP.NET Role Provider. The problem is
that the method executed by Test 4 does not use the PrincipalPermission attribute—the
authorization check is performed by using code. In particular, the following statement

Download from Wow! eBook <www.wowebook.com>

	 Chapter 5  Protecting a WCF Service over the Internet	 183

attempts to retrieve the identity of the user assuming it was a Windows principal, which
it no longer is:

WindowsPrincipal user = new WindowsPrincipal(

 (WindowsIdentity)Thread.CurrentPrincipal.Identity);

	 3.	 Press Enter and return to Visual Studio.

	 4.	 Edit the ProductsService.cs file in the App_Code folder of the InternetProductsService
Web site project. Locate the ChangeStockLevel method and modify the two lines of code
that create the user variable; test this variable to determine whether the user is a mem-
ber of the StockControllers role, as shown in bold in the following:

public bool ChangeStockLevel(string productNumber, short newStockLevel,

 string shelf, int bin)

{

 // Determine whether the user is a member of the StockControllers role

 IIdentity user = ServiceSecurityContext.Current.PrimaryIdentity;

 if (!(System.Web.Security.Roles.IsUserInRole(user.Name, "StockControllers")))

 {

 ...

 }

 ...

}

The ServiceSecurityContext class contains information about the current security con-
text for the WCF operation being performed. This security context information includes
the identity if the user requesting the operation, which is available in the static Current.
PrimaryIdentity property. You can use the name held in this identity object to determine
whether the user is a member of a specific role by using the IsInRole method of the
System.Web.Security.Roles class. The Roles class accesses the data in the currently config-
ured role provider for the WCF service to perform its work.

	 5.	 Start the solution without debugging. Press Enter when the client application window
appears. This time, Test 4 fails with the error “Access is denied.” This is because Bert is
not a member of the StockControllers role.

	 6.	 Press Enter again to close the application.

	 7.	 Edit the Program.cs file in the ProductsClient project. Change the user name sent to the
WCF service through the proxy as follows:

proxy.ClientCredentials.UserName.UserName = "Fred";

	 8.	 Start the solution without debugging. Press Enter when the client application window
appears. Fred is a member of both the WarehouseStaff and StockControllers roles, and
all tests should run successfully.

	 9.	 Press Enter to close the application.

Download from Wow! eBook <www.wowebook.com>

184	 Windows Communication Foundation 4 Step by Step

Authenticating and Authorizing Users by Using Certificates
Using a user name and password to identify a user provides a degree of security, but you are
probably all too familiar with the shortcomings of many implementations that follow this
approach. It is very easy to disclose a password (possibly unwittingly) to another user. Many
people use passwords that are easy for them to remember, and typically passwords are often
short, or easily guessed (how many times have you used “password,” or “1234,” or something
equally insecure?). Even your mother’s maiden name, suitably scrambled, is not that secure—
this information is frequently available in the public domain, which is why it is nonsense for
banks to use this as a piece of information to identify yourself whenever you need to contact
them (I will get off my security hobbyhorse now).

Using a public key infrastructure (PKI) can help to overcome some of the shortcomings of
passwords. PKI provides a mechanism both for encrypting messages and for authenticating
them.

PKI is based on pairs of keys (a key is a long sequence of random numbers): a public key that
you can use to encrypt messages, and a private key that you can use to decrypt them again.
These keys should be unique. If you want to communicate with a third party, you can send
them a copy of your public key. The third party can encrypt their messages using this key and
transmit them to you. You can decrypt these messages using your private key. The theory is
that only your private key can decrypt a message that was encrypted by your public key, so it
does not matter if someone else intercepts the message because they will not be able to read
it. In practice, it is possible to decrypt messages even if you don’t have the private key, but it
takes a lot of effort, and the longer the key, the more time and effort it takes—use keys with
128 bits or more.

Public and private keys can also work the other way around. If you encrypt a message with
your private key, anyone with the public key can decrypt it. This does not sound too useful
until you consider that this provides a convenient mechanism for verifying the source of a
message. If a third party receives an encrypted message that purports to come from you but
that it cannot decrypt by using the public key that you provided, then the chances are that
this message was actually from someone else pretending to be you (only you can send mes-
sages that can be decrypted using your public key). The third party should probably discard
the message in this case.

Where do you get keys? Well, you can request a pair of keys in a certificate from a certification
authority, or CA. The CA will perform various checks to ensure that you are who you actually
say you are, and if they are satisfied, they will issue you with a certificate containing a public
key and a private key (you usually have to pay for this service). The certificate also contains
other bits of identity information about you and about the CA itself.

When you wish to communicate with a third party, you can send them a message that
includes a hash (a calculated summary, similar to a checksum but more complicated) of the

Download from Wow! eBook <www.wowebook.com>

	 Chapter 5  Protecting a WCF Service over the Internet	 185

message contents encrypted with your private key—this is referred to as your signature. You
can arrange for a copy of your certificate, minus your private key, to be installed in the certifi-
cate store on the third-party computer as an out-of-band operation by the administrator at
that end or attach a copy of your certificate, minus the private key, with the message when
you send it. When the third party examines your certificate, it can verify that it was issued by
a recognized and trusted CA, and that it has not been revoked before continuing (a certificate
can be withdrawn if the service no longer wishes to trust the client, and the service can main-
tain a list of withdrawn certificates in its certificate revocation list).

If the third party does not recognize or trust the CA, they can simply reject the message.
Assuming that the third party does trust the CA, it can use the public key from your certificate
to decrypt the signature and verify the unencrypted hash against the message (the third party
generates its own hash of the message contents using the same algorithm that you did and
compares his hash to yours). If this is successful, the third party will then have a reasonable
degree of assurance that the message was sent by you. It can also be very confident that the
message has not been corrupted or otherwise tampered with as it passed across the network.
The third party can use the identity information from your certificate to determine your level
of authorization and process your request if you have the appropriate authority.

A service can also use a certificate to authenticate itself to a client application, reducing the
likelihood of the client connecting to a spoof service.

Note  This discussion has been primarily concerned with signing messages for authentication
purposes. You can use certificates to encrypt messages as well, but the process is slightly more
complex. When a client application wants to send an encrypted and signed message to a service, it
first signs the message by using its own private key and then encrypts the complete, signed mes-
sage by using the service’s public key. The service decrypts the signed message using its private
key and then authenticates the message by using the client application’s public key.

If the service sends an encrypted and signed response back to the client, the process is reversed;
the service signs the message with its private key and encrypts the message with the client appli-
cation’s public key. The client application decrypts the signed message with its private key and
uses the service’s public key to authenticate the message.

You can see that communications that require the use of certificates include a complex protocol
involving an initial exchange of certificates and keys. However, the additional security that certifi-
cates provide makes this overhead very worthwhile.

You should always obtain the certificates that you use to identify yourself and secure your
communications from a reputable certification authority that is trusted by you and those
parties with whom you wish to communicate. And you should never, ever disclose your own
personal private key!

In the exercises in this section, you will see how you can use certificates to sign messages and
authenticate users to a WCF service application.

Download from Wow! eBook <www.wowebook.com>

186	 Windows Communication Foundation 4 Step by Step

Modify the WCF Service to Require Client Applications to Authenticate by Using
Certificates

	 1.	 In Visual Studio, edit the Web.config file for the InternetProductsServive Web site project
by using the Service Configuration Editor.

	 2.	 In the Configuration pane, expand the Bindings folder, and then click the Products
ServiceWS2007HttpBindingConfig binding configuration.

	 3.	 In the right pane, click the Security tab. Change the MessageClientCredentialType prop-
erty to Certificate.

The WCF service now requires that client applications supply a certificate to authenti-
cate users. The NegotiateServiceCredential property on this page specifies how the client
application sends the certificate to the WCF service. If this property is set to True (the
default value), the WCF service expects the client application to include the certificate
with the messages that it sends (actually, a series of initial messages occur while the
client and WCF service exchange certificates). If this property is set to False, the admin-
istrator for the WCF service must install the client certificate manually in the Trusted
People certificate store of the computer running the service.

Set this property to False, as you will manually install the client certificates in a later step.

	 4.	 In the Configuration pane, expand the Advanced folder, expand the Service Behaviors
folder, expand the (Empty Name) node, expand the serviceCredentials node, and then
click the clientCertificate node.

The CertificateValidationMode property in the upper part of the clientCertificate pane is
where you specify how the WCF service verifies the trustworthiness of client certificates.
It can have the following values:

❏❏ ChainTrust (the default)  The service will verify that the CA that issued the certif-
icate is valid and can be trusted—the CA must either have a certificate that is
stored in the Trusted Root Certification Authorities store on the service’s computer,
or have a certificate that was issued by another CA that is recorded in the Trusted
Root Certification Authorities store, or have a certificate that was issued by a CA
that has a certificate that was issued by another CA recorded in Trusted Root
Certification Authorities store, and so on. The service will navigate its way up the
chain of CA certificates until it either finds a trusted CA or reaches the end of
the chain. If the service fails to establish that the chain ends in a trusted CA, the
client certificate is not trusted, and it is rejected.

❏❏ PeerTrust  The service searches the Trusted People store for the client certificate.
If the service finds a matching certificate, the client is trusted. If not, the client
request is rejected.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 5  Protecting a WCF Service over the Internet	 187

❏❏ PeerOrChainTrust  The service deems that the client certificate is valid if it is in
the Trusted People store, or it can verify that the certificate was issued by a trusted
CA by means of the ChainTrust mechanism described above.

❏❏ Custom  The service uses a class that implements your own custom certificate
validation process. You specify the class that implements the custom validation by
using the CustomeCertificateValidatorType property.

❏❏ None  The service does not attempt to verify the client certificate and just
accepts it as valid.

By default, when validating certificates, the service will look in stores in the LocalMachine
store location. This is useful if you are hosting the WCF service in IIS. If you are creating
a self-hosted service that runs in the security context of a specific user account, you can
configure the WCF service to look in the CurrentUser store location instead by changing
the TrustedStoreLocation property.

The RevocationMode property specifies whether the service should also check to see
whether the client certificate has been revoked (the client is no longer trusted). The
service can query its online revocation list (Online), its cached revocation list (Offline), or
not bother checking (NoCheck).

	 5.	 In the right pane, set the CertificateValidationMode property to PeerTrust.

Important  In the following exercises, you will use test certificates generated by the make-
cert utility to identify users. These certificates do not have a trusted CA. For the WCF service
to be able to use these certificates, you must either disable validation checking (which is
very dangerous and never recommended) or arrange for the certificates to be placed in the
Trusted People store, which is what you have specified here.

	 6.	 Save the configuration file, and then close the Service Configuration Editor.

You can now configure the client application to send a certificate to the WCF service.

Modify the Client Application to Authenticate with the WCF Service by Using a
Certificate

	 1.	 Edit the app.config file for the ProductsClient project by using the Service Configuration
Editor.

	 2.	 In the Configuration pane, expand the Bindings folder, and then click the ProductsClient
WS2007HttpBindingConfig binding configuration.

	 3.	 In the right pane, click the Security tab. Set the MessageClientCredentialType property to
Certificate, and set the NegotiateServiceCredential property to False.

	 4.	 Save the configuration file, and then close the Service Configuration Editor.

Download from Wow! eBook <www.wowebook.com>

188	 Windows Communication Foundation 4 Step by Step

The next step is to create certificates for the two test users, Bert and Fred, and then modify
the client application to send a certificate that identifies the user to the WCF service.

Create Certificates to Identify the Test Users

	 1.	 Open a Visual Studio Command Prompt window as Administrator.

	 2.	 In the Visual Studio Command Prompt window, type the following command:

makecert -sr CurrentUser -ss My -n CN=Bert -sky exchange

This command creates a certificate with the subject “Bert” and places it in the Personal
store of the currently logged on user.

	 3.	 In the Visual Studio Command Prompt window, type the following command:

makecert -sr CurrentUser -ss My -n CN=Fred -sky exchange

This command creates another certificate with the subject “Fred.”

The certificates for Bert and Fred are in the Personal certificate store of the current user. The
WCF service requires the administrator to install a copy of these certificates into the Trusted
People store of the computer hosting the WCF service. In the next exercise, you will export
a copy of the personal certificates to a pair of files, and then import the certificates to the
Trusted People store for the local computer.

Note  The certmgr utility that you use in the following exercise provides options with which you
can copy a certificate directly from one store to another in a single command. However, in the real
world you would more likely export a certificate to a file, transport the file (in a secure manner) to
the computer hosting the service, and then import the certificate into the certificate store. This is
the approach used in the following exercise.

Export the Users’ Certificates, and Import Them into the Server’s Certificate Store

	 1.	 In the Visual Studio Command Prompt window, move to your Documents folder and
type the following command:

certmgr.exe -put -c -n Bert -r CurrentUser -s My bert.cer

This command retrieves a copy of Bert’s certificate from the Personal store (My) for the
current user and creates a file called Bert.cer. This file contains a copy of the certificate
including its public key, but not the private key.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 5  Protecting a WCF Service over the Internet	 189

Note  It is important that you include the “.exe” extension when you run the certmgr util-
ity because there is also a Microsoft Management Console called certmgr, and this may run
instead if you omit the extension (certmgr.msc is located in the \Windows\System32 folder).
If the Certificates – Current User dialog box appears, you have started the certmgr console,
not the certmgr utility.

	 2.	 Type the following command:

certmgr.exe -add bert.cer -c -r LocalMachine -s TrustedPeople

This command imports the certificate into the Trusted People store for the local
computer.

	 3.	 Type the following commands to export Fred’s certificate and import it into the Trusted
People store on the local computer:

certmgr.exe -put -c -n Fred -r CurrentUser -s My fred.cer

certmgr.exe -add fred.cer -c -r LocalMachine -s TrustedPeople

	 4.	 Leave the Visual Studio Command Prompt window open.

Note  Using the commands shown in the previous exercise, you can automate the process of cre-
ating, exporting, and importing certificates by using scripts. However, the certmgr utility also pro-
vides a graphical user interface if you wish to manipulate certificates interactively. To display the
user interface, simply run the certmgr utility without any parameters. The following image shows
the user interface for the certmgr utility.

Download from Wow! eBook <www.wowebook.com>

190	 Windows Communication Foundation 4 Step by Step

Update the Client Application to Send a Certificate to the WCF Service

	 1.	 In Visual Studio, open the Program.cs file in the ProductsClient project to display it in
the Code And Text Editor window.

	 2.	 In the Main method of the Program class, replace the two statements that set the User-
Name and Password properties of the ClientCredentials.UserName property of the proxy
object with the following statement (shown in bold):

static void Main(string[] args)

{

 ...

 // Create a proxy object and connect to the service

 PermissiveCertificatePolicy.Enact("CN=LON-DEV-01");

 ProductsServiceClient proxy =

 new ProductsServiceClient("WS2007HttpBinding_IProductsService");

 proxy.ClientCredentials.ClientCertificate.SetCertificate(

 StoreLocation.CurrentUser, StoreName.My,

 X509FindType.FindBySubjectName, "Bert");

 ...

}

This statement retrieves Bert’s certificate from the Personal store of the current user and
adds it to the credentials sent to the WCF service.

	 3.	 Start the solution without debugging. In the client console window, press Enter.

The first test fails with the message “Access is denied.” The WCF service has authenti-
cated the client certificate (you would get a different exception if the authentication had
failed—”An unsecured or incorrectly secured fault was received from the other party”),
but the service is still attempting to authorize users based on the information stored in
the SQL Server database used by the ASP.NET Role Provider.

	 4.	 Press Enter to close the client console window.

You need to modify the definitions of the users and roles in the SQL Server database to map
user identities retrieved from user’s certificates to roles. But first, you need to understand the
identifiers that the WCF service uses when clients authenticate by using certificates.

Investigate the Identifiers of Users Authenticated by Using Certificates

	 1.	 Open the ProductsService.cs file in the App_Code folder in the InternetProductsService
Web site project.

	 2.	 Comment out the PrincipalPermission attribute for the ListProducts method in the
ProductsServiceImpl class. Add the following statements (shown in bold) to the start of
the method:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 5  Protecting a WCF Service over the Internet	 191

//[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]

public List<string> ListProducts()

{

 string userIdentifier = ServiceSecurityContext.Current.PrimaryIdentity.Name;
 List<string> tempList = new List<string>();

 tempList.Add(userIdentifier);
 return tempList;

 ...

}

The Current.PrimaryIdentity.Name property of the ServiceSecurityContext object con-
tains the identifier of the currently authenticated user. This code returns a list of one
string that contains the user’s identifier.

Note  Using an existing operation in the WCF service in this way means that you don’t
need to regenerate the proxy for the client. Visual Studio will generate a warning, “Unreach-
able code detected,” for the remaining code in the method. You can ignore this warning
because you will remove the statements you have just added when you have finished with
them.

	 3.	 Start the solution without debugging. In the client console window, press Enter. Test 1
now succeeds and displays the identity of the user, as shown in the following image:

The identifier for the authenticated user consists of two parts: the subject name, and the
thumbprint of the certificate. The thumbprint uniquely identifies the certificate (multiple
certificates can have the same subject name), so yours will probably be different from
the one shown here. This is the information that you need to store in the SQL Server
database, so make a note of the thumbprint.

	 4.	 Press Enter to close the client console window.

Download from Wow! eBook <www.wowebook.com>

192	 Windows Communication Foundation 4 Step by Step

Update the User Information in the SQL Server Database

	 1.	 In Visual Studio, select the WCF service project in Solution Explorer. From the Website
menu, select ASP.NET Configuration to run the ASP.NET Web Site Administration Tool.

	 2.	 In the ASP.NET Web Site Administration Tool, click the Security tab, and then click the
Create User link.

	 3.	 On the Create User page, set the User Name field to the value displayed by the client
application in the previous exercise. Include the subject name prefixed with “CN=Bert,”
followed by a semicolon, a space, and the thumbprint of the certificate you recorded in
the previous exercise (be sure that there are no spaces in the thumbprint).

Fill in the remaining fields with dummy values (the ASP.NET Web Site Administration
Tool insists that you fill in all fields) and select the WarehouseStaff role. Click Create User
when you have finished:

	 4.	 Click Continue, but leave the ASP.NET Web Site Administration Tool running (you will
need it again shortly) and return to Visual Studio.

	 5.	 Run the solution again without debugging. In the client console window, press Enter.

Test 1 still displays Bert’s identifier, but Tests 2 and 3 now succeed. The user has been
identified as a member of the WarehouseStaff role, although Test 4 still fails because
Bert is not a member of the StockControllers role.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 5  Protecting a WCF Service over the Internet	 193

	 6.	 Press Enter to close the client console window.

	 7.	 Return to the Visual Studio Command Prompt window and start the certmgr utility with-
out specifying any parameters:

certmgr.exe

The user interface for the certmgr utility starts and displays the Certificates dialog box.

	 8.	 In the Certificates dialog box, click the Personal tab, select the certificate for Fred, and
then click View.

The certificate for Fred appears in the Certificate dialog box.

	 9.	 In the Certificate dialog box, click the Details tab, scroll down the list of fields, click the
Thumbprint field, and make a note of the value.

	 10.	 Return to the ASP.NET Web Site Administration Tool. Add another user with the name
“CN=Fred”, followed by a semicolon, a space, and the thumbprint you noted in the pre-
vious step (remove the spaces from the thumbprint). Make this user a member of the
StockControllers and WarehouseStaff roles.

	 11.	 When the user has been created, close the ASP.NET Web Site Administration Tool.

	 12.	 Return to the Certificate dialog box for the certmgr utility, and then click OK. Close the
Certificates dialog box, but leave the Visual Studio Command Prompt window open.

	 13.	 In Visual Studio, return to the Program.cs file in the ProductsClient project.

	 14.	 In the Main method of the Program class, change the statement that sets the client
credentials to use Fred’s certificate, as shown in bold in the following:

static void Main(string[] args)

{

 ...

 proxy.ClientCredentials.ClientCertificate.SetCertificate(

 StoreLocation.CurrentUser, StoreName.My,

 X509FindType.FindBySubjectName, "Fred");

 ...

}

	 15.	 Open the ProductsService.cs file containing the code for the WCF service in the Code
and Text Editor window.

	 16.	 Uncomment the PrincipalPermission attribute for the ListProducts method and remove
the four lines of code you added earlier, returning the method to its original state:

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]

public List<string> ListProducts()

{

 // Create a list for holding product numbers

 List<string> productsList = new List<string>():

 ...

}

Download from Wow! eBook <www.wowebook.com>

194	 Windows Communication Foundation 4 Step by Step

	 17.	 Run the solution again without debugging. In the client console window, press Enter.

All four tests should execute successfully. Fred is a member of the WarehouseStaff and
StockControllers roles.

	 18.	 Press Enter to close the client console window.

You have seen how to use certificates to authenticate users and how to authenticate users
identified by certificates. Note that with IIS you can also map client certificates to Windows
accounts if you prefer not to use the ASP.NET Role Provider. For more information, see the
“Configure Client Certificate Mapping Authentication (IIS 7)” page, on the Microsoft Technet
Web site at http://technet.microsoft.com/en-us/library/cc732996(WS.10).aspx.

There is one further feature worth mentioning at this point: the client application currently
hard-codes the details and location of the user’s certificate. This is almost as bad a practice
as hard-coding user names and passwords. However, it is also a little unreasonable to expect
users to know the details of their certificates, so prompting them for this information is not
a feasible alternative. In addition, an administrator might not actually want the user to know
too much about their certificates; this information could be dangerous in the hands of a naive
user. An alternative approach is for an administrator to put the details of the certificate in the
application configuration file for the client. You can define a client endpoint behavior that
contains the client credentials and reference this behavior from the endpoint. The code below
highlights the relevant fragments from a client application configuration file (you can, of
course, create this behavior and attach it to the endpoint by using the Service Configuration
Editor—endpoint behaviors are listed in the Advanced folder in the Configuration pane):

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.serviceModel>

 <behaviors>

 <endpointBehaviors>

 <behavior name="ClientCertificateBehavior">

 <clientCredentials>

 <clientCertificate findValue="Fred" x509FindType="FindBySubjectName" />

 </clientCredentials>

 </behavior>

 </endpointBehaviors>

 </behaviors>

 <bindings>

 ...

 <ws2007HttpBinding>

 <binding name="ProductsClientWS2007HttpBindingConfig">

 <security mode="TransportWithMessageCredential">

 <transport clientCredentialType="None" />

 <message clientCredentialType="Certificate"

 negotiateServiceCredential="false"/>

 </security>

 </binding>

Download from Wow! eBook <www.wowebook.com>

	 Chapter 5  Protecting a WCF Service over the Internet	 195

 </ws2007HttpBinding>

 </bindings>

 <client>

 ...

 <endpoint address="https://lon-dev-01/InternetProductsService/Service.svc"

 behaviorConfiguration="ClientCertificateBehavior" binding="ws2007HttpBinding"

 bindingConfiguration="ProductsClientWS2007HttpBindingConfig"

 contract="ProductsClient.ProductsService.IProductsService"

 name="WS2007HttpBinding_IProductsService" />

 </client>

 </system.serviceModel>

</configuration>

Authenticating Service Messages by Using a Certificate
Using the HTTPS protocol with a service gives a client application a reasonable degree of con-
fidence that communications with the service are secure. The service sends the client a certifi-
cate with a key that the client application uses for encrypting communications, and the client
application verifies that the certificate sent by the service has originated from a trusted CA.
However, HTTPS is primarily concerned with ensuring the confidentiality of communications.
Authentication for the purpose of establishing an SSL session is not the same as performing
message authentication, which can verify the identity of the message sender. The client appli-
cation frequently assumes that it is sending messages in a secure manner to a specific, trusted
service, but is this assumption always valid? The client might actually be securely exchanging
messages with a totally different spoof service—it is not unknown for hackers to infiltrate DNS
servers and arrange for messages addressed to one server to be rerouted elsewhere. To help
alleviate concerns of this type, you can implement message-level security with mutual authen-
tication in place of using transport-level security.

The protocol and mechanism used for authenticating a service to a client is very similar to
that used by the service to authenticate a client. The service signs the messages it sends to the
client application by using its private key. The client application uses a public key from a copy
of the service’s certificate held in its own certificate store to decode and verify the signature.
If the decoding fails, the service’s signature is not recognized (it is possibly a different service
pretending to be the real service), and the client can reject the message from the service.
All communications are also encrypted, as described when using message-level security in
Chapter 4.

In the following exercises, you will create another ASP.NET Web site to host a copy of the WCF
service that implements message-level security. You will then configure a certificate for the
WCF service that the client application will use to authenticate the messages sent by the WCF
service.

Download from Wow! eBook <www.wowebook.com>

196	 Windows Communication Foundation 4 Step by Step

Create an ASP.NET Web Site to Host the WCF Service That Will Implement
Message-Level Security

	 1.	 Return to the Internet Information Services (IIS) Manager console (if you have closed it,
restart it again as an administrator).

	 2.	 In the Connections pane, expand the node that corresponds to your computer, and then
click Application Pools.

	 3.	 In the Application Pools pane, right-click the ASP.NET v4.0 application pool, and then
click Recycle.

This step is necessary to close any resources (such as the ASPNETDB.MDF database) that
the Web application has open.

	 4.	 Start Windows Explorer as an administrator and move to the C:\inetpub\wwwroot folder.

	 5.	 Create a copy of the InternetProductsService folder and rename it as Mutual
AuthenticationProductsService.

	 6.	 Return to the Internet Information Services (IIS) Manager console. In the Connections
pane, under the node that corresponds to your computer, expand Sites, right-click
Default Web Site, and then click Add Application.

	 7.	 In the Add Application dialog box, specify the values shown in the following table, and
then click OK.

Item Value

Alias MutualAuthenticationProductsService

Application Pool ASP.NET v4.0

Physical Path C:\inetpub\wwwroot\MutualAuthenticationProductsService

	 8.	 Close the Internet Information Services (IIS) Manager console.

Configure the WCF Service to Authenticate Itself to Client Applications by Using the
Localhost Certificate

	 1.	 Return to the Visual Studio Command Prompt window and type the following
command:

makecert -sr LocalMachine -ss My -n CN=localhost -sky exchange

This command creates a certificate with the subject “localhost” and places it in the
Personal store of the local computer. The subject name for a service certificate should
match the name of host computer in the URL that the client application uses to connect
to the service (unlike the earlier exercises which used an SSL certificate with a name that
had to match the real name of your computer, you can specify localhost this time).

Download from Wow! eBook <www.wowebook.com>

	 Chapter 5  Protecting a WCF Service over the Internet	 197

If you are hosting a WCF service by using IIS, as you are in this exercise, you must grant
the NETWORKSERVICE account read access to the certificate by using the procedure in
the next step. If you are using a self-hosted service, the following step is not necessary,
depending on the authority of the account you use to execute the self-hosted service.

	 2.	 Move to the Microsoft Press\WCF Step By Step\Chapter 5 folder and type the following
command:

FindPrivateKey My LocalMachine -n CN=localhost -a

The FindPrivateKey utility displays information about the location of the private key
file for a specified certificate. The source code for this utility is available as part of the
Windows Communication Foundation Samples, which can be obtained from Microsoft.
The output from this command is the name of a private key file associated with the local
host certificate in the certificate store. It should look something like the following (the
hexadecimal UUID identifying the certificate will be different on your computer):

C:\ProgramData\Microsoft\Crypto\RSA\MachineKeys\7b90a71bfc56f

2582e916a51aed6df9a_dc9d1a42-7732-4bec-8b74-a1df0d4465ef

This is the file that you need to grant read access on for the NETWORKSERVICE account.

More Info  For more information about the FindPrivateKey utility, see the “FindPrivateKey”
page on the Microsoft Web site at http://msdn.microsoft.com/en-us/library/aa717039.aspx.

	 4.	 Type the following command on a single line (replacing the UUID of the certificate with
your own value):

cacls "C:\ProgramData\Microsoft\Crypto\RSA\MachineKeys\7b90a71bfc56f

2582e916a51aed6df9a_dc9d1a42-7732-4bec-8b74-a1df0d4465ef"

/E /G NETWORKSERVICE:R

Note  This command assumes that you are running the ASP.NET v4.0 application pool with
the NetworkService identity. If you are using a different identity for this application pool,
replace NETWORKSERVICE in the previous command with the name of the identity that you
are using.

	 5.	 Type the following command to stop and restart IIS:

iisreset

Leave the Visual Studio Command Prompt window open (you will need it later).

	 6.	 In Visual Studio, in the Solution Explorer, right-click the InternetProductsService solution,
point to Add, and then click Existing Web Site.

Download from Wow! eBook <www.wowebook.com>

198	 Windows Communication Foundation 4 Step by Step

	 7.	 In the Add Existing Web Site dialog box, ensure that Local IIS is selected, click the Mutual
AuthenticationProductsService site, clear the Use Secure Sockets Layer check box, and
then click Open.

	 8.	 Edit the Web.config file of the MutualAuthenticationProductsService Web site by using
the Service Configuration Editor.

	 9.	 In Configuration pane, expand the Bindings folder, and then click the ProductsService
WS2007HttpBindingConfig binding configuration.

	 10.	 In the right pane, click the Security tab. Set the Mode property to Message.

	 11.	 In the Configuration pane, expand the Advanced folder, expand the Service Behaviors
folder, expand the (Empty Name) node, expand the serviceCredentials node, and then
click the serviceCertificate node.

	 12.	 In the serviceCertificate pane, set the FindValue property to localhost and set the
X509FindType property to FindBySubjectName. Verify that the StoreLocation property
is set to LocalMachine and that the StoreName property is set to My.

	 13.	 In the Configuration pane, expand the Services folder, expand the Products.Products
ServiceImpl service, expand the Endpoints folder, and then click the (Empty Name)
endpoint.

	 14.	 In the Service Endpoint pane, change the Address of the service to http://localhost/
MutualAuthenticationProductsService/Service.svc

Note that this address specifies the HTTP protocol and not HTTPS.

	 15.	 Save the configuration file, and then close the Service Configuration Editor.

You have now enabled the WCF service to authenticate itself to client applications by signing
messages with the localhost certificate. In the real world, the administrator for the computer
hosting the WCF service would export this certificate, and then distribute it to all computers
running the client application. The next exercise simulates this process.

Export the WCF Service Certificate and Import It into the Client Certificate Store

	 1.	 Return to the Visual Studio Command Prompt window and type the following
command:

certmgr.exe -put -c -n localhost -r LocalMachine -s My localhost.cer

This command retrieves a copy of the localhost certificate used by the WCF service to
authenticate itself and creates a file called localhost.cer. Remember that this file contains
a copy of the certificate including its public key but not the private key. The administra-
tor can distribute this file to all client computers.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 5  Protecting a WCF Service over the Internet	 199

	 2.	 Type the following command:

certmgr.exe -add localhost.cer -c -r CurrentUser -s My

This command imports the certificate into the certificate store for the current user. This
is typically what an administrator would do to make the certificate available to the client
application.

Leave the Visual Studio Command Prompt window open.

You can now configure the client application to authenticate the WCF service by using the
localhost certificate in the CurrentUser certificate store.

Configure the WCF Client Application to Authenticate the WCF Service

	 1.	 In Visual Studio, edit the app.config file of the ProductsClient project by using the
Service Configuration Editor.

	 2.	 In the Configuration pane, in the Endpoints folder under the Client folder, click the
WS2007HttpBinding_IProductsService node.

	 3.	 In the right pane, change the Address property to http://localhost/Mutual
AuthenticationProductsService/Service.svc. This is the address of the WCF service.
Notice that it uses the HTTP protocol, and not HTTPS, and the name of the server is
now localhost.

	 4.	 In the Configuration pane, expand the Bindings folder, and then select the ProductsClient
WS2007HttpBindingConfig binding configuration.

	 5.	 In the right pane, click the Security tab. Set the Mode property to Message.

	 6.	 In the Configuration pane, expand the Advanced folder, right-click the Endpoint Behav-
iors node, and then click New Endpoint Behavior Configuration.

	 7.	 In the right pane, type AuthenticationBehavior for the Name property, and then click
Add.

	 8.	 In the Adding Behavior Element Extension Sections dialog box, select clientCredentials,
and then click Add.

	 9.	 In the Configuration pane, expand the clientCredentials node, expand the service
Certificate node, and then click the defaultCertificate node.

	 10.	 In the defaultCertificate pane, enter localhost for the FindValue property and set the
X509FindType property to FindBySubjectName.

	 11.	 In the Configuration pane, click the WS2007HttpBinding_IProductsService endpoint in
the Endpoints folder under the Client folder.

	 12.	 In the Client Endpoint pane, set the BehaviorConfiguration property to
AuthenticationBehavior.

Download from Wow! eBook <www.wowebook.com>

200	 Windows Communication Foundation 4 Step by Step

	 13.	 Save the configuration file, and then close the Service Configuration Editor.

	 14.	 Edit the Program.cs file for the ProductsClient application. In the Main method, com-
ment out the code that overrides the validity check of the certificate exported by the
HTTPS implementation of the WCF service (shown in bold)—this statement is not
required by this version of the client:

static void Main(string[] args)

{

 ...

 // Create a proxy object and connect to the service

 // PermissiveCertificatePolicy.Enact("CN=LON-DEV-01");

 ...

}

The final step is to verify that the client application can connect to the WCF service and
authenticate it successfully.

Verify that the Client Application Authenticates the WCF Service

	 1.	 Start the solution without debugging. In the client console window, press Enter.

The client application should complete all four tests successfully.

Tip  If the client application fails with a message stating that the service could not be acti-
vated, check to make sure that you provided the correct endpoint address for the service in
the configuration file and that you have granted read permission over the correct certificate
file to the NETWORKSERVICE account.

	 2.	 Press Enter to close the client console window.

	 3.	 Return to the command prompt window and type the following command:

certmgr.exe –del –c –n localhost –r LocalMachine –s My

This command removes the localhost certificate from the LocalMachine certificate store.

	 4.	 Type the following command:

makecert –sr LocalMachine –ss My –n CN=localhost –sky exchange

This command creates another certificate with the same subject name as before.
When you run the WCF service, it will find this certificate and present it to the client
application.

	 5.	 Restart IIS by running the following command:

iisreset

When IIS has restarted, close the command prompt window.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 5  Protecting a WCF Service over the Internet	 201

	 6.	 Return to Visual Studio and start the solution without debugging. In the client console
window, press Enter.

The client application should now fail with a MessageSecurityException “An unsecured or
incorrectly secured fault was received from the other party…”.

The private key in the localhost certificate used by the WCF service to sign messages has
changed, so the client cannot use the public key in its copy of the localhost certificate to
verify the signature of the messages sent by the WCF service. This situation is analogous
to a rogue version of the WCF service being placed at the same address as the real ser-
vice and highlights the benefits of authenticating a service in a client application.

Important  The only way the rogue service can imitate the real WCF service is if it has
access to the same private key as the real WCF service. This shows once again the impor-
tance of keeping your private keys private.

	 7.	 Press Enter to close the client console window.

Identifying a Service
The example presented in the previous set of exercises is primarily intended to be used in
configurations involving message-level security, and authentication occurs on a message-
by-message basis. It requires a significant degree of cooperation between an administrator
responsible for configuring a service who must be prepared to provide the details of the ser-
vice’s public key and the (possibly many) administrators responsible for managing the clients
that connect to the service by configuring them to use this public key. This mechanism can be
very secure, but the robust security comes at the cost of the additional processing required to
sign and encrypt all communications. As an alternative, you can implement service authenti-
cation. This approach does not protect messages in quite the same way, but it does give you
a degree of confidence that your client application is at least communicating with a bona fide
service.

When you configure a client endpoint for connecting to a service, you can specify the expected
identity of the service in the <identity> element. Depending on the security requirements of
the service this identity can take the form of a certificate, the DNS name of the server hosting
the service, an RSA key, a service principal name (SPN), or a user principal name specifying the
account under which the service runs. The following example shows a client endpoint con-
figuration with the expected identity of the service specified as an SPN.

Download from Wow! eBook <www.wowebook.com>

202	 Windows Communication Foundation 4 Step by Step

<configuration>

 <system.serviceModel>

 ...

 <client>

 <endpoint address="http://lon-dev-01/ProductsServiceWithSpnIdentity/Service.svc"

 binding="ws2007HttpBinding" bindingConfiguration="..."

 contract="..." name="...">

 <identity>

 <servicePrincipalName value="host/LON-DEV-01" />

 </identity>

 </endpoint>

 </client>

 </system.serviceModel>

</configuration>

When the client application runs and connects to the service, the WCF runtime queries the
identity of the service and verifies that it matches the identity specified in the client configura-
tion; it does this before sending the first message from the client application. If the identities
match, then the service is considered to be authenticated and the client application is allowed
to send and receive messages. If the identities are different, then the service is treated as a
spoof or fake service (possibly attempting a phishing attack), and communications from the
client application will not proceed.

Note  The identity of a service can be defined as part of the service metadata. When you create a
client proxy for a service by using the svcutil utility or the Add Service Reference Wizard, the client
endpoint configuration generated automatically includes any identity information provided by the
service.

Summary
In this chapter, you have seen how to authenticate and authorize users and services when
they are running in different Windows domains across the Internet. You have learned how to
configure the ASP.NET Membership Provider to authenticate users against credentials held in
a SQL Server database, and the ASP.NET Role Provider to specify the roles that a user has for
authorization purposes. You also should understand how client applications and services can
use certificates to authenticate messages that they send to each other and explain how they
can use public and private keys to help protect the privacy of communications in a potentially
hostile network environment. Finally, you saw how you can provide the expected identity of a
service as part of the endpoint configuration for a client application, and how the WCF run-
time can use this information to determine whether a service is real or bogus.

Download from Wow! eBook <www.wowebook.com>

203

Chapter 6

Maintaining Service Contracts and
Data Contracts

After completing this chapter, you will be able to:

■■ Describe how to protect the individual operations in a service contract.

■■ Explain which changes to a service require that client applications to be updated.

■■ Implement different versions of a service contract in a service.

■■ Modify a data contract and explain which changes will break existing client applications.

■■ Describe how WCF can generate default values for missing items in a data contract.

In Chapter 1, “Introducing Windows Communication Foundation,” you learned that one of
the fundamental tenets of Service Oriented Architectures (SOA) is that services share schemas
and contracts, not classes or types. When you define a service, you specify the operations
that it supports by defining a service contract. The service contract describes each opera-
tion, together with its parameters, and any return types. A WCF service can publish its service
contract definition, and a developer can use this information to build client applications that
communicate with the service. A developer can generate a proxy class for the client applica-
tion from the Web Services Description Language (WSDL) description of the service by using
the Add Service Reference Wizard in Visual Studio or by using the svcutil utility from the com-
mand line, and then communicate with the service through this proxy.

The service contract is only one part of the story, however. The operations in a service con-
tract can take parameters and return values. Client applications must provide data formatted
in a manner that the service expects. Many of the primitive types in the .NET Framework have
pre-defined formats, but more complex data types, such as classes, structures, and enumera-
tions require the service to specify how client applications should package this information in
messages that it sends to the service and the format for any information sent by the service
back to client applications. You encapsulate this information in data contracts. Each complex
data type used by a service should have a corresponding data contract. The service publishes
this information together with the service contract, and the definitions of each complex type
are included in the proxy code generated by the svcutil utility or the Add Service Reference
Wizard in Visual Studio.

Download from Wow! eBook <www.wowebook.com>

204	 Windows Communication Foundation 4 Step by Step

You should be able to see how service contracts and data contracts are fundamental parts
of a service. If a client application does not understand the set of operations that a service
exposes or the type of data used by these services, then it will have severe trouble communi-
cating with the service.

Modifying a Service Contract
A service contract is an interface that the WCF tools and infrastructure can convert into a
WSDL document, listing the operations for a service as a series of SOAP messages and mes-
sage responses. You provide an implementation of these methods in a class in the service.
When a WCF service starts, the WCF runtime creates a channel stack by using the bindings
specified in the service configuration file and listens for client requests in the form of one of
these messages. The WCF runtime then converts each SOAP message sent by a client appli-
cation into a method call and invokes the corresponding method in an instance of the class
implementing the service (you will learn how and when the WCF runtime actually creates this
instance in Chapter 7, “Maintaining State and Sequencing Operations”). Any data returned by
the method is converted back into a SOAP response message and is sent back through the
channel stack for transmission to the client application.

You can draw two conclusions from the preceding discussion:

	 1.	 The service contract does not depend on the communication mechanism that the ser-
vice uses to send and receive messages. The communications mechanism is governed
by the channel stack constructed from the binding information specified in the service
configuration file. You can change the network protocol or address of a service without
modifying the code in the service or in any client applications that access the service
(although client applications must use compatible endpoints in their configuration files).
To a large extent, the security requirements of a service are also independent of the
service contract, although there are exceptions, as you will see in the first part of this
chapter.

	 2.	 Client applications wishing to communicate with the service must be able to construct
the appropriate SOAP messages. These messages depend on the service contract; if the
service contract changes, then the client must be provided with an up-to-date version;
otherwise, it runs the risk of sending messages that the service does not understand
or that are formatted incorrectly. Additionally, if the response messages returned by a
service change, a client application might not be able to handle them correctly.

You will examine what these conclusions mean from a practical perspective in the exercises in
this section.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 205

Selectively Protecting Operations
The previous two chapters have shown how to protect the messages passing between client
applications and services. However, the techniques shown have concentrated on using bind-
ings and behaviors of a service to protect the service as a whole. By modifying the service
contract, you can specify different security requirements for operations in the same service.

Note  Protecting a service by modifying binding and behavior information is an example of the
fourth tenet of SOA—compatibility is based on policy. You can protect a service in a variety of
ways without modifying the service contract, as long as the client applications and service follow
compatible security policies. However, selectively protecting an operation is a change to the ser-
vice contract because now the protection mechanism becomes tightly coupled to the operation,
rather than being a policy attribute of the service. You will see the effects that this has on a client
application in the next exercise.

Specify the Security Requirements for Operations in the WCF Service

	 1.	 Using Visual Studio, open the solution file ProductsService.sln located in the Microsoft
Press\WCF Step By Step\Chapter 6\ProductsService folder, located within your Docu-
ments folder.

This solution contains an amended copy of the ProductsClient, ProductsServiceLibrary,
and ProductsServiceHost projects from Chapter 4, “Protecting an Enterprise WCF Service”.
In this version of the code, the service does not display a message box showing the
identity of the user, and the service only exposes a single non-SSL endpoint using
the WS2007HttpBinding binding. Note that the WS2007HttpBinding binding implements
message-level security and authenticates users by using Windows tokens by default.

Important  The ProductsServiceHost application exposes the ProductsService service over
an HTTP endpoint, listening on port 8010. You reserved this port in exercises in a previous
chapter, but if you have since removed this reservation you must add it again. You can do
this by opening a Visual Studio Command Prompt window as Administrator and typing the
following command (replace UserName with your Windows user name):

netsh http add urlacl url=http://+:8010/ user=UserName

	 2.	 Open the IProductsService.cs file for the ProductsServiceLibrary project in the Code And
Text Editor window. Add the following using statement to the list at the top of the file:

using System.Net.Security;

Download from Wow! eBook <www.wowebook.com>

206	 Windows Communication Foundation 4 Step by Step

	 3.	 Locate the IProductsService interface that defines the service contract and amend the
OperationContract attribute for the ListProducts and GetProduct methods, as shown in
bold in the following:

[ServiceContract]

public interface IProductsService

{

 // Get the product number of every product

 [FaultContract(typeof(SystemFault))]

 [FaultContract(typeof(DatabaseFault))]

 [OperationContract(ProtectionLevel = ProtectionLevel.EncryptAndSign)]

 List<string> ListProducts();

 // Get the details of a single product

 [OperationContract(ProtectionLevel = ProtectionLevel.EncryptAndSign)]

 Product GetProduct(string productNumber);

 ...

}

The ProtectionLevel property of the OperationContract attribute specifies how messages
invoking this operation—and output by this operation—are protected. In this case,
EncryptAndSign specifies that calls to the ListProducts and GetProduct operations must
be signed by the client and encrypted by using a key negotiated with the service. This
requires that the security mode of the binding used by the client and service implements
message-level authentication and that the client and service specify the same value for
the AlgorithmSuite property (go back and look at Chapter 4 if you need to refresh your
memory about these properties). In fact, this is the default protection level for opera-
tions when you configure message-level security by using the WS2007HttpBinding
binding.

	 4.	 Modify the OperationContract attribute for the CurrentStockLevel and ChangeStockLevel
methods, as shown in bold in the following:

[ServiceContract]

public interface IProductsService

{

 ...

 // Get the current stock level for a product

 [OperationContract(ProtectionLevel = ProtectionLevel.Sign)]

 int CurrentStockLevel(string productNumber);

 // Change the stock level for a product

 [OperationContract(ProtectionLevel = ProtectionLevel.Sign)]

 bool ChangeStockLevel(string productNumber, int newStockLevel,

 string shelf, int bin);

}

The Sign protection level specifies that calls that client applications make to these oper-
ations must be signed but not encrypted. The protection level specified here overrides
the message-level security configured for the binding.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 207

You can also specify a value of ProtectionLevel.None if you don’t want to sign or encrypt
messages, although you should use this setting with caution as it has obvious security
implications.

	 5.	 Edit the App.config file for the ProductsServiceHost project by using the Service
Configuration Editor.

	 6.	 In the Configuration pane, click the Diagnostics folder. In the right pane, verify that
the MessageLogging property is set to On (click Enable Message Logging if it is off).

You configured message logging in Chapter 4, and you enabled tracing at the transport
and message level.

	 7.	 In the right pane, click the MessageLog link. In the Listener Settings dialog box, change
the path of the log file so that the trace output is sent to the ProductsService.svclog file
in the Microsoft Press\WCF Step By Step\Chapter 6 folder, and then click OK.

	 8.	 In the Configuration pane, expand the Diagnostics folder, and then click Message
Logging.

	 9.	 In the Message Logging pane, set LogMessagesAtServiceLevel to False and verify that
LogMessagesAtTransportLevel is set to True.

To minimize the logging overhead, you will trace messages only as they flow in and out
of the transport level. At this level, you will be able to see the effects of the message-
level security applied by the binding and the service contract—logging at the service
(message) level will only show unencrypted messages as they are received and sent by
the service.

	 10.	 Save the changes, and then exit the Service Configuration Editor.

Important  The ProductsService service requires that the user invoking the operations in the cli-
ent application is a member of the WarehouseStaff and StockControllers security groups. The client
application specifies the credentials for Fred, who should be a member of both of these groups.
You created these groups and the user in the exercise “Create Groups for Warehouse Staff and
Stock Controller Staff” on page 154 in Chapter 4. If these groups and user are missing from your
computer, please go back and perform this exercise before continuing.

Test the Modified Service

	 1.	 Start the solution without debugging. In the Products Service Host window, click Start (if
a Windows Security Alert message box appears, click Allow Access to enable the service
to open the TCP port it uses for listening for client requests). In the client console window,
press Enter.

Download from Wow! eBook <www.wowebook.com>

208	 Windows Communication Foundation 4 Step by Step

Tests 1 and 2 complete successfully because the binding implements a policy of encryp-
tion and signing, and this automatically meets the requirements of the operation contract
for the ListProducts and GetProduct operations. However, Test 3 raises the exception,
“The primary signature must be encrypted,” because the CurrentStockLevel operation
specifies only signing in the operation contract, but the client binding is also encrypt-
ing information as well because the default mechanism is to encrypt and sign messages.
The problem is that you have modified the service contract, but you have not updated
the corresponding code in the client application; the proxy used by the client applica-
tion is still expecting to send signed and encrypted messages to the service for Tests 3
and 4.

	 2.	 Press Enter to close the client console window. In the Products Service Host window,
click Stop, and then close the window.

	 3.	 In Visual Studio, open the Products.cs file in the ProductsClient project.

This file contains the code for the proxy that you generated by using the svcutil tool
in Chapter 3, “Making Applications and Services Robust.” Normally, when you make
changes to a service contract you should regenerate the proxy again. However, in this
example, where you have made a small change to the contract for a couple of opera-
tions, it is simpler and more informative for you to directly modify the code so that you
can see the changes required in the proxy.

	 4.	 Scroll through the Products.cs file to locate the definition of the IProductsService inter-
face (this should be somewhere around line 231).

You should recognize the methods in this interface as they correspond very closely
to the methods in the service contract. The return type of the ListProducts method is
slightly different—it is an array of strings rather than a generic list (for reasons described
in Chapter 1), and the OperationContract and FaultContract attributes for each opera-
tion include Action and ReplyAction properties; these items specify the types of the
SOAP messages that the WCF runtime uses when communicating with the WCF service.

	 5.	 Modify the ProtectionLevel property of the OperationContract attribute for the Current
StockLevel and ChangeStockLevel methods, as shown in bold in the following (do not
modify the Action and ReplyAction properties):

[System.ServiceModel.OperationContractAttribute

 (ProtectionLevel=System.Net.Security.ProtectionLevel.Sign, Action= ...)]

int CurrentStockLevel(string productNumber);

[System.ServiceModel.OperationContractAttribute

 (ProtectionLevel = System.Net.Security.ProtectionLevel.Sign, Action = ...)]

bool ChangeStockLevel(string productNumber, int newStockLevel, string shelf, int bin);

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 209

	 6.	 Using Windows Explorer, delete the Products.svclog file in the Microsoft Press\WCF
Step By Step\Chapter 6 folder.

	 7.	 In Visual Studio, start the solution without debugging. In the Products Service Host
window, click Start. In the client console window, press Enter.

All tests should now complete successfully.

	 8.	 Press Enter to close the client console window. In the Products Service Host form, click
Stop, and then close the window.

	 9.	 Start the Service Trace Viewer (in the Microsoft Visual Studio 2010\Microsoft Windows
SDK Tools program group).

	 10.	 In the Service Trace Viewer, open the Products.svclog file in the Microsoft Press\WCF
Step By Step\Chapter 6 folder.

	 11.	 In the left pane, click the Message tab.

You should see six messages concerned with negotiating the encryption keys used by
the client and service; these messages have an Action in the http://docs.oasis-open.org
namespace. Following these are ten messages corresponding to the messages received
by the service and the responses sent back to the client application with an Action in the
http://tempuri.org namespace. There are two further messages at the end, again with an
Action in the http://docs.oasis-open.org namespace.

Tip  Expand the Action column in the left pane to see more of the name for each action.

	 12.	 Click the message with the Action http://tempuri.org/IProductsService/ListProducts. In
the lower-right pane, click the Formatted tab and scroll to the bottom of the pane to
display the Envelope Information section (if the Envelope Section is not visible, expand
the Message Log area in this pane). In the Parameters box, note that the Method used
to send the data is e:EncryptedData and that the parameter sent by the client applica-
tion has been encrypted, as highlighted in the image that follows.

Download from Wow! eBook <www.wowebook.com>

210	 Windows Communication Foundation 4 Step by Step

	 13.	 In the left pane, click the message with the Action http://tempuri.org/IProductsService/
ListProductsResponse. In the lower-right pane, verify that this response message is also
encrypted. Follow the same procedure to examine the http://tempuri.org/IProducts
Service/GetProduct and http://tempuri.org/IProductsService/GetProductResponse mes-
sages and verify that they are also encrypted.

	 14.	 In the left pane, click the http://tempuri.org/IProductsService/ChangeStockLevel message
(this message occurs after the first ChangeStockLevel and ChangeStockLevelResponse
messages in the log). In the lower-right pane, you should observe that the Method is
ChangeStockLevel and that the parameters are not encrypted:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 211

	 15.	 In the left pane, click the http://tempuri.org/IProductsService/ChangeStockLevelResponse
message. This message should also be unencrypted. Examine the http://tempuri.org/
IProductsService/CurrentStockLevel and http://tempuri.org/IProductsService/
CurrentStockLevelResponse messages. These messages should be unencrypted, as well.

	 16.	 From the File menu, choose Close All to close the log file, but leave the Service Trace
Viewer open.

Versioning a Service
Change happens. It is almost inevitable that a widely used service will evolve as circumstances
and business processes change. In many cases, these changes will manifest themselves as
modifications to the code that implements the operations in a service. However, it is also pos-
sible that the definitions of operations might need to change as well; you might need to add
new operations, retire old or redundant operations, or change the parameters and return
types of existing operations. Clearly, these modifications require updating the service contract.
However, client applications depend on the service contract to specify the messages that the
service receives and the responses it sends. If the service contract changes, what happens to

Download from Wow! eBook <www.wowebook.com>

212	 Windows Communication Foundation 4 Step by Step

clients that used the previous version of the contract? Will they still work or do you need
to go and visit every client installation and update the code? Do you actually know where to
locate every client? If client applications connect across the Internet, there could be a large
number of them located anywhere in the world.

You can see that modifying a service is not a task that you should undertake lightly and, as far
as possible, you should take steps to ensure that existing clients will continue to function with-
out the need to be updated. To this end, it helps to understand what actually happens when
you change a service or a service contract and the strategies that you can follow to minimize
any detrimental impact of these changes. The following exercises illustrate some common
scenarios.

Add a Method to the WCF Service and Amend the Business Logic of Operations

	 1.	 Using Visual Studio, open the ProductsService.cs file for the ProductsServiceLibrary
project in the Code And Text Editor window.

	 2.	 Add the following method to the start of the ProductsServiceImpl class, above the
ListProducts method:

public class ProductsServiceImpl : IProductsService

{

 public bool ProductExists(string productNumber, AdventureWorksEntities database)

 {

 // Check to see whether the specified product exists in the database

 int numProducts = (from p in database.Products

 where string.Equals(p.ProductNumber, productNumber)

 select p).Count();

 return numProducts > 0;

 }

 [PrincipalPermission(Security.Demand, Role="WarehouseStaff")]

 public List<string> ListProducts()

 {

 ...

 }

 ...

}

This method simply determines whether a product with the specified product number
exists in the AdventureWorks database, returning true if it does and false if it does not.

	 3.	 Scroll down to the GetProduct method and add the if statement (shown in bold in the
example that follows) around the code in the using block that retrieves the details of
the specified product from the AdventureWorks database (don’t forget to add the cor-
responding closing brace as well):

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 213

public Product GetProduct(string productNumber)

{

 ...

 try

 {

 // Connect to the AdventureWorks database by using the Entity Framework

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 // Check that the specified product exists

 if (ProductExists(productNumber, database))

 {

 // Find the first product that matches the specified product number

 Product matchingProduct = database.Products.First(...);

 productData = new ProductData()

 {

 ...

 }

 }

 }

 }

 ...

}

	 4.	 Add the following if statement and closing brace (shown in bold) to the CurrentStock-
Level method:

public int CurrentStockLevel(string productNumber)

{

 ...

 try

 {

 // Connect to the AdventureWorks database by using the Entity Framework

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 // Check that the specified product exists

 if (ProductExists(productNumber, database))

 {

 // Calculate the sum of all quantities for the specified product

 Product matchingProduct = database.Products.First(...);

 ...

 }

 }

 }

 ...

}

If the user provides a suspect product number, the method returns a stock level of 0.

Download from Wow! eBook <www.wowebook.com>

214	 Windows Communication Foundation 4 Step by Step

	 5.	 Add the if/else statement and closing brace (shown in bold) to the ChangeStockLevel
method. Note that the else block wraps the existing code in the using block:

public bool ChangeStockLevel(string productNumber, int newStockLevel,

 string shelf, int bin)

{

 ...

 try

 {

 // Connect to the AdventureWorks database by using the Entity Framework

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 // Check that the specified product exists

 if (!ProductExists(productNumber, database))

 return false;

 else

 {

 // Find the ProductID for the specified product

 int productID = ...

 ...

 database.SaveChanges();

 }

 }

 }

 ...

}

If the product is not found the method returns false and does not update the database.

	 6.	 Start the solution without debugging. In the Products Service Host window, click Start.
In the client console window, press Enter.

All tests should execute successfully.

	 7.	 Press Enter to close the client console window. In the Products Service Host window,
click Stop, and then close the window.

	 8.	 In Visual Studio, edit the Program.cs file in the ProductsClient project. In the Main
method, locate the block of code that invokes the GetProduct operation and displays
the results. Change the parameter that the client sends to this operation to AA-A999
and add code that checks whether the result returned by the GetProduct method is null.
If the value returned is not null, then display the details, otherwise print the message
“No such product”, as shown in bold in the following code:

static void Main(string[] args)

{

 ...

 // Test the operations in the service

 try

 {

 ...

 Console.WriteLine("Test 2: Display the details of a product");

 ProductData product = proxy.GetProduct("AA-A999");

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 215

 if (product != null)

 {

 Console.WriteLine("Number: {0}", product.ProductNumber);

 Console.WriteLine("Name: {0}", product.Name);

 Console.WriteLine("Color: {0}", product.Color);

 Console.WriteLine("Price: {0}", product.ListPrice);

 Console.WriteLine();

 }

 else

 {

 Console.WriteLine("No such product");

 Console.WriteLine();

 }

 // Query the stock level of this product

 ...

 }

 ...

}

	 9.	 Start the solution without debugging. In the Products Service Host window, click Start.
In the client console window, press Enter.

Tests 1, 2, and 4 perform successfully, but the output from Test 2 displays the message
“No such product”—there is no product in the AdventureWorks database with this
number:

	 10.	 Press Enter to close the client console window. In the Products Service Host window,
click Stop, and then close the window.

	 11.	 Edit the Program.cs file in the ProductsClient project, and change the line that calls the
GetProduct method back to its original state (see the bold text):

Product product = proxy.GetProduct("WB-H098");

Although the service has changed and a new public method has been added, the service
contract has not been modified. Therefore, the ProductExists method is not accessible to client
applications, which can continue to access the service exactly as before. This is an example of
a nonbreaking change to a service.

Download from Wow! eBook <www.wowebook.com>

216	 Windows Communication Foundation 4 Step by Step

Add a Parameter to an Existing Operation in the Service Contract

	 1.	 Open the IProductsService.cs file for the ProductsServiceLibrary project in the Code And
Text Editor window.

	 2.	 Locate the definition of the IProductsService interface and add a parameter to the
ListProducts method, as follows:

public interface IProductsService

{

 // Get the product number of every product

 [FaultContract(typeof(SystemFault))]

 [FaultContract(typeof(DatabaseFault))]

 [OperationContract(ProtectionLevel=ProtectionLevel.EncryptAndSign)]

 List<string> ListProducts(string match);

 ...

}

The AdventureWorks organization has dramatically increased the number of products
that they manufacture. The original ListProducts method returns a list comprising thou-
sands of rows. It has therefore been decided to modify this operation to give the user
the option to constrain the list of products returned to just those for which the name
matches a string value specified by the user.

	 3.	 Open the ProductsService.cs file in the Code And Text Editor window and locate the
ListProducts method. Change the definition of this method and add the string param-
eter, shown in bold in the following code example:

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]

public List<string> ListProducts(string match)

{

 ...

}

	 4.	 Modify the code that retrieves the product numbers from the database and use a LINQ
query to limit the products retrieved to those with a name that contains the string in the
match parameter, as shown in bold in the following (you might also want to modify
the comment in the code, which is now out of date):

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]

public List<string> ListProducts(string match)

{

 ...

 try

 {

 // Connect to the AdventureWorks database by using the Entity Framework

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 // Fetch the product number of every product in the database

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 217

 var products = from product in database.Products

 where product.Name.Contains(match)

 select product.ProductNumber;

 productsList = products.ToList();

 }

 }

 ...

}

	 5.	 Start the solution without debugging. In the Products Service Host window, click Start in
the client console window, and then press Enter.

Test 1 fails to return any data:

The client application currently invokes the ListProducts operation without passing it
a parameter. When the WCF runtime hosting the WCF service receives the message,
it deserializes the message, finds that there is no data in the body of the message,
and passes a null value as the parameter to the ListProducts method. The ListProducts
method consequently returns an empty list (there are no matching products).

	 6.	 Press Enter to close the client console window. In the Products Service Host window,
click Stop, and then close the window.

You may be surprised at the result of this exercise, but generally you will find that you can
add parameters to an operation (and even remove parameters from an operation), and exist-
ing client applications will still be able to call them. If you add a parameter to an operation,
and the client application fails to provide a value for this parameter, it will be assigned a
default value that depends on its type; null for a reference type, 0 for a numeric or character
type, and false for a Boolean type. Note that these default values (null, 0 or false) apply even
if you attempt to make the parameter optional and assign it a different default value when
you declare the method that implements the operation. For example, if you defined the
ListProducts method as shown in the code fragment that follows, the default value specified
for the match parameter (“W”) will be ignored if the client application omits this parameter,
and a null string will be used instead.

Download from Wow! eBook <www.wowebook.com>

218	 Windows Communication Foundation 4 Step by Step

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]

public List<string> ListProducts(string match = "W")

{

 ...

}

If you change the type of a parameter, the formatter used by the WCF runtime to deserialize
messages for the service will attempt to convert the data passed by the client application to
the type required by the operation, if possible, but if no conversion is available, the formatter
will throw an exception. However, adding, removing, or modifying parameters is not consid-
ered to be good practice, and you should treat the resulting behavior of an operation with
extreme caution. For example, if you remove a parameter from the middle of a list of param-
eters for an operation, the data passed by the client application may be deserialized into the
wrong parameters.

If you change the return type of an operation a similar set of rules apply. If the value returned
by the operation cannot be converted to the type expected by the client application, an
exception will occur in the formatter used by the client application to process response
messages.

In general, you should avoid modifying types or numbers of parameters for an operation.
Instead, if you need to modify a service contract for new client applications to use while
maintaining compatibility with existing clients, you should actually define a new version
of the service contract and leave the existing contract in place. You will see how to do this
after the next exercise.

Note  If you want to call the updated version of the ListProducts operation from the client appli-
cation, you should use the svcutil utility to generate a new version of the proxy class.

Add a New Operation to the WCF Service

	 1.	 Using Visual Studio, open the IProductsService.cs file for the ProductsService project in
the Code And Text Editor window.

	 2.	 In the IProductsService interface, remove the match parameter from the ListProducts
method and add another version of the ListProducts method, called ListMatching
Products that includes this parameter to the interface, as follows:

[ServiceContract]

public interface IProductsService

{

 // Get the product number of every product

 [FaultContract(typeof(SystemFault))]

 [FaultContract(typeof(DatabaseFault))]

 [OperationContract(ProtectionLevel= ProtectionLevel.EncryptAndSign)]

 List<string> ListProducts();

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 219

 // Get the product numbers of matching products

 [FaultContract(typeof(SystemFault))]

 [FaultContract(typeof(DatabaseFault))]

 [OperationContract(ProtectionLevel = ProtectionLevel.EncryptAndSign)]

 List<string> ListMatchingProducts(string match);

 ...

}

Note  C# permits you to have multiple methods in an interface and a class that have the
same name as long as their signatures differ. This is called “overloading.” So, in theory, you
could create two versions of the same method, both called ListProducts, one of which takes
no parameters and the other which takes a single string parameter. However, the SOAP
standard does not allow a service to expose multiple operations that share the same name
in the same service, so this approach would fail.

Apart from giving the operations different names in the C# interface, an alternative
approach is to use the Name property of the OperationContract attribute in the service
contract, like this:

[OperationContract(Name="ListMatchingProducts", ...]

List<string> ListProducts(string match);

WCF uses this property to generate the names for the SOAP request and response mes-
sages. If you don’t provide a value for the Name property, WCF uses the name of the
method instead. You should also notice that the name of an operation in a service contract
impacts the SOAP request and response messages, and is therefore a breaking change
to the service contract which will render existing client applications unable to invoke this
operation; instead, they may trip the UnknownMessageReceived event of the service host,
as described in Chapter 3.

	 3.	 Open the ProductsService.cs file in the Code And Text Editor window. In the
ProductsServiceImpl class, change the name of the ListProducts method to
ListMatchingProducts:

public class ProductsServiceImpl : IProductsService

{

 ...

 [PrincipalPermission(SecurityAction.Demand, Role = "WarehouseStaff")]

 public List<string> ListMatchingProducts(string match)

 {

 ...

 }

 ...

}

	 4.	 After the ListMatchingProducts method, add a new implementation of the original
ListProducts method to the ProductsServiceImpl class, as shown in bold in the following:

public class ProductsServiceImpl : IProductsService

{

 ...

 [PrincipalPermission(SecurityAction.Demand, Role = "WarehouseStaff")]

Download from Wow! eBook <www.wowebook.com>

220	 Windows Communication Foundation 4 Step by Step

 public List<string> ListMatchingProducts(string match)

 {

 ...

 }

 [PrincipalPermission(SecurityAction.Demand, Role = "WarehouseStaff")]

 public List<string> ListProducts()

 {

 return ListMatchingProducts("");

 }

 ...

}

The ListProducts method uses the ListMatchingProducts method, passing in an empty
string as the parameter. The LINQ query in the ListMatchingProducts method will
therefore return all products; the criteria that the LINQ query generates will be where
product.Name.Contains(“”).

	 5.	 Start the solution without debugging. In the Products Service Host window, click Start.
In the client console window, press Enter. All tests should succeed, and the call to the
ListProducts operation should return a complete list of product numbers.

	 6.	 Press Enter to close the client console window. In the Products Service Host window,
click Stop, and then close the window.

Adding a new operation to a service contract is a nonbreaking change. If you are building
a new WCF client application, you can generate a proxy that includes the new operation by
using the svcutil utility. Existing client applications using the old version of the proxy still con-
tinue to function, but they are not aware that the new operation exists.

There is still a potential issue, however. If you want new client applications to be able to call
only the new operation (ListMatchingProducts) and not use the older operation (ListProducts),
how can you hide this operation from them? The answer is to use multiple service contracts.
Keep the existing service contract unchanged, and define a new service contract that includes
the new version of the operation but not the old version. The code fragments that follow show
the existing contract (IProductsService), and the new one (IProductsServiceV2). The code frag-
ments also show the recommended mechanism for identifying and naming the different ver-
sions of a service contract by using the Namespace and Name properties of the ServiceContract
attribute. By default, the service contract uses the namespace “http://tempuri.org,” and takes
its name from the name of the interface (if you recall, when using the Service Trace Viewer
to examine the messages sent to the ProductsService, you saw that they were all of the form
“http://tempuri.org/IProductsService/…”). When defining a new version of a service contract,
use the Namespace property to identify the version by including the date, but keep the Name
property the same for each version. However, be warned that modifying the Namespace or
Name properties of a service contract constitutes a breaking change because these items are
used to help identify the SOAP messages sent between the client application and the service:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 221

// Service contract describing the operations provided by the WCF service

[ServiceContract(Namespace="http://adventure-works.com/2010/02/28", Name="IProductsService")]

public interface IProductsService

{

 // Get the product number of every product

 [FaultContract(typeof(SystemFault))]

 [FaultContract(typeof(DatabaseFault))]

 [OperationContract(ProtectionLevel = ProtectionLevel.EncryptAndSign)]

 List<string> ListProducts();

 // Get the details of a single product

 ...

}

// Version 2 of the service contract

[ServiceContract(Namespace="http://adventure-works.com/2010/05/31", Name="IProductsService")]

public interface IProductsServiceV2

{

 // Get the product number of matching products

 [FaultContract(typeof(SystemFault))]

 [FaultContract(typeof(DatabaseFault))]

 [OperationContract(ProtectionLevel = ProtectionLevel.EncryptAndSign)]

 List<string> ListMatchingProducts(string match);

 // Get the details of a single product

 ...

}

The service implementation class, ProductsServiceImpl, should implement both of these inter-
faces. The code for the methods common to both interfaces (GetProduct, CurrentStockLevel,
and ChangeStockLevel) needs to be provided only once in this class:

public class ProductsServiceImpl : IProductsService, IProductsServiceV2

{

 // Implement ListProducts, ListSelectedProducts,

 // GetProduct, CurrentStockLevel, and ChangeStockLevel

 ...

}

Finally, create a separate set of endpoints for the new version of the service contract
(one for each binding). You can use the WCF Service Configuration Edito, or edit the ser-
vice configuration file by hand, adding an endpoint with the contract attribute set to
Products.IProductsServiceV2, as shown in the following:

<system.serviceModel>

 ...

 <services>

 <service behaviorConfiguration="..." name="Products.ProductsServiceImpl">

 <endpoint ... contract="Products.IProductsServiceV2" />

 </service>

 </services>

</system.serviceModel>

Download from Wow! eBook <www.wowebook.com>

222	 Windows Communication Foundation 4 Step by Step

Note  You can find a working implementation of the ProductsService service and a client applica-
tion that provides these two versions of the service contract in the Microsoft Press\WCF Step By
Step\Chapter 6\ ProductsServiceWithVersionedServiceContract folder. You will make use of this
solution later in this chapter.

Making Breaking and Nonbreaking Changes to a Service
Contract
Strictly speaking, you should consider a service contract to be immutable; any changes that
you make to the contract are likely to affect client applications, which might no longer be able
to communicate with the service correctly. In practice, you have seen that you can make some
changes to a service contract without breaking the terms of this contract, as far as a WCF
client application is concerned. Table 6-1 summarizes some common changes that developers
frequently make to service contracts and the effects that these changes can have on existing
client applications.

Table 6-1  Service Contract Changes

Change Effect

Adding a new operation This is a nonbreaking change. Existing client applications
are unaffected, but the new operation is not visible to WCF
client applications connecting to the service by using a proxy
generated from the WSDL description of the original service
contract. Existing client applications that dynamically query
services and construct messages can use the new operation. For
more details, see Chapter 11, “Programmatically Controlling the
Configuration and Communications.”

Removing an operation This is a breaking change. Existing client applications that
invoke the operation will no longer function correctly, although
client applications that do not use the operation may remain
unaffected.

Changing the name of an
operation

This is a breaking change. Existing client applications that invoke
the operation will no longer work, although client applications
that do not use the operation may remain unaffected.

Note that the name of an operation defaults to the name of the
method in the service contract. You can change the name of a
method but retain the original name of the operation by using
the Name property in the OperationContract attribute of the
method, as follows:

[OperationContract (Name="ListProducts")]

List<string>ListAllProducts();

This is good practice because it removes any dependency
between the service contract and the name of the physical
method that implements the operation.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 223

Change Effect

Changing the protection level of
an operation

This is a breaking change. Existing client applications will not be
able to invoke the operation.

Adding a parameter to an
operation

This is a nonbreaking change. Existing client applications will be
able to invoke the operation, but the formatter used by the WCF
runtime will initialize missing parameter values to default values,
depending on their type.

Reordering parameters in an
operation

This is a breaking change. The results are not easily predictable
(some existing client applications might continue to work).

Removing a parameter from
an operation

This may be a nonbreaking change as long as the parameter is
removed from the end of the parameter list, in which case any
data passed by the client application for this parameter will be
ignored. If a parameter is removed from the start or middle of
a parameter list, then this is a breaking change for the same
reasons as reordering parameters is a breaking change.

Changing the types of parameters
or the return type of an operation

This may be breaking change if the formatter used by the WCF
runtime cannot convert data from the original types to the new
types. Existing client applications might continue to function, but
there is a significant risk that data in SOAP messages will be lost
or misinterpreted. This includes applying or removing the ref and
out modifiers to parameters, even if the underlying type does
not change. For more information, see the section “Modifying a
Data Contract” on page 224.

Adding a FaultContract to an
operation

This is a breaking change. Existing client applications can be sent
fault messages that they will not be able to interpret correctly.

Removing a FaultContract from
an operation

This is a nonbreaking change. Existing client applications
will continue to function correctly, although any handlers
for trapping the faults specified by this fault contract will be
rendered obsolete.

Changing the Name or
Namespace property of the
ServiceContract attribute for a
service contract

This is a breaking change. Existing client applications that use
the previous name or namespace will no longer be able to send
messages to the service.

If you make a breaking change to a service contract, you must update the client applications
that use the service. If client applications use WCF proxies, you will need to regenerate these
proxies. However, the recommended approach for modifying a service contract is to create a
new version and to leave the existing version intact, as described in the previous section. This
removes the requirement for you to update existing client applications, although they will not
be able to use any new features of the service.

Download from Wow! eBook <www.wowebook.com>

224	 Windows Communication Foundation 4 Step by Step

Modifying a Data Contract
The methods in a service contract can take parameters and return values. The data for these
parameters and return values is included in the SOAP messages that pass between the client
application and service. SOAP messages encode data values as tagged XML text. The WCF
runtime uses the built-in XML serialization features of the .NET Framework to serialize and
deserialize primitive .NET Framework data types, such as integers, real numbers, or even
strings. For more complex structured types, the service must specify the exact format for the
serialized representation; there could be several ways to depict the same structured data as
XML. You define structured types by using data contracts. The WCF runtime can then use
a data contract serializer (an instance of the DataContractSerializer class) to serialize and
deserialize these types.

Using a data contract, you can specify exactly how the service expects the data to be format-
ted as XML. The data contract is used by a data contract serializer in WCF client applications
to describe how to serialize the data for parameters into XML. It is also used by a data con-
tract serializer in the service to deserialize the XML back into data values that it can process.
Values returned by a service are similarly serialized as XML and transmitted back to the client
application that deserializes them.

Data Contract and Data Member Attributes
In Chapter 1, you saw how to define a simple data contract representing product data that the
service returns to client applications. To remind you, this is what the data contract looks like:

// Data contract describing the details of a product passed to client applications

 [DataContract]

public class ProductData

{

 [DataMember]

 public string Name;

 [DataMember]

 public string ProductNumber;

 [DataMember]

 public string Color;

 [DataMember]

 public decimal ListPrice;

}

Tagging a class with the DataContract attribute marks it as serializable by using the data con-
tract serializer. The data contract serializer will serialize and deserialize each member of the
class marked with the DataMember attribute. In the example shown in the following code, the
members of the class are .NET Framework primitive types, and the serializer uses its own built-
in rules to convert these types into a form that can be included in an XML message, like this:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 225

<GetProductResponse xmlns="http://adventure-works.com/2010/02/28">

 <GetProductResult xmlns:d4p1="http://schemas.datacontract.org/2004/07/Products"

 xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <d4p1:Color i:nil="true"></d4p1:Color>

 <d4p1:ListPrice>4.9900</d4p1:ListPrice>

 <d4p1:Name>Water Bottle - 30 oz.</d4p1:Name>

 <d4p1:ProductNumber>WB-H098</d4p1:ProductNumber>

 </GetProductResult>

</GetProductResponse>

If any of the members of a data contract are themselves structured types, they should also
be marked with the DataContract attribute. The data contract serializer can then recursively
apply its own serialization and deserialization process to these members.

The DataContract and DataMember attributes have optional properties that you can use to
tailor the way in which the data contract serializer performs its work. You will investigate some
of these properties in the exercises in this section.

Change the Order of Members in the ProductData Data Contract

	 1.	 Using Visual Studio, open the solution file, ProductsService.sln, located in the Microsoft
Press\WCF Step By Step\Chapter 6\ProductsServiceWithVersionedServiceContract folder.

This solution contains the implementation of the ProductsService service that provides
two versions of the service contract, as described in the previous section of this chapter.
The client application still uses version 1 of the service contract.

	 2.	 Open the IProductsService.cs file in the ProductsServiceLibrary project and locate the
ProductData class. Note that the order of the members of this class is Name, Product-
Number, Color, and ListPrice.

	 3.	 Edit the App.config file for the ProductsServiceHost project by using the Service Con-
figuration Editor.

	 4.	 In the Configuration pane, click the Diagnostics folder. In the right pane click the
MessageLog link. In the Listener Settings dialog box, change the path of the log file
so that the trace output is sent to the ProductsService.svclog file in the Microsoft Press\
WCF Step By Step\Chapter 6 folder, and then click OK.

Note  The WCF service configuration file for this version of the solution enables tracing at
the service level rather than the transport level. All messages are traced in their unencrypted
format to make it easier for you to examine their contents.

	 5.	 Save the changes, and then exit the Service Configuration Editor.

	 6.	 Using Windows Explorer, delete the Products.svclog file in the Microsoft Press\WCF Step
By Step\Chapter 6 folder.

Download from Wow! eBook <www.wowebook.com>

226	 Windows Communication Foundation 4 Step by Step

	 7.	 In Visual Studio, start the solution without debugging. In the Products Service Host win-
dow, click Start. In the client console window, press Enter.

All tests should run successfully.

	 8.	 Press Enter to close the client console window. In the Products Service Host window,
click Stop, and then close the window.

	 9.	 Return to the Service Trace Viewer and open the Products.svclog file in the Microsoft
Press\WCF Step By Step\Chapter 6 folder.

	 10.	 In the left pane, click the Message tab. Click the fourth message in the http://adventure-
works.com/2010/02/28 namespace. This is the GetProductResponse message sent by the
service to the client when replying to a GetProduct message.

	 11.	 In the lower-right pane, click the Message tab. Examine the body of the SOAP mes-
sage; note that the order of the fields in this message is Color, ListPrice, Name, and
ProductNumber.

This sequence is different from the order of the members in the Product class. This is
because the data contract serializer serializes the members of a data contract in alpha-
betic order.

	 12.	 Close the Products.svclog trace file, but leave the Service Trace Viewer open.

	 13.	 Return to Visual Studio and edit the IProductsService.cs file in the ProductsService
Library project. Amend the DataMember attributes of each member, as shown in bold
in the following:

[DataContract]

public class Product

{

 [DataMember(Order=0)]

 public string Name;

 [DataMember(Order=1)]

 public string ProductNumber;

 [DataMember(Order=2)]

 public string Color;

 [DataMember(Order=3)]

 public decimal ListPrice;

}

Rather than let the names of members imply an order, it is recommended that you use
the Order property of the DataMember attribute to explicitly specify the sequence of
the members. The data contract serializer will serialize members of the Product class in
the sequence defined by the Order property, starting with the member with the lowest
Order value. If two members have the same Order value, then they will be serialized in
alphabetic order.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 227

	 14.	 Using Windows Explorer, delete the Products.svclog file in the Microsoft Press\WCF Step
By Step\Chapter 6 folder.

	 15.	 In Visual Studio, start the solution without debugging. In the Products Service Host win-
dow, click Start. In the client console window, press Enter.

All tests appear to run successfully. However, if you examine the output from Test 2 dis-
playing the details of a product more closely, you should see that the Price is 0 rather
than $4.99. Changing the order of members in a data contract is a breaking change, and
the formatter used by the client application has not deserialized the data correctly (you
will fix the client application later).

Note  The Color is also missing for the same reason, but this is less obvious because prod-
uct WB-H098 has a null value in the database for the color. However, if the color value in the
database was not null, it would be missing from the data displayed by the client application.

	 16.	 Press Enter to close the client console window. In the Products Service Host window,
click Stop, and then close the window.

	 17.	 Return to the Service Trace Viewer and open the Products.svclog file in the Microsoft
Press\WCF Step By Step\Chapter 6 folder.

	 18.	 In the left pane, click the Message tab. Click the fourth message in the http://adventure-
works.com/2010/02/28 namespace. In the lower-right pane, click the Message tab. Note
that the order of the fields in this message is now Name, ProductNumber, Color, and
ListPrice. This sequence now matches the order of the members in the Product class.
You can see that the service is emitting the data in the products contract in the correct
sequence even though the client application is not handling this data correctly when it
receives it.

	 19.	 Close the Products.svclog trace file, but leave the Service Trace Viewer open.

You need to regenerate the proxy for the client application to make things work properly.
Before doing that though, it is worth looking at how changing the names of data members
also affects a data contract.

In a manner similar to the service contract, the data contract serializer uses the name of each
data member to form the name of each serialized field. Consequently, changing the name
of a data member is also a breaking change that requires updating client applications. Like
the operations in a service contract, you can provide a logical name for data members that
the data contract serializer will use in place of the physical name of the data members; the

Download from Wow! eBook <www.wowebook.com>

228	 Windows Communication Foundation 4 Step by Step

DataMember attribute provides the Name property for this purpose. You can use this feature
to rename the physical members of a data contract while keeping the logical names the same,
as shown in bold in the following:

[DataContract]

public class Product

{

 [DataMember(Order=0)]

 public string Name; // Serializer uses physical name of member

 [DataMember(Order=1, Name="ProductNumber")]

 public string Number; // Field renamed. Serializer uses Name property

 ...

}

The DataContract attribute provides a Namespace property. By default, WCF uses the
namespace “http://schemas.datacontract.org/2004/07” with the .NET Framework namespace
containing the data contract appended to the end. In the ProductsService service, the
ProductData data contract is a member of the Products .NET Framework namespace, so mes-
sages are serialized with the namespace “http://schemas.datacontract.org/2004/07/Products.”
You can override this behavior by specifying a value for the Namespace property of the
DataContract attribute. This is good practice; you can include date information in the namespace
to help identify a specific version of the data contract. If you update the data contract, then
modify the namespace to include the date of the update.

Change the Namespace of the ProductData Data Contract

	 1.	 In Visual Studio, edit the IProductsService.cs file in the ProductsServiceLibrary project.

	 2.	 Modify the DataContract attribute for the ProductData class, as shown in bold in the
following:

[DataContract(Namespace="http://adventure-works.com/datacontract/2010/06/01/Products")]

public class ProductData

{

 ...

}

(For the purposes of this exercise, assume that the current date is 1 June, 2010.)

	 3.	 Using Windows Explorer, delete the Products.svclog file in the Microsoft Press\WCF Step
By Step\Chapter 6 folder.

	 4.	 In Visual Studio, start the solution without debugging. In the Products Service Host win-
dow, click Start. In the client console window, press Enter.

All tests should run, but this time Test 2 is also missing the product number and name
(previously, only the price and color were omitted). Changing the namespace for a data
contract is another example of a breaking change.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 229

	 5.	 Press Enter to close the client console window. In the Products Service Host window,
click Stop, and then close the window.

	 6.	 Return to the Service Trace Viewer and open the Products.svclog file in the Microsoft
Press\WCF Step By Step\Chapter 6 folder.

	 7.	 In the left pane, click the Message tab. Click the fourth message in the http://adventure-
works.com/2010/02/28 namespace. In the lower-right pane, click the Message tab.
Verify that the namespace for the fields in the message body is the new namespace;
the <GetProductResult> element creates an alias for the namespace called “d4p1,” and
the fields in the message are prefixed with this alias.

	 8.	 Close the Products.svclog trace file, but leave the Service Trace Viewer open.

You can see that the ProductsService service is formatting messages as expected, although
the client application is not currently processing them correctly. The next step is to regener-
ate the proxy for the client application. You will also take the opportunity to switch the client
application to use the IProductsServiceV2 interface.

Regenerate the Proxy Class and Update the WCF Client Application

	 1.	 Open a Visual Studio Command Prompt window and move to the folder \Microsoft
Press\WCF Step By Step\Chapter 6\ProductsServiceWithVersionedServiceContract\
ProductsServiceLibrary\bin\Debug folder.

	 2.	 Run the following command to generate the schema files and WSDL description file for
the ProductsService service:

svcutil ProductsServiceLibrary.dll

This command generates the following files:

❏❏ adventure-works.com.2010.02.28.wsdl

❏❏ adventure-works.com.2010.05.31.wsdl

❏❏ adventure-works.com.2010.02.28.xsd

❏❏ adventure-works.com.2010.05.31.xsd

❏❏ schemas.microsoft.com.2003.10.Serialization.xsd

❏❏ schemas.microsoft.com.2003.10.Serialization.Arrays.xsd

❏❏ Products.xsd

❏❏ adventure-works.com.datacontract.2010.06.01.Products.xsd

Notice that as the service now contains two service contracts, this command generates
two WSDL description files with their corresponding schemas.

Download from Wow! eBook <www.wowebook.com>

230	 Windows Communication Foundation 4 Step by Step

	 3.	 Type the following command on a single line to generate the proxy class from the WSDL
description file for the version 2 interface (2010.05.31) and the schema files. The /out
parameter specifies the name of the .cs file generated for the proxy class.

svcutil /namespace:*,ProductsClient.ProductsService

 adventure-works.com.2010.05.31.wsdl *.xsd /out:ProductsV2.cs

Note  If you need to generate a proxy for the version 1 interface (2010.02.28), then simply
specify the appropriate WSDL file.

	 4.	 Leave the Visual Studio Command Prompt window open and return to Visual Studio.

	 5.	 In the ProductsClient project, delete the Products.cs file.

	 6.	 Add the file, ProductsV2.cs, located in the Microsoft Press\WCF Step By Step\Chapter 6\
ProductsServiceWithVersionedServiceContract\ProductsServiceLibrary\bin\Debug folder
to the ProductsClient project.

	 7.	 Open the ProductsV2.cs file in the Code And Text Editor and locate the IProducts
Service interface. Notice that the Action and ReplyAction message in the Operation
Contract definitions for each method now specify messages the http://adventure-works.
com/2010/05/31/IProductsService namespace.

	 8.	 The client application currently invokes the ListProducts operation. This operation is
not available in version 2 of the ProductsService service. Open the Program.cs file in the
ProductsClient project in the Code And Text Editor window. In the Main method, change
the code that performs Test 1 to call the ListMatchingProducts method, passing in a
product name that matches all bicycle frames, as shown in bold in the following:

static void Main(string[] args)

{

 ...

 // Test the operations in the service

 try

 {

 // Obtain a list of all bicycle frames

 Console.WriteLine("Test 1: List all bicycle frames");

 string[] productNumbers = proxy.ListMatchingProducts("Frame");

 foreach (string productNumber in productNumbers)

 {

 Console.WriteLine("Number: {0}", productNumber);

 }

 Console.WriteLine();

 ...

 }

 ...

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 231

	 9.	 Start the solution without debugging. In the Products Service Host window, click Start.
In the client console window, press Enter.

All tests should run successfully. Test 1 should display fewer items than before (the prod-
uct numbers should all begin with the text “FR” to indicate that they are bicycle frames),
and Test 2 should now display valid data for product WB-H098 (a 30 oz. water bottle of
unspecified color that costs $4.99).

	 10.	 Press Enter to close the client console window. In the Products Service Host form, click
Stop, and then close the window.

You can now see that you should carefully assess the impact of updating a data contract;
doing so can cause client applications to malfunction in ways that are not always obvious.
The nature of SOAP serialization means that reorganized or misplaced fields end up being
assigned default values, which are very easy to miss.

You can also add new members to a data contract. Under some circumstances, you can per-
form this task without breaking existing client applications. You should notice that adding
a member to a data contract changes the schema exported by WCF. Client applications use
this schema to determine the format of the data they send and receive in SOAP messages.
Many client applications that use SOAP (including those built by using WCF and ASP.NET Web
services) will happily ignore additional fields in SOAP messages. However, a small number of
client applications created by using other technologies can enable strict schema validation.
If you have to support these types of client applications, you cannot add new fields to a data
contract without updating those client applications, as well. In these cases, you should adopt
a data contract versioning strategy similar to that shown for versioning service contracts. For
more information, see the topic, Best Practices: Data Contract Versioning in the documentation
provided with Visual Studio (also available on the Microsoft Web site at http://msdn.microsoft.
com/en-us/library/ms733832.aspx).

In the following exercises you will examine the effects of adding a new field to a data contract
in a WCF service, and see how a WCF client application handles this unexpected data.

Add a New Field to the ProductData Data Contract

	 1.	 Using Visual Studio, edit the IProductsService.cs file in the ProductsServiceLibrary
project.

	 2.	 Add the following member (shown in bold) to the end of the ProductData class:

public class ProductData

{

 ...

 [DataMember(Order=0)]

 public decimal StandardCost;

}

Download from Wow! eBook <www.wowebook.com>

232	 Windows Communication Foundation 4 Step by Step

The StandardCost in the Product table in the AdventureWorks database records the
cost of the product to the AdventureWorks organization. The difference between the
value in the ListPrice column and StandardCost is the profit that AdventureWorks makes
whenever it sells an item. Adding this member with the Order property set to 0 causes
it to be serialized as the second member of the data contract. The Name member,
which also has the Order property set to 0, will be output first, as it comes alphabetically
before StandardCost.

Note  As mentioned earlier, I would not normally recommend that you rely on alphabetical
order to determine the sequence of members in a data contract, but in this case there is a
reason for this approach; you will quickly be able to see what happens in a client application
when an unexpected data member appears in the middle of a data contract.

	 3.	 In the ProductsService.cs file, find the GetProduct method in the ProductsServiceImpl
class. In this method, update the statement that retrieves product information from the
database and populates the productData object returned by this method, as shown in
bold in the following:

public ProductData GetProduct(string productNumber)

{

 ...

 try

 {

 // Connect to the AdventureWorks database by using the Entity Framework

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 // Check that the specified product exists

 if (ProductExists(productNumber, database))

 {

 ...

 productData = new ProductData()

 {

 Name = matchingProduct.Name,

 ProductNumber = matchingProduct.ProductNumber,

 Color = matchingProduct.Color,

 ListPrice = matchingProduct.ListPrice,

 StandardCost = matchingProduct.StandardCost

 };

 }

 }

 }

 ...

}

	 4.	 Using Windows Explorer, delete the Products.svclog file in the Microsoft Press\WCF Step
By Step\Chapter 6 folder.

	 5.	 In Visual Studio, start the solution without debugging. In the Products Service Host win-
dow, click Start. In the client console window, press Enter.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 233

All tests should run successfully, including Test 2, which completely ignores the new
member of the data contract. Adding a new member in the middle of a data contract
does not appear to affect the client application at all.

	 6.	 Press Enter to close the client console window. In the Products Service Host form, click
Stop, and then close the window.

	 7.	 Return to the Service Trace Viewer and open the Products.svclog file in the Microsoft
Press\WCF Step By Step\Chapter 6 folder.

	 8.	 In the left pane, click the Message tab. Click the fourth message in the http://adventure-
works.com/2010/05/31 namespace. Remember that this is the GetProductResponse
message sent by the service to the client when replying to a GetProduct message.

	 9.	 In the lower-right pane, click the Message tab. Scroll this pane to display the body of
the SOAP message. Notice that the StandardCost field appears between the Name and
ProductNumber fields.

The data contract serializer serializes every member of the data contract. The WCF client
application is not expecting the StandardCost field, and as it does not perform strict
schema validation, the client application simply ignores this extra field.

	 10.	 Close the Products.svclog trace file, and then close the Service Trace Viewer.

	 11.	 Regenerate the proxy class for the client application:

	 a.	 Return to the Visual Studio Command Prompt window in the Microsoft Press\WCF
Step By Step\Chapter 6\ProductsServiceV2\ProductsService\bin folder. Run the
command:

svcutil ProductsServiceLibrary.dll

	 b.	 Run the command:

svcutil /namespace:*,ProductsClient.ProductsService

 adventure-works.com.2010.05.31.wsdl *.xsd /out:ProductsV2.cs

	 12.	 Return to Visual Studio. In the ProductsClient project, delete the ProductsV2.cs file and
replace it with the new file located in the Microsoft Press\WCF Step By Step\Chapter 6\
ProductsServiceWithVersionedServiceContract\ProductsServiceLibrary\bin\Debug folder.

	 13.	 Edit the Program.cs file in the ProductsClient project. In the Main method, add a state-
ment (shown in bold in the following code) after the code that performs Test 2 to display
the standard cost:

static void Main(string[] args)

{

 ...

 try

 {

 ...

 Console.WriteLine("Test 2: Display the details of a product");

Download from Wow! eBook <www.wowebook.com>

234	 Windows Communication Foundation 4 Step by Step

 ProductData product = proxy.GetProduct("WB-H098");

 if (product != null)

 {

 Console.WriteLine("Number: {0}", product.ProductNumber);

 Console.WriteLine("Name: {0}", product.Name);

 Console.WriteLine("Color: {0}", product.Color);

 Console.WriteLine("Price: {0}", product.ListPrice);

 Console.WriteLine("Standard Cost: {0}", product.StandardCost);

 Console.WriteLine();

 }

 ...

 }

 ...

}

	 14.	 Start the solution without debugging. In the Products Service Host window, click Start.
In the client console window, press Enter.

All tests should run successfully, and Test 2 should now include the standard cost
($1.8663).

	 15.	 Press Enter to close the client console window. In the Products Service Host window,
click Stop, and then close the window.

While it is acceptable for a client application to discard a field sent by the service, this scenario
can cause complications if the client application is later expected to send data to the service
that includes this missing field. You will examine this scenario in the next exercise.

Add Another Operation to the WCF Service for Investigating Data Contract
Serialization

	 1.	 In Visual Studio, edit the IProductsService.cs file in the ProductsServiceLibrary project.

	 2.	 Add the following operation (shown in bold) to the IProductServiceV2 service contract:

public interface IProductServiceV2

{

 ...

 // Update the details of the specified product in the database

 [OperationContract]

 void UpdateProductDetails(ProductData product);

}

A client application can use this operation to modify the details of a product in the
database.

	 3.	 Add the implementation of the UpdateProductDetails method to the end of the Products
ServiceImpl class in the ProductsService.cs file, as shown in the following:

public class ProductsServiceImpl : ...

{

 ...

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 235

 public void UpdateProductDetails(ProductData product)

 {

 MessageBox.Show("Updating: " + product.Name, "UpdateProductDetails",

 MessageBoxButton.OK, MessageBoxImage.Information);

 try

 {

 // Connect to the AdventureWorks database by using the Entity Framework

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 if (!ProductExists(product.ProductNumber, database))

 return;

 else

 {

 // Find the product, using the ProductNumber as the key

 Product productToUpdate =

 (from p in database.Products

 where

 String.Compare(p.ProductNumber, product.ProductNumber) == 0

 select p).First();

 // Update the product

 productToUpdate.Name = product.Name;

 productToUpdate.ListPrice = product.ListPrice;

 productToUpdate.StandardCost = product.StandardCost;

 productToUpdate.Color = product.Color;

 // Save the change back to the database

 database.SaveChanges();

 }

 }

 }

 catch(Exception e)

 {

 MessageBox.Show("Error updating product: " + e.Message,

 "UpdateProductDetails",

 MessageBoxButton.OK, MessageBoxImage.Error);

 }

 }

}

Note  The code for this method is available in the UpdateProductDetails.txt file, which is in
the Microsoft Press\WCF Step By Step\Chapter 6 folder.

This method displays the product number and name sent by the client application
and then updates the corresponding product in the database. Note that for reasons
described in previous chapters it is not normal, and certainly not good practice—to
display messages in a WCF service; these statements are for instructional purposes for
this exercise only—so that you can verify that the client application successfully invokes
the UpdateProductDetails operation.

	 4.	 Build the solution.

Download from Wow! eBook <www.wowebook.com>

236	 Windows Communication Foundation 4 Step by Step

	 5.	 Regenerate the proxy class for the client application:

	 a.	 In the Visual Studio Command Prompt window, run the following command:

svcutil ProductsServiceLibrary.dll

	 b.	 Run the following command to rebuild the proxy class:

svcutil /namespace:*,ProductsClient.ProductsService

 adventure-works.com.2010.05.31.wsdl *.xsd /out:ProductsV2.cs

	 6.	 Return to Visual Studio. In the ProductsClient project, delete the ProductsV2.cs file and
replace it with the new file located in the Microsoft Press\WCF Step By Step\Chapter 6\
ProductsServiceV2\ProductsService\bin folder.

	 7.	 Edit the Program.cs file in the ProductsClient project. In the Main method, add the fol-
lowing statements that test the new operation to the try block:

static void Main(string[] args)

{

 ...

 try

 {

 ...

 // Modify the details of this product

 Console.WriteLine("Test 5: Modify the details of a product");

 product.ProductNumber = "WB-H098";

 product.Name = "Water Bottle - 1 liter";

 proxy.UpdateProductDetails(product);

 Console.WriteLine("Request sent");

 Console.WriteLine();

 // Disconnect from the service

 proxy.Close();

 }

 ...

}

	 8.	 Start the solution without debugging. In the Products Service Host window, click Start.
In the client console window, press Enter.

When Test 5 runs, a message box appears displaying the product number and the new
product name.

Click OK to close the message box.

	 9.	 Press Enter to close the client console window. In the Products Service Host window,
click Stop, and then close the window.

The client application successfully sends a Product object to the WCF service using the defini-
tion from the data contract. But what happens if the client application uses a version of the
data contract that is missing a field?

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 237

Add Another Field to the ProductData Data Contract and Examine the Default Value

	 1.	 In Visual Studio, edit the IProductsService.cs file in the ProductsServiceLibrary project.

	 2.	 Add the following member (shown in bold) to the end of the ProductData data contract:

public class ProductData

{

 ...

 [DataMember(Order = 4)]

 public bool FinishedGoodsFlag;

}

The FinishedGoodsFlag in the Product table in the AdventureWorks database indicates
whether the product is a complete item (such as a water bottle) or a component used to
construct other parts (such as a chaining nut).

	 3.	 In the UpdateProductDetails method in the ProductsServiceImpl class in the Products
Service.cs file, modify the statement that displays the product details to include the
FinishedGoodsFlag member:

public class ProductsServiceImpl : ...

{

 ...

 public void UpdateProductDetails(ProductData product)

 {

 MessageBox.Show("Updating: " + product.Name + "\nFinished Goods Flag: " +

 product.FinishedGoodsFlag, "UpdateProductDetails",

 MessageBoxButton.OK, MessageBoxImage.Information);

 try

 {

 ...

 }

 ...

 }

}

	 4.	 Start the solution without debugging. In the Products Service Host window, click Start.
In the client console window, press Enter.

When Test 5 runs, the message box displays the value False for the FinishedGoodsFlag.
The client application is still using the old version of the Product data contract and did
not populate this field—this is the default value for a Boolean field in a SOAP message.

Click OK to close the message box.

	 5.	 Press Enter to close the client console window. In the Products Service Host window,
click Stop, and then close the window.

Download from Wow! eBook <www.wowebook.com>

238	 Windows Communication Foundation 4 Step by Step

As when changing the order of data members, you should be very mindful of existing client
applications when adding a new member to a data contract. If the client application does not
populate every field in a serialized object, WCF will use default values—False for Booleans, 0
for numerics, and null for objects. If these default values are unacceptable, you can customize
the serialization and deserialization process by implementing serialization callback methods in
the WCF service.

More Info  The details of customizing the serialization process are beyond the scope of this
book, but for more information, examine the topic Version Tolerant Serialization in the documen-
tation supplied with Visual Studio (also available on the Microsoft Web site at http://msdn.
microsoft.com/en-us/library/ms229752.aspx).

Data Contract Compatibility
If you need to version a data contract, you should do so in a manner that maintains compat-
ibility with existing client applications. The DataMember attribute provides two properties
that can assist you:

■■ IsRequired  If you set this property to true, then the SOAP message that the service
receives must include a value in this data member. By default, the value of this property
is false, and the WCF runtime will generate default values for any missing fields.

■■ EmitDefaultValue  If you set this property to true, the WCF runtime on the client will
generate a default value for a data member if it is not included in the SOAP message
sent by the client application. This property is true by default.

If you need to maintain strict conformance to a data contract in future versions of the service,
you should set the IsRequired property of each data member in the data contract to true and
set the EmitDefaultValue property to false when building the first version of a service. You
should never make a data member mandatory (IsRequired set to true) in a new version of a
data contract if it was previously optional (IsRequired set to false). This helps to maintain back-
ward compatibility with older clients.

There is one further question that you should consider: it is possible for a client application
to request data conforming to a data contract from a service, modify that data, and then
submit it back to the service in a manner similar to calling the GetProduct method followed
by the UpdateProductDetails method in the ProductsService example? If a client application
uses the old version of a data contract that is missing one or more members, such as the
FinishedGoodsFlag, what happens to this information when the client sends the data back to
the service? The WCF runtime implements a technique called round-tripping to ensure that
data does not become lost. You will examine how this feature works in the next exercise.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 239

Examine How the WCF Runtime Performs Round-Tripping

	 1.	 In Visual Studio, edit the ProductsService.cs file in the ProductsServiceLibrary project.

	 2.	 In the GetProduct method in the ProductsServiceImpl class, add the following statement
(shown in bold) to the end of the block of code that populates the ProductData object
returned by the method:

public ProductData GetProduct(string productNumber)

{

 ...

 try

 {

 // Connect to the AdventureWorks database by using the Entity Framework

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 // Check that the specified product exists

 if (ProductExists(productNumber, database))

 {

 ...

 productData = new ProductData()

 {

 Name = matchingProduct.Name,

 ProductNumber = matchingProduct.ProductNumber,

 Color = matchingProduct.Color,

 ListPrice = matchingProduct.ListPrice,

 StandardCost = matchingProduct.StandardCost,

 FinishedGoodsFlag = true

 };

 }

 }

 }

 ...

}

This code sets the FinishedGoodsFlag to true. Remember that the default value for
Booleans is false.

	 3.	 Start the solution without debugging. In the Products Service Host window, click Start.
In the client console window, press Enter.

When Test 5 runs, the message box displays the value True for the FinishedGoodsFlag
field. This is the value originally provided by the service; it has been sent through the
client application and back to the service. Although the client application does not
know anything about this field, it has managed to preserve its value.

Click OK to close the message box.

	 4.	 Press Enter to close the client console window. In the Products Service Host window,
click Stop, and then close the window.

Download from Wow! eBook <www.wowebook.com>

240	 Windows Communication Foundation 4 Step by Step

The WCF runtime implements round-tripping by using the IExtensibleDataObject interface. If
you examine the code in the ProductsV2.cs file, you will see that the client proxy version of
the ProductData class implements this interface. This interface defines a single property called
ExtensionData, of type ExtensionDataObject. The ExtensionData property generated for the
client proxy simply reads and writes data to a private field of type ExtensionObjectData, as
follows:

public partial class ProductData : object,

 System.Runtime.Serialization.IExtensibleDataObject

{

 private System.Runtime.Serialization.ExtensionDataObject

 extensionDataField;

 ...

 public System.Runtime.Serialization.ExtensionDataObject ExtensionData

 {

 get

 {

 return this.extensionDataField;

 }

 set

 {

 this.extensionDataField = value;

 }

 }

 ...

}

The extensionDataField field acts as a “bucket” for all undefined data items received by the
client; rather than discarding them, the proxy automatically stores them in this field. When
the client proxy transmits the ProductData object back to the service, it includes the data in
this field. If you need to disable this feature (for example, if you want to ensure strict schema
compliance in client applications), you can set the IgnoreExtensionDataObject property of
the data contract serializer in the endpoint behavior to true for the endpoint that the client
is using. You can perform this task by defining an endpoint behavior in the client application
configuration file, such as this:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.serviceModel>

 <behaviors>

 <endpointBehaviors>

 <behavior name="IgnoreExtensionDataBehavior">

 <dataContractSerializer ignoreExtensionDataObject="true"/>

 </behavior>

 </endpointBehaviors>

 </behaviors>

Download from Wow! eBook <www.wowebook.com>

	 Chapter 6  Maintaining Service Contracts and Data Contracts	 241

 <client>

 <endpoint address="http://localhost:8010/ProductsService/Service.svc"

 binding="ws2007HttpBinding" bindingConfiguration=""

 contract="ProductsClient.ProductsService.IProductsService"

 name="WS2007HttpBinding_IProductsService"

 behaviorConfiguration="IgnoreExtensionDataBehavior"/>

 </client>

 </system.serviceModel>

</configuration>

You can also disable extension data objects on the server-side by setting the IgnoreExtension
DataObject property of the data contract serializer for a single service endpoint or for all
server endpoints by adding a service behavior.

Data Contract Serialization and Security
A data contract provides a potential entry point for a malicious user to hack into your
system. You must design your data contracts to be resistant to misuse such as this.

A common example is a Denial of Service attack. In this type of attack, a user invokes
methods in your service by sending them vast quantities of data. Your service then
spends much of its time simply trying to receive and read this data, and performance
suffering accordingly. To avoid this type of attack, don’t define data contracts that
involve large, nested data structures, arrays, or collections of indeterminate length. If
you must define data contracts that allow a user to send an array, collection, or nested
data, then limit the size of the data that they can send by using the readerQuota prop-
erties of the service bindings, as shown in bold in the following:

<system.serviceModel>

 <bindings>

 <netTcpBinding>

 <binding name="ProductsServiceTcpBindingConfig">

 <readerQuotas maxDepth="2" maxStringContentLength="1024"

 maxArrayLength="1024" />

 ...

 </binding>

 </netTcpBinding>

 </bindings>

 <services>

 <service ...>

 <endpoint binding="netTcpBinding"

 bindingConfiguration="ProductsServiceTcpBindingConfig" .../>

 ...

 </service>

 </services>

</system.serviceModel>

Download from Wow! eBook <www.wowebook.com>

242	 Windows Communication Foundation 4 Step by Step

The readerQuotas properties include:

■■ MaxArrayLength  This is the maximum length of any array (in bytes) that the user
can send to the service.

■■ MaxDepth  If a data structure contains nested data structures, this value specifies
the maximum level of nesting allowed.

■■ MaxStringContentLength  This is the maximum length of any string (in characters)
that the user can send to the service.

If a client application attempts to send a message that exceeds these parameters, WCF
will abort the request. You will learn more about readerQuota properties in Chapter 13,
“Implementing a WCF Service for Good Performance.”

Summary
In this chapter, you have learned how WCF uses service and data contracts to define the oper-
ations that a service exposes to client applications and the information that client applications
can send to, or receive from, these operations. You have seen why it is important to design
service and data contracts carefully, and how to create new versions of service and data con-
tracts while maintaining compatibility with existing client applications.

Download from Wow! eBook <www.wowebook.com>

243

Chapter 7

Maintaining State and
Sequencing Operations

After completing this chapter, you will be able to:

■■ Describe how WCF creates an instance of a service.

■■ Explain the different options available for creating service instances.

■■ Manage state information in a WCF service in a scalable manner.

■■ Fine tune the way in which the WCF runtime manages service instances.

■■ Describe how to control the life cycle of a service instance.

■■ Describe how to create durable services that can persist their state to a database.

In all the exercises that you have performed so far, the client application has invoked a series
of operations in a WCF service. The order of these operations has been immaterial, so calling
one operation before another has had no impact on the functionality of either; the operations
are totally independent. In the real world, a Web service might require that operations be
invoked in a particular sequence. For example, if you are implementing shopping cart func-
tionality in a service, it does not make sense to allow a client application to perform a check-
out operation to pay for goods before actually putting anything into the shopping cart.

The issue of sequencing operations should naturally lead you to consider the need to maintain
state information between operations. Taking the shopping cart example, where should you
store the data that describes the items in the shopping cart? You have at least two options:

■■ Maintain the shopping cart in the client application. With this method, you pass the
information that describes the shopping cart contents as a parameter to each server-
based operation and return the updated shopping cart contents from the operation
back to the client. This is a variation of the solution implemented by traditional Web
applications (including ASP.NET Web applications) that used cookies stored on the user’s
computer to store information. It relieved the Web application of the burden of main-
taining state information between client calls, but there was nothing to stop the client
application directly modifying the data in the cookie or even inadvertently corrupting it
in some manner. Additionally, cookies can be a security risk, and as a result, many Web
browsers implement features that let users disable them. This makes it difficult to store
state information on the user’s computer. In a Web service environment (as opposed
to a Web application and browser combination), a client application can maintain state
information using its own code rather than relying on cookies. However, this strategy

Download from Wow! eBook <www.wowebook.com>

244	 Windows Communication Foundation 4 Step by Step

ties the client application to the Web service and can result in a very tight coupling
between the two, with all the inherent fragility and maintenance problems that this
can cause.

■■ Maintain the shopping cart contents in the service. The first time the user running the
client application attempts to add something to the shopping cart, the service creates
a data structure to represent the items being added. As the user adds further items to
the shopping cart, they are stored in this data structure. When the user wants to pay for
the items in the shopping cart, the service can calculate the total, perform an exchange
with the user through the client application to establish the payment method, and then
arrange for dispatch of the items. In a WCF environment, all interactions between the
client application and the service are performed by invoking well-defined operations,
specified by using a service contract. Additionally, the client application does not need
to know how the service actually implements the shopping cart.

The second approach sounds like the more promising of the two, but there are several issues
that you must address when building a Web service to handle this scenario. In this chapter,
you will investigate some of these issues and see how you can resolve them.

Managing State in a WCF Service
It makes sense to look at how to manage and maintain state in a WCF service first and then
return to the issue of sequencing operations later.

The exercises that you performed in previous chapters involved stateless operations. All the
information required to perform an operation in the ProductsService service was passed in as
a series of parameters by the client application. When the operation completes, the service
“forgets” that the client ever invoked it. In the shopping cart scenario, the situation is differ-
ent. You must maintain the shopping cart between operations. In the exercises in this section,
you will learn that this approach, although apparently simple, requires a little thought and
careful design to work reliably in a scalable manner.

Create the ShoppingCartService Service

	 1.	 Using Visual Studio, create a new project by using the WCF Service Library template in
the WCF folder (within the Visual C# folder), in the Installed Templates pane. Specify the
following properties for the solution:

Property Value

Name ShoppingCartService

Location Microsoft Press\WCF Step By Step\Chapter 7

Solution name ShoppingCart

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 245

	 2.	 In Solution Explorer, rename the IService1.cs file to IShoppingCartService.cs and
allow Visual Studio to rename all references to IService1 to IShoppingCartService when
prompted.

	 3.	 Change the name of the Service1.cs file to ShoppingCartServce.cs. Again, allow Visual
Studio to rename all references to Service1 to ShoppingCartService.

	 4.	 Add a reference to the ProductsEntityModel assembly, which is located in the Microsoft
Press\WCF Step By Step\Chapter 7 folder (within your Documents folder). Remember
that this assembly contains a copy of the entity model for the Product and Product-
Inventory tables in the AdventureWorks database.

	 5.	 Add a reference to the System.Data.Entity assembly. This assembly is required by the
ProductsEntityModel assembly.

	 6.	 Open the IShoppingCartService.cs file in the Code And Text Editor window. Delete
all the comments and code except the using statements at the top of the file and the
ShoppingCartService namespace.

	 7.	 Add the following class (shown in bold) to the ShoppingCartService namespace:

namespace ShoppingCartService

{
 // Shopping cart item

 class ShoppingCartItem
 {

 public string ProductNumber { get; set; }

 public string ProductName { get; set; }

 public decimal Cost { get; set; }

 public int Volume { get; set; }

 }

}

This class defines the items that can be stored in the shopping cart, which will contain a
list of these items. Notice that this is not a data contract; this type is for internal use by
the service. If a client application queries the contents of the shopping cart, the service
will send it a simplified representation as a string. This way, there should be no depen-
dencies between the structure of the shopping cart and the client applications that
manipulate instances of it.

	 8.	 Add the following service contract to the ShoppingCartService namespace, after the
ShoppingCartItem class:

namespace ShoppingCartService

{

 ...
 [ServiceContract(Namespace = "http://adventure-works.com/2010/06/04",

 Name = "ShoppingCartService")]

 public interface IShoppingCartService

 {

 [OperationContract(Name="AddItemToCart")]

 bool AddItemToCart(string productNumber);

Download from Wow! eBook <www.wowebook.com>

246	 Windows Communication Foundation 4 Step by Step

 [OperationContract(Name = "RemoveItemFromCart")]

 bool RemoveItemFromCart(string productNumber);

 [OperationContract(Name = "GetShoppingCart")]

 string GetShoppingCart();

 [OperationContract(Name = "Checkout")]

 bool Checkout();

 }

}

The client application will invoke the AddItemToCart and RemoveItemFromCart opera-
tions to manipulate the shopping cart. The AdventureWorks database identifies items by
their product number. To add more than one instance of an item, you must invoke the
AddItemToCart operation for each instance. These operations will return true if they are
successful or false if otherwise.

The GetShoppingCart operation returns a string representation of the shopping cart
contents that the client application can display.

The client application will call the Checkout operation if the user wants to purchase the
goods in the shopping cart. Again, this operation will return true if it is successful or
false if it is not.

Note  For the purposes of this example, assume that the user has an account with Adventure
Works, and so the Checkout operation simply arranges dispatch of the goods to the cus-
tomer’s address. The customer will be billed separately.

	 9.	 Open the ShoppingCartService.cs file in the Code And Text Editor window. As you did
with the IShoppingCartService.cs file, delete all the comments and code except the
using statements at the start of the file and the ShoppingCartService namespace. Add
the following using statement to the list at the top of the file:

using ProductsEntityModel;

	 10.	 Add the following class to the ShoppingCartService namespace in the ShoppingCart
Service.cs file:

namespace ShoppingCartService

{

 public class ShoppingCartServiceImpl : IShoppingCartService

 {

 }

}

This class will implement the operations for the IShoppingCartService interface.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 247

	 11.	 Add the following private shoppingCart field to the ShoppingCartServiceImpl class:

public class ShoppingCartServiceImpl : IShoppingCartService

{

 private List<ShoppingCartItem> shoppingCart =

 new List<ShoppingCartItem>();

}

This variable will hold the user’s shopping cart, which comprises a list of Shopping
CartItem objects. This list represents state information that the service must maintain
between calls made by a client application.

	 12.	 Add the following private find method (shown in bold) to the ShoppingCartServiceImpl
class:

public class ShoppingCartServiceImpl : IShoppingCartService

{

 ...

 // Examine the shopping cart to determine whether an item with a

 // specified product number has already been added.

 // If so, return a reference to the item, otherwise return null

 private ShoppingCartItem find(List<ShoppingCartItem> shoppingCart,

 string productNumber)

 {

 foreach (ShoppingCartItem item in shoppingCart)

 {

 if (string.Compare(item.ProductNumber, productNumber) == 0)

 {

 return item;

 }

 }

 return null;

 }

}

The AddItemToCart and RemoveItemFromCart operations will make use of this utility
method.

Note  The code for this method is available in the file Find.txt, which is located in the
Chapter 7 folder.

	 13.	 Implement the AddToCart method in the ShoppingCartServiceImpl class, as shown in
bold in the following:

public class ShoppingCartServiceImpl : IShoppingCartService

{

 ...

 public bool AddItemToCart(string productNumber)

Download from Wow! eBook <www.wowebook.com>

248	 Windows Communication Foundation 4 Step by Step

 {

 // Note: For clarity, this method performs very limited

 // security checking and exception handling

 try

 {

 // Check to see whether the user has already added this

 // product to the shopping cart

 ShoppingCartItem item = find(shoppingCart, productNumber);

 // If so, then simply increment the volume

 if (item != null)

 {

 item.Volume++;

 return true;

 }

 // Otherwise, retrieve the details of the product from the database

 else

 {

 // Connect to the AdventureWorks database

 // by using the Entity Framework

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 // Retrieve the details of the selected product

 Product product = (from p in database.Products

 where string.Compare(p.ProductNumber,

 productNumber) == 0

 select p).First();

 // Create and populate a new shopping cart item

 ShoppingCartItem newItem = new ShoppingCartItem

 {

 ProductNumber = product.ProductNumber,

 ProductName = product.Name,

 Cost = product.ListPrice,

 Volume = 1

 };

 // Add the new item to the shopping cart

 shoppingCart.Add(newItem);

 // Indicate success

 return true;

 }

 }

 }

 catch

 {

 // If an error occurs, finish and indicate failure

 return false;

 }

 }

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 249

Note  The code for this method is available in the file AddItemToCart.txt, which is located
in the Chapter 7 folder.

Important  For clarity, this method does not perform any security checking, and exception
handling is minimal. In a production application, you should address these aspects robustly,
as described in the preceding chapters. Additionally, for simplicity, this method assumes that
there is always sufficient stock of the select item available. You will add further checking to
this method in Chapter 9, “Supporting Transactions.”

	 14.	 Add the following RemoveItemFromCart method (shown in bold) to the Shopping
CartServiceImpl class:

public class ShoppingCartServiceImpl : IShoppingCartService

{

 ...

 public bool RemoveItemFromCart(string productNumber)

 {

 // Determine whether the specified product has an

 // item in the shopping cart

 ShoppingCartItem item = find(shoppingCart, productNumber);

 // If so, then decrement the volume

 if (item != null)

 {

 item.Volume--;

 // If the volume is zero, remove the item from the shopping cart

 if (item.Volume == 0)

 {

 shoppingCart.Remove(item);

 }

 // Indicate success

 return true;

 }

 // No such item in the shopping cart

 return false;

 }

}

Note  The code for this method is available in the file RemoveItemFromCart.txt, which is
located in the Chapter 7 folder.

Download from Wow! eBook <www.wowebook.com>

250	 Windows Communication Foundation 4 Step by Step

	 15.	 Implement the GetShoppingCart method in the ShoppingCartServiceImpl class, as
follows:

public class ShoppingCartServiceImpl : IShoppingCartService

{

 ...

 public string GetShoppingCart()

 {

 // Create a string holding a formatted representation

 // of the shopping cart

 string formattedContent = String.Empty;

 decimal totalCost = 0;

 foreach (ShoppingCartItem item in shoppingCart)

 {

 string itemString = String.Format(

 "Number: {0}\tName: {1}\tCost: {2:C}\tVolume: {3}",

 item.ProductNumber, item.ProductName, item.Cost,

 item.Volume);

 totalCost += (item.Cost * item.Volume);

 formattedContent += itemString + "\n";

 }

 string totalCostString = String.Format("\nTotalCost: {0:C}", totalCost);

 formattedContent += totalCostString;

 return formattedContent;

 }

}

Note  The code for this method is available in the file GetShoppingCart.txt, which is located
in the Chapter 7 folder.

This method generates a string describing the contents of the shopping cart. The string
contains a line for each item, with the total cost of the items in the shopping cart at the
end.

	 16.	 Add the Checkout method to the ShoppingCartServiceImpl class, as shown in bold in the
following:

public class ShoppingCartServiceImpl : IShoppingCartService

{

 ...

 public bool Checkout()

 {

 // Not currently implemented - just return true

 return true;

 }

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 251

This method is simply a placeholder. In a production system, this method would perform
tasks such as arranging the dispatch of items, billing the user, and updating the data-
base to reflect the changes in stock volume, according to the user’s order.

	 17.	 Build the solution.

You now need to build a host application for this service. You will use a simple console appli-
cation for this purpose.

Create a Host Application for the ShoppingCartService Service

	 1.	 Add a new project to the ShoppingCartService solution. Specify the following properties
for the project:

Property Value

Template Console Application, in the Windows folder, within the Visual C# folder, in
the Installed Templates pane

Name ShoppingCartHost

Location Microsoft Press\WCF Step By Step\Chapter 7\ShoppingCart

	 2.	 Add a reference to the ShoppingCartService project for the ShoppingCartHost project.
Also add references to the System.ServiceModel and System.Data.Entity assemblies.

	 3.	 Add the App.config file located in the Microsoft Press\WCF Step By Step\Chapter 7
folder to the ShoppingCartHost project.

This configuration file currently contains only the definition of the connection string
that the service uses for connecting to the AdventureWorks database.

Tip  On the Project menu, click Add Existing Item to add a file to a project. You will also
need to select All Files (*.*) from the drop-down in the Add Existing Item dialog box to dis-
play the App.config file.

	 4.	 Edit the App.config file for the ShoppingCartHost project by using the Service
Configuration Editor. In the Services pane, click Create A New Service. Proceed through
the New Service Element Wizard, using the information in the following table to define
the service.

Download from Wow! eBook <www.wowebook.com>

252	 Windows Communication Foundation 4 Step by Step

Page Prompt Value

What is the service type of
your service?

Service type ShoppingCartService.ShoppingCartServiceImpl

What service contract are you
using?

Contract ShoppingCartService.IShoppingCartService

What communications mode is
your service using?

HTTP

What method of interoperabil-
ity do you want to use?

Advanced Web Service interoperability
(Simplex communication)

What is the address of your
endpoint?

Address http://localhost:9000

/ShoppingCartService/ShoppingCartService.svc

The wizard adds the service to the configuration file and creates an endpoint definition
for the service.

	 5.	 Save the configuration file, and then exit the Service Configuration Editor.

	 6.	 Open the App.config file for the ShoppingCartHost project in the Code And Text Editor
window. The <system.serviceModel> section should look like this:

<system.serviceModel>

 <services>

 <service name="ShoppingCartService.ShoppingCartServiceImpl">

 <endpoint

 address= "http://localhost:9000/ShoppingCartService/ShoppingCartService.svc"

 binding="ws2007HttpBinding" bindingConfiguration=""

 contract="ShoppingCartService.IShoppingCartService" />

 </service>

 </services>

</system.serviceModel>

	 7.	 Open the Program.cs file for the ShoppingCartHost project in the Code And Text Editor
window. Add the following using statement to the list at the top of the file:

using System.ServiceModel;

	 8.	 Add the following statements (shown in bold) to the Main method in the Program class:

class Program

{

 static void Main(string[] args)

 {

 ServiceHost host = new ServiceHost(

 typeof(ShoppingCartService.ShoppingCartServiceImpl));

 host.Open();

 Console.WriteLine("Service running");

 Console.WriteLine("Press ENTER to stop the service");

 Console.ReadLine();

 host.Close();

 }

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 253

This code creates a new instance of the ShoppingCartService service, listening on the
HTTP endpoint you specified in the configuration file.

The next task is to build a client application to test the ShoppingCartService service. You will
create another Console Application to do this.

Create a Client Application to Test the ShoppingCartService Service

	 1.	 Add another new project to the ShoppingCartService solution. Specify the following
properties for the project:

Property Value

Template Console Application, in the Windows folder, within the Visual C# folder, in
the Installed Templates pane

Name ShoppingCartClient

Location Microsoft Press\WCF Step By Step\Chapter 7\ShoppingCart

	 2.	 In the ShoppingCartClient project, add a reference to the System.Service
Model assembly.

	 3.	 Generate a proxy class for the client application by using the following procedure:

	 a.	 Open a Visual Studio Command Prompt window and move to the ShoppingCart\
ShoppingCartService\bin\Debug folder in the Microsoft Press\WCF Step By Step\
Chapter 7 folder.

	 b.	 In the Visual Studio Command Prompt window, run the command:

svcutil ShoppingCartService.dll

	 c.	 Run the command:

svcutil /namespace:*,ShoppingCartClient.ShoppingCartService

 adventure-works.com.2010.06.04.wsdl *.xsd /out:ShoppingCartServiceProxy.cs

	 4.	 Close the Visual Studio Command Prompt window and return to Visual Studio. Add the
ShoppingCartServiceProxy.cs file in the ShoppingCart\ShoppingCartService\bin\Debug
folder to the ShoppingCartClient project.

	 5.	 Add a new application configuration file to the ShoppingCartClient project. Name this
file App.config.

Tip  To add a new file to a project, select Project | Add New Item.

Download from Wow! eBook <www.wowebook.com>

254	 Windows Communication Foundation 4 Step by Step

	 6.	 Edit the App.config file in the ShoppingCartClient project by using the Service Configu-
ration Editor. In the Configuration pane, click the Client folder. In the Client pane, click
Create A New Client. Use the New Client Element Wizard to add a new client endpoint
to the configuration file by using the information in the following table:

Page Prompt Value

What method do you want
to use to create the client?

From service config Microsoft Press\WCF Step By Step\
Chapter 7\ShoppingCart\Shopping
CartHost\App.config

Which service endpoint do
you want to connect to?

Service endpoint ShoppingCartService.Shopping
CartServiceImpl-

http://localhost:9000/ShoppingCart
Service/ShoppingCartService.svc-

ws2007HttpBinding-

ShoppingCartService.IShoppingCart
Service

Note:  This is the default endpoint.

What name do you want
to use for the client
configuration?

WS2007HttpBinding_IShoppingCart
Service

The wizard adds the client definition to the configuration file and creates an endpoint
called WS2007HttpBinding_IShoppingCartService that the client application can use to
connect to the ShoppingCartService service. However, the name of the type implement-
ing the contract in the client proxy has a different name from that used by the service,
so you must change the value added to the client configuration file.

	 7.	 In the Configuration pane, in the Endpoints folder under the Client folder, click the
WS2007HttpBinding_IShoppingCartService endpoint. In the Client Endpoint pane, set
the Contract property to ShoppingCartClient.ShoppingCartService.Shopping
CartService (the type is ShoppingCartService in the ShoppingCartClient.ShoppingCart
Service namespace in the client proxy).

	 8.	 Save the configuration file and exit the Service Configuration Editor. Allow Visual Studio
to reload the modified App.config file, if prompted.

	 9.	 Open the App.config file for the ShoppingCartClient application in the Code And Text
Editor window. It should appear as follows:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.serviceModel>

 <client>

 <endpoint address="http://localhost:9000/ShoppingCartService/

 ShoppingCartService.svc"

 binding="ws2007HttpBinding" bindingConfiguration=""

 contract="ShoppingCartClient.ShoppingCartService.ShoppingCartService"

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 255

 name="WS2007HttpBinding_IShoppingCartService" kind=""

 endpointConfiguration="">

 <identity>

 <certificateReference storeName="My" storeLocation="LocalMachine"

 x509FindType="FindSubjectDistinguishedName" />

 </identity>

 </endpoint>

 </client>

 </system.serviceModel>

</configuration>

Remove the <identity> element and its child <certificateReference> element from the
configuration file. This version of the service does not use certificates.

	 10.	 In Visual Studio, open the Program.cs file for the ShoppingCartClient project in the
Code And Text Editor window. Add the following using statements to the list at the top
of the file.

using System.ServiceModel;

using ShoppingCartClient.ShoppingCartService;

	 11.	 Add the following statements (shown in bold) to the Main method of the Program class:

static void Main(string[] args)

{
 Console.WriteLine("Press ENTER when the service has started");

 Console.ReadLine();

 try

 {

 // Connect to the ShoppingCartService service

 ShoppingCartServiceClient proxy =

 new ShoppingCartServiceClient("WS2007HttpBinding_IShoppingCartService");

 // Add two water bottles to the shopping cart

 proxy.AddItemToCart("WB-H098");

 proxy.AddItemToCart("WB-H098");

 // Add a mountain seat assembly to the shopping cart

 proxy.AddItemToCart("SA-M198");

 // Query the shopping cart and display the result

 string cartContents = proxy.GetShoppingCart();

 Console.WriteLine(cartContents);

 // Disconnect from the ShoppingCartService service

 proxy.Close();

 }

 catch (Exception e)

 {

 Console.WriteLine("Exception: {0}", e.Message);

 }

 Console.WriteLine("Press ENTER to finish");

 Console.ReadLine();

}

Download from Wow! eBook <www.wowebook.com>

256	 Windows Communication Foundation 4 Step by Step

Note  Complete code for the Main method is available in the file Main.txt, which is located
in the Chapter 7 folder.

The code in the try block creates a proxy object for communicating with the service. The
application then adds three items to the shopping cart—two water bottles and a mountain
seat assembly—before querying the current contents of the shopping cart and display-
ing the result.

	 12.	 Open a Visual Studio Command Prompt window as an administrator and enter the
following command to return port 9000 for your service (replace UserName with your
Windows user name):

netsh http add urlacl url=http://+:9000/ user=UserName

	 13.	 Close the Visual Studio Command Prompt window and return to Visual Studio. In Solu-
tion Explorer set the ShoppingCartClient and ShoppingCartHost projects as the startup
projects for the solution.

Tip  To set multiple projects as startup projects, right-click the ShoppingCartService solution
and then click Set StartUp Projects. In the right pane of the Solution ‘ShoppingCartService’
Property Pages dialog box, select Multiple Startup Projects, set the Action property for the
ShoppingCartClient and ShoppingCartHost projects to Start and then click OK.

	 14.	 Start the solution without debugging. In the client console window displaying the mes-
sage “Press ENTER when the service has started,” press Enter.

Note  If a Windows Security Alert message box appears, click Unblock to allow the service
to use HTTP port 9000.

The client application adds the three items to the shopping cart and displays the result,
as shown in the following image (your currency symbol might be different if you are not
in the United Kingdom):

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 257

	 15.	 Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

You can see that the ShoppingCartService service has maintained information about the
shopping cart for the client application between calls, so this technique for maintaining state
information in the service appears to work well. But, this is one of those situations that should
leave you feeling a little bit suspicious—everything appears to be just a bit too easy.

Service Instance Context Modes
If you think for a minute about what is going on, the service creates an instance of the
shopping cart when an instance of the service is itself created by the host; the shoppingCart
variable is a private instance variable in the ShoppingCartServiceImpl class. What happens
if two clients attempt to use the service simultaneously? The answer is that each client gets
their own instance of the service, with its own instance of the shoppingCart variable. This is
an important point. By default, the first time each client invokes an operation in a service, the
host creates a new instance of the service just for that client. How long does the instance last?

You can see from the shopping cart example that the instance hangs around between opera-
tion calls; otherwise, it would not be able to maintain its state in an instance variable. The
service instance is only destroyed after the client has closed the connection to the host (in
true .NET Framework fashion, you do not know exactly how long the instance will hang around
after the client application closes the connection because it depends on when the .NET
Framework garbage collector decides it is time to reclaim memory). Now think what happens if
you have 10 concurrent clients—you get 10 instances of the service. What if you have 10,000
concurrent clients? You get 10,000 instances of the service. If the client is an interactive appli-
cation that runs for an indeterminate period while the user browses the product catalog and
decides which items to buy, you had better be running the host application on a machine
with plenty of memory!

An instance of a WCF service that is created to handle requests from a specific client applica-
tion and maintain state information between requests from that client application is called a
Session. To be explicit, when a client application uses a proxy object to connect to a service,
the WCF runtime for the service host creates a session to hold an instance of the service and
any state data required by that instance. The session is terminated when the client application
closes the proxy object.

Note  If you are using the TCP, or named pipe transport, you can restrict the maximum number of
concurrent sessions for a service by setting the MaxConnections property of the binding configu-
ration. For these transports, the default limit is 10 connections. If you are using IIS to host a WCF
service using the HTTP or HTTPS transports, you can configure IIS to limit the number of concurrent
connections it should allow—the details of how to do this are beyond the scope of this book.

Download from Wow! eBook <www.wowebook.com>

258	 Windows Communication Foundation 4 Step by Step

You can control the relationship between client applications and instances of a service by
using the InstanceContextMode property of the ServiceBehavior attribute of the service. You
specify this attribute when defining the class that implements the service contract, as follows:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerSession)]

public class ShoppingCartService : IShoppingCartService

{

 ...

}

The InstanceContextMode property can take one of the following three values: InstanceMode.
PerSession, InstanceMode.PerCall, and InstanceMode.Single. The following sections describe
these instance context modes.

The PerSession Instance Context Mode
The PerSession instance context mode specifies that the service instance is created when a
client application first invokes an operation, and the instance remains active, responding to
client requests, until the client application closes the connection. Each time a client applica-
tion creates a new session, it gets a new instance of the service. Two sessions cannot share a
service instance when using this instance context mode, even if both sessions are created by
the same instance of the client application.

It is possible for a client application to create multiple threads and then attempt to invoke
operations in the same session simultaneously. By default, a service is single-threaded and will
not process more than one request at a time. If a new request arrives while the service is still
processing an earlier request, the WCF runtime causes the new request to wait for the earlier
one to complete. The new request could possibly time-out while it is waiting to be handled.
You can modify this behavior; The ServiceBehavior attribute has another property called
ConcurrencyMode, you can set that property to specify how to process concurrent requests
in the same session, as shown in the following:

[ServiceBehavior(..., ConcurrencyMode = ConcurrencyMode.Single)]

public class ShoppingCartService : IShoppingCartService

{

 ...

}

The default value for this property is ConcurrencyMode.Single, which causes the service to
behave as just described. You can also set this property to ConcurrencyMode.Multiple, in
which case the service instance is multithreaded and can accept simultaneous requests.
However, setting the Concurrency property to ConcurrencyMode.Multiple does not make any
guarantees about synchronization. You must take responsibility for ensuring that the code you
write in the service is thread-safe.

There is a third mode called ConcurrencyMode.Reentrant. In this mode, the service instance
is single-threaded, but it allows the code in your service to call out to other services and

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 259

applications, which can then subsequently call back into your service. However, this mode
makes no guarantees about the state of data in your instance of the service. It is the responsi-
bility of your code to ensure that the state of service instance remains consistent and that the
service doesn’t accidentally deadlock itself.

The PerCall Instance Context Mode
The InstanceContextMode.PerCall instance context mode creates a new instance of the service
every time the client application invokes an operation. The instance is destroyed when the
operation completes. The advantage of this instance context mode is that it releases resources
in the host between operations, greatly improving scalability. If you consider the situation with
10,000 concurrent users and the PerSession instance context mode, the main issue is that the
host must hold 10,000 instances of the service, even if 9,999 of them are not currently per-
forming any operations (perhaps because the users have gone to lunch without closing their
copy of the client application and terminating their sessions). If you use the PerCall instance
context mode instead, then the host will only need to hold an instance for the one active user.

The disadvantage of using this instance context mode is that maintaining state between oper-
ations is more challenging. You cannot retain information in instance variables in the service,
so you must save any required state information in persistent storage such as a disk file or
database. It also complicates the design of operations because a client application must iden-
tify itself so that the service can retrieve the appropriate state from storage (you will investi-
gate a couple of ways of achieving this later in this chapter; a more comprehensive approach
is described in Chapter 8, “Implementing Services by Using Workflows”).

You can see that the lifetime of a service instance depends on how long it takes the service to
perform the requested operation, so keep your operations concise. You should be very careful
if an operation creates additional threads; the service instance will live on until all of these
threads complete, even if the main thread has long-since returned any results to the client
application. This can seriously affect scalability. You should also avoid registering callbacks in
a service. Registering a callback does not block service completion, and the object calling
back might find that the service instance has been reclaimed and recycled. The .NET Frame-
work Common Language Runtime (CLR) traps this eventuality so it is not a security risk, but it
is inconvenient to the object calling back as it will receive an exception.

The Single Instance Context Mode
The InstanceContextMode.Single instance context mode creates a new instance of the ser-
vice the first time a client application invokes an operation and then uses this same instance
to handle all subsequent requests from this client and every other client that connects to the
same service. The instance is destroyed only when the host application shuts the service down.
The main advantage of this instance context mode, apart from the reduced resource require-
ments, is that all users can easily share data. Arguably, this is also the principal disadvantage of
this instance context mode.

Download from Wow! eBook <www.wowebook.com>

260	 Windows Communication Foundation 4 Step by Step

The InstanceContextMode.Single instance context mode minimizes the resources used by the
service at the cost of expecting the same instance to handle every single request. If you have
10,000 concurrent users, that could be a lot of requests. Also, if the service is single-threaded
(the ConcurrencyMode property of the ServiceBehavior attribute is set to ConcurrencyMode.
Single), then you should expect many timeouts unless operations complete very quickly. Con-
sequently, you should set the concurrency mode to ConcurrencyMode.Multiple and imple-
ment synchronization to ensure that all operations are thread-safe.

More Info  Detailed discussion of synchronization techniques in the .NET Framework is beyond
the scope of this book, but for more information, see the topic “Synchronizing Data For Multi-
threading” in the documentation provided with Visual Studio (also available on the Microsoft Web
site at http://msdn.microsoft.com/en-us/library/z8chs7ft.aspx).

In the next exercise, you will examine the effects of using the PerCall and Single instance con-
text modes.

Investigate the InstanceContextMode Property of the ServiceBehavior

	 1.	 In Visual Studio, edit the ShoppingCartService.cs file in the ShoppingCartService project.

	 2.	 Add the ServiceBehavior attribute to the ShoppingCartServiceImpl class. Set the Instance
ContextMode property to InstanceContextMode.PerCall, as shown in bold in the
following:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]

public class ShoppingCartService : IShoppingCartService

{

 ...

}

	 3.	 Start the solution without debugging. In the ShoppingCartClient console window that is
displaying the message “Press ENTER when the service has started,” press Enter.

The client application adds the three items to the shopping cart as before, but the result
displayed after retrieving the shopping cart from the service shows no items and a total
cost of zero.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 261

Every time the client application calls the service, it creates a new instance of the service.
The shopping cart is destroyed each time an operation completes, so the string returned
by the GetShoppingCart operation is a representation of an empty shopping cart.

	 4.	 Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

	 5.	 In Visual Studio, change the InstanceContextMode property of the ServiceBehavior attri-
bute of the ShoppingCartService to InstanceContextMode.Single, as follows:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]

public class ShoppingCartService : IShoppingCartService

{

 ...

}

	 6.	 Start the solution again, without debugging. In the ShoppingCartClient console window
press Enter.

This time, the client application displays the shopping cart containing two water bottles
and a mountain seat assembly. All appears to be well at first glance.

	 7.	 Press Enter to close the client application console window, but leave the service host
application running.

	 8.	 In Solution Explorer, right-click the ShoppingCartClient project, point to Debug, and
then click Start New Instance.

This action runs the client application again without restarting the service host
application.

	 9.	 In the ShoppingCartClient console window, press Enter.

The shopping cart displayed by the client application now contains four water bottles
and two mountain seat assemblies:

The second run of the client application used the same instance of the service as the
first run, and the items were added to the same instance of the shopping cart.

	 10.	 Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

Download from Wow! eBook <www.wowebook.com>

262	 Windows Communication Foundation 4 Step by Step

Tip  The PerSession instance context mode is the default when you use an endpoint with
a configuration that requires sessions. This is actually most of the time, unless you disable
security (absolutely not recommended) or use the BasicHttpBinding binding, which does not
support sessions when the service host defaults to using the PerCall instance context mode.
This can be quite confusing, so it is better to always explicitly state the instance context
mode your service requires by using the ServiceBehavior attribute.

Maintaining State with the PerCall Instance Context Mode
The exercises so far in this chapter have highlighted what happens when you change the
instance context mode for a service. In the ShoppingCartService service, which instance con-
text mode should you use? In a real-world environment, using a proper client application
rather than the test code you have been working with, the user could spend a significant
amount of time browsing for items of interest before adding them to their shopping cart. In
this case, it makes sense to use the PerCall instance context mode. But you must provide a
mechanism to store and recreate the shopping cart each time the client application invokes
an operation. There are several ways you can achieve this, including generating an identifier
for the shopping cart when the service first creates it, returning this identifier to the client
application, and forcing the client to pass this identifier in to all subsequent operations as a
parameter. This technique, and its variations, are frequently used, but suffer from many of the
same security drawbacks as cookies, as far as the service is concerned; it is possible for a client
application to forge a shopping cart identifier and hijack another user’s shopping cart.

An alternative strategy is to employ the user’s own identity as a key for saving and retriev-
ing state information. In a secure environment, this information is transmitted as part of the
request anyway, and so it is transparent to client applications—for example, the ws2007Http
Binding binding uses Windows Integrated Security and transmits the user’s credentials to the
WCF service by default. You will make use of this information in the following exercise.

Note  The same mechanism works even if you are using a non-Windows specific mechanism to
identify users, such as certificates. Thus, it is a valuable technique in an Internet security environ-
ment. The important thing is that you have a unique identifier for the user—it does not have to be
a Windows user name.

Maintain State in the ShoppingCartService Service

	 1.	 In Visual Studio, open the IShoppingCartService.cs file for the ShoppingCartService
project in the Code And Text Editor window.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 263

	 2.	 Add the following using statement to the list at the top of the file:

using System.Xml.Serialization;

You will use classes in these namespaces to serialize the user’s shopping cart and save it
in a text file.

	 3.	 Modify the definition of the ShoppingCartItem class; mark it with the Serializable attri-
bute and change its visibility to public, as shown in bold in the following:

[Serializable]

public class ShoppingCartItem

{

 ...

}

You can only serialize publicly accessible classes by using the XML serializer.

	 4.	 Open the ShoppingCartService.cs file in the Code And Text Editor window. Add the fol-
lowing using statements to the list at the top of the file:

using System.Xml.Serialization;

using System.IO;

	 5. 	Add the private saveShoppingCart method (shown in bold in the following code) to the
ShoppingCartServiceImpl class:

public class ShoppingCartServiceImpl : IShoppingCartService

{

 ...

 // Save the shopping cart for the current user to a local XML

 // file named after the user

 private void saveShoppingCart()

 {

 string userName = ServiceSecurityContext.Current.PrimaryIdentity.Name;

 foreach (char badChar in Path.GetInvalidFileNameChars())

 {

 userName = userName.Replace(badChar, '!');

 }

 string fileName = userName + ".xml";

 TextWriter writer = new StreamWriter(fileName);

 XmlSerializer ser = new XmlSerializer(typeof(List<ShoppingCartItem>));

 ser.Serialize(writer, shoppingCart);

 writer.Close();

 }

 ...

}

Note  The code for this method is available in the file SaveShoppingCart.txt, which is
located in the Chapter 7 folder.

Download from Wow! eBook <www.wowebook.com>

264	 Windows Communication Foundation 4 Step by Step

This private utility method retrieves the name of the user running the client application
and creates a file name based on this user name, with the “.xml” file extension. The user
name could include a domain name with a separating “\” character. This character is not
allowed in file names, so the code replaces any “\” characters—and any other characters
in the user name that are not allowed in filenames—with a “!” character.

Note  If you are using certificates rather than Window’s user names to identify users
in an Internet environment, the file names will still be legal, although they will look
a little strange because user identities in this scheme have the form “CN=user;
FA097524718BDz8765D6E4AA7654891245BCAD85.”

The method then uses an XmlSerializer object to serialize the user’s shopping cart to this
file before closing the file and finishing.

Note  For clarity, this method does not perform any exception checking. In a production
environment, you should be prepared to be more robust.

	 6.	 Add the following private restoreShoppingCart method (shown in bold) to the
ShoppingCartServiceImpl class:

public class ShoppingCartServiceImpl : IShoppingCartService

{

 ...

 // Restore the shopping cart for the current user from the local XML

 // file named after the user

 private void restoreShoppingCart()

 {

 string userName = ServiceSecurityContext.Current.PrimaryIdentity.Name;

 foreach (char badChar in Path.GetInvalidFileNameChars())

 {

 userName = userName.Replace(badChar, '!');

 }

 string fileName = userName + ".xml";

 if (File.Exists(fileName))

 {

 TextReader reader = new StreamReader(fileName);

 XmlSerializer ser = new XmlSerializer(typeof(List<ShoppingCartItem>));

 shoppingCart = (List<ShoppingCartItem>)ser.Deserialize(reader);

 reader.Close();

 }

 }

 ...

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 265

Note  The code for this method is available in the file RestoreShoppingCart.txt, which is
located in the Chapter 7 folder.

This method uses the user name to generate a file name using the same strategy as the
saveShoppingCart method. If the file exists, this method opens the file and deserializes
its contents into the shoppingCart variable before closing it. If there is no such file, the
shoppingCart variable is left at its initial value of null.

Note  In a production environment, you should verify that the file contains a valid rep-
resentation of a shopping cart before attempting to cast its contents and assign it to the
shoppingCart variable.

	 7.	 In the AddItemToCart method, call the restoreShoppingCart method before examining
the shopping cart, as follows in bold:

public bool AddItemToCart(string productNumber)

{

 // Note: For clarity, this method performs very limited security

 // checking and exception handling

 try

 {

 // Check to see whether the user has already added this

 // product to the shopping cart

 restoreShoppingCart();

 ShoppingCartItem item = find(shoppingCart, productNumber);

 ...

 }

 ...

}

	 8.	 In the block of code that increments the volume field of an item, following the if state-
ment, call the saveShoppingCart method to preserve its contents before returning:

public bool AddItemToCart(string productNumber)

{

 // Note: For clarity, this method performs very limited security

 // checking and exception handling

 try

 {

 ...

 if (item != null)

 {

 item.Volume++;
 saveShoppingCart();

 return true;

 }

 ...

 }

 ...

}

Download from Wow! eBook <www.wowebook.com>

266	 Windows Communication Foundation 4 Step by Step

	 9.	 In the block of code that adds a new item to the shopping cart, call the saveShopping
Cart method before returning, as shown in bold in the following:

public bool AddItemToCart(string productNumber)

{

 // Note: For clarity, this method performs very limited security

 // checking and exception handling

 try

 {

 ...

 else

 {

 ...

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 ...

 // Add the new item to the shopping cart

 shoppingCart.Add(newItem);

 saveShoppingCart();

 // Indicate success

 return true;

 }

 }

 }

 ...

}

There is no need to save the shopping cart whenever the method fails (returns false).

	 10.	 In the RemoveItemFromCart method, call the restoreShoppingCart method before exam-
ining the shopping cart, as follows:

public bool RemoveItemFromCart(string productNumber)

{

 // Determine whether the specified product has an

 // item in the shopping cart

 restoreShoppingCart();

 ShoppingCartItem item = find(shoppingCart, productNumber);

 ...

}

	 11.	 Add the following code (shown in bold) to save the shopping cart after successfully
removing the specified item and before returning true:

public bool RemoveItemFromCart(string productNumber)

{

 ...

 // Indicate success

 saveShoppingCart();

 return true;

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 267

	 12.	 In the GetShoppingCart method, call the restoreShoppingCart method before iterating
through the contents of the shopping cart, as shown in bold in the following:

public string GetShoppingCart()

{

 ...
 restoreShoppingCart();

 foreach (ShoppingCartItem item in shoppingCart)

 {

 ...

 }

}

	 13.	 Change the InstanceContextMode property of the ServiceBehavior attribute of the
ShoppingCartServiceImpl class back to InstanceContextMode.PerCall:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]

public class ShoppingCartServiceImpl : IShoppingCartService

{

 ...

}

Remember that this instance context mode releases the service instance at the end of
each operation and destroys any state information held in the memory of the service
instance. Hopefully, the state of the user’s shopping cart should be persisted to disk. You
will test that this is the case in the next exercise.

Test the State Management Capabilities of the ShoppingCartService Service

	 1.	 Start the solution without debugging. In the ShoppingCartClient console window, press
Enter.

The client application adds three items to the shopping cart and then displays the con-
tents. The service saves the data in the user’s shopping cart to a file between operations.

	 2.	 Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

	 3.	 Start the solution again. In the ShoppingCartClient console window, press Enter. This
time, the client displays a shopping cart containing four water bottles and two moun-
tain seat assemblies. Because the state information is stored in an external file, it persists
across service shutdown and restart.

Note  As an additional exercise, you could add some code to the Checkout method to
delete the shopping cart file for the user after they have paid for their goods.

	 4.	 Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

Download from Wow! eBook <www.wowebook.com>

268	 Windows Communication Foundation 4 Step by Step

	 5.	 Using Windows Explorer, move to the Chapter 7\ShoppingCart\ShoppingCartHost
\bin\Debug folder. You should see an XML file in this folder called YourDomain!Your
Name.xml, where YourDomain is either the name of your computer or the name of the
domain of which you are a member, and YourName is your Windows user name.

	 6.	 Open this file by using Notepad. It should look like this:

<?xml version="1.0" encoding="utf-8"?>

<ArrayOfShoppingCartItem xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <ShoppingCartItem>

 <ProductNumber>WB-H098</ProductNumber>

 <ProductName>Water Bottle - 30 oz.</ProductName>

 <Cost>4.9900</Cost>

 <Volume>4</Volume>

 </ShoppingCartItem>

 <ShoppingCartItem>

 <ProductNumber>SA-M198</ProductNumber>

 <ProductName>LL Mountain Seat Assembly</ProductName>

 <Cost>133.3400</Cost>

 <Volume>2</Volume>

 </ShoppingCartItem>

</ArrayOfShoppingCartItem>

This is the data from your shopping cart. Remember that the saveShoppingCart method
writes the data by using an XmlSerializer object to save it as an XML document.

	 7.	 Close Notepad and return to Visual Studio. Edit the Program.cs file in the Shopping
CartClient project by adding the following statements (shown in bold) to the Main
method (replace Domain with the name of your domain or computer):

static void Main(string[] args)

{

 ...

 try

 {

 // Connect to the ShoppingCartService service

 ShoppingCartServiceClient proxy =

 new ShoppingCartServiceClient("WS2007HttpBinding_ShoppingCartService");

 // Provide credentials to identify the user

 proxy.ClientCredentials.Windows.ClientCredential.Domain = "Domain";

 proxy.ClientCredentials.Windows.ClientCredential.UserName = "Fred";

 proxy.ClientCredentials.Windows.ClientCredential.Password = "Pa$$w0rd";

 // Add two water bottles to the shopping cart

 proxy.AddItemToCart("WB-H098");

 ...

 }

 ...

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 269

Note  You created the user Fred in the exercise, “Create Groups for Warehouse Staff and
Stock Controller Staff,” on page 154 in Chapter 4, “Protecting an Enterprise WCF Service.”

	 8.	 Start the solution without debugging. In the client application console window, press
Enter. The client application displays a shopping cart containing only three items—this
is Fred’s shopping cart and not the one created earlier.

	 9.	 Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

	 10.	 In Windows Explorer, you should see another XML file in the Chapter 7\Shopping
CartService\ShoppingCartHost\bin\Debug folder, called YourDomain!Fred.xml.

This solution implements a balance between resource use and responsiveness. Although a
new service instance must be created for every operation, and it takes time to restore and
save session state, you do not need to retain a service instance in memory for every active
client application, so the solution should scale effectively as more and more users access your
service.

There are three other points worth making about the sample code in this exercise:

	 1.	 The restoreShoppingCart and saveShoppingCart methods are not currently thread-safe.
This might not seem important as the ShoppingCartService service uses the PerCall
instance context mode and the single-threaded concurrency mode. However, if the
same user (such as Fred) runs two concurrent instances of the client application, it will
establish two concurrent instances of the service, which will both attempt to read and
write the same file. The file access semantics of the .NET Framework class library pre-
vents the two service instances from physically writing to the same file at the same time,
but both service instances can still interfere with each other. Specifically, the save
ShoppingCart method simply overwrites the XML file, so one instance of the service
can obliterate any data saved by the other instance. In a production environment, you
should take steps to prevent this situation from occurring, such as using some sort of
locking scheme or maybe using a database rather than a set of XML files.

	 2.	 The saveShoppingCart method creates human-readable XML files. In a production envi-
ronment, you should arrange for these files to be stored in a secure location other than
the folder where the service executables reside. For reasons of privacy, you don’t want
other users to be able to access these files or modify them.

	 3.	 The solution relies on users being authenticated and having unique identifiers; they
cannot be anonymous. Without authentication and identification, there is no primary
identity for each user and the ShoppingCartService service will not be able to generate
unique names for files holding the state for each user’s session.

Download from Wow! eBook <www.wowebook.com>

270	 Windows Communication Foundation 4 Step by Step

You will revisit these issues later in this chapter and see how you can resolve them in a scalable
manner by using a durable service and defining durable operations. Before that, however, it
is worth looking at some other features of services and how you can control the sequence of
operations that a client application performs. This too can have a bearing on the way in which
you maintain state information.

Selectively Controlling Service Instance Deactivation
The service instance context mode determines the lifetime of service instances. This property
is global across the service; you set it once for the service class, and the WCF runtime handles
client application requests and directs them to an appropriate instance of the service (possibly
creating a new instance of the service), irrespective of the operations that the client applica-
tion actually invokes.

With the WCF runtime, you can selectively control when a service instance is deactivated,
based on the operations being called. You can tag each method that implements an opera-
tion in a service with the OperationBehavior attribute. This attribute has a property called
ReleaseInstanceMode that you can use to modify the behavior of the service instance context
mode. You use the OperationBehavior attribute like this:

[OperationBehavior(ReleaseInstanceMode = ReleaseInstanceMode.AfterCall)]

public bool Checkout()

{

 ...

}

The ReleaseInstanceMode property can take one of these values:

■■ ReleaseInstanceMode.AfterCall  When the operation completes, the WCF runtime will
release the service instance for recycling. If the client invokes another operation, the
WCF runtime will create a new service instance to handle the request.

■■ ReleaseInstanceMode.BeforeCall  If a service instance exists for the client application,
the WCF runtime will release it for recycling and create a new one for handling the
client application request.

■■ ReleaseInstanceMode.BeforeAndAfterCall  This is a combination of the previous two
values; the WCF runtime creates a new service instance for handling the operation and
releases the service instance for recycling when the operation completes.

■■ ReleaseInstanceMode.None  This is the default value. The service instance is managed
according to the service instance context mode.

You should be aware that you can only use the ReleaseInstanceMode property to reduce the
lifetime of a service instance, and you should understand the interplay between the Instance
ContextMode property of the ServiceBehavior attribute and the ReleaseInstanceMode property

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 271

of any OperationBehavior attributes adorning methods in the service class. For example, if you
specify an InstanceContextMode value of InstanceContextMode.PerCall and a ReleaseInstance
Mode value of ReleaseInstanceMode.BeforeCall for an operation, the WCF runtime will still
release the service instance when the operation completes. The semantics of InstanceContext
Mode.PerCall cause the service to be released at the end of an operation, and the Release
InstanceMode property cannot force the WCF runtime to let the service instance live on. On
the other hand, if you specify an InstanceContextMode value of InstanceContextMode.Single
and a ReleaseInstanceMode value of ReleaseInstanceMode.AfterCall for an operation, the WCF
runtime will release the service instance at the end of the operation, destroying any shared
resources in the process (there are some threading issues that you should also consider as part
of your design if the service is multi-threaded, in this case).

The ReleaseInstanceMode property of the OperationBehavior attribute is most commonly used
in conjunction with the PerSession instance context mode. If you need to create a service that
uses PerSession instancing, you should carefully assess whether you actually need to hold a
service instance for the entire duration of a session. For example, if you know that a client
always invokes a particular operation or one of a set of operations at the end of a logical
piece of work, you can consider setting the ReleaseInstanceMode property for the operation
to ReleaseInstanceMode.AfterCall.

An alternative technique is to make use of some operation properties that you can use to
control the sequence of operations in a session, which you will look at next.

Sequencing Operations in a WCF Service
When using the PerSession instance context mode, it is often useful to be able to control the
order in which a client application invokes operations in a WCF service. Revisiting the Shopping
CartService service, suppose that you decide to use the PerSession instance context mode
rather than PerCall. In this scenario, it might not make sense to allow the client application
to remove an item from the shopping cart, query the contents of the shopping cart, or per-
form a checkout operation if the user has not actually added any items to the shopping cart.
Equally, it would be questionable practice to allow the user to add an item to the shopping
cart after the user has already checked out and paid for the items in the cart. There is actu-
ally a sequence to the operations in the ShoppingCartService service, and the service should
enforce this sequence:

	 1.	 Add an item to the shopping cart.

	 2.	 Add another item, remove an item, or query the contents of the shopping cart.

	 3.	 Check out and empty the shopping cart.

Download from Wow! eBook <www.wowebook.com>

272	 Windows Communication Foundation 4 Step by Step

When you define an operation in a service contract, the OperationContract attribute provides
two Boolean properties that you can use to control the order of operations and the conse-
quent lifetime of the service instance:

■■ IsInitiating  If you set this property to true, a client operation can invoke this operation
to initiate a new session and create a new service instance. If a session already exists,
this property has no further effect. By default, this property is set to true. If you set this
property to false, then a client application cannot invoke this operation until another
operation has initiated the session and created a service instance. At least one operation
in a service contract must have this property set to true.

■■ IsTerminating  If you set this property to true, the WCF runtime will terminate the ses-
sion and release the service instance when the operation completes. The client applica-
tion must create a new connection to the service before invoking another operation,
which must have the IsInitiating property set to true. The default value for this property
is false. If no operations in a service contract specify a value of true for this property, the
session remains active until the client application closes the connection to the service.

Note  These properties are specific to WCF and do not conform to any current WS-* standards.
Using them can impact the interoperability of your service with client applications created by
using other technologies.

The WCF runtime checks the values of these properties for consistency at runtime in conjunc-
tion with another property for the service contract called SessionMode. The SessionMode
property of the service contract specifies whether the service implements sessions. It can have
one of the following values:

■■ SessionMode.Required  The service will create a session to handle client requests if a
session does not already exist for this client; otherwise, it will use the existing session
for the client. The binding used by the service must support sessions. For example,
the ws2007HttpBinding binding supports sessions, but the basicHttpBinding binding
does not.

■■ SessionMode.Allowed  The service will create or use a session if the service binding
supports them; otherwise, the service will not implement sessions.

■■ SessionMode.NotAllowed  The service will not use sessions, even if the service binding
supports them.

If you specify a value of false for the IsInitiating property of any operation, then you must set
the SessionMode property of the service contract to SessionMode.Required. If you do not, the
WCF runtime will throw an exception. Similarly, you can only set the IsTerminating property to
true if the SessionMode property of the service is set to SessionMode.Required.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 273

More Info  You will learn more about the SessionMode property of a service contract and reliable
sessions in Chapter 10, “Implementing Reliable Sessions.”

In the next set of exercises, you will see how to apply the IsInitiating and IsTerminating prop-
erties of the OperationBehavior attribute.

Control the Sequence of Operations in the ShoppingCartService Service

	 1.	 In Visual Studio, open the IShoppingCartService.cs file for the ShoppingCartService
project in the Code And Text Editor window.

	 2.	 Add the SessionMode property to the ServiceContract attribute for the IShopping
CartService interface, as shown in bold in the following:

[ServiceContract(SessionMode = SessionMode.Required,

 Namespace = "http://adventure-works.com/2007/03/01",

 Name = "ShoppingCartService")]

public interface IShoppingCartService

{

 ...

}

Remember that this setting enforces the requirement for the service to create a session
to handle requests from client applications. The service currently implements the PerCall
instance context mode, and you will change this setting shortly.

	 3.	 Modify the operations in the IShoppingCartService interface by specifying which opera-
tions initiate a session and which operations cause a session to terminate, as follows:

public interface IShoppingCartService

{

 [OperationContract(Name="AddItemToCart", IsInitiating = true)]

 bool AddItemToCart(string productNumber);

 [OperationContract(Name = "RemoveItemFromCart", IsInitiating = false)]

 bool RemoveItemFromCart(string productNumber);

 [OperationContract(Name = "GetShoppingCart", IsInitiating = false)]

 string GetShoppingCart();

 [OperationContract(Name = "Checkout", IsInitiating = false, IsTerminating = true)]

 bool Checkout();

}

Download from Wow! eBook <www.wowebook.com>

274	 Windows Communication Foundation 4 Step by Step

	 4.	 Open the ShoppingCartService.cs file for the ShoppingCartService project in the Code
And Text Editor window. Change the InstanceContextMode property of the service to
create a new instance of the service for each session, as shown in bold in the following:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerSession)]

public class ShoppingCartServiceImpl : IShoppingCartService

{

 ...

}

	 5.	 In the AddItemToCart method, comment out the single statement that calls the restore
ShoppingCart method and the two statements that call the saveShoppingCart method.

The service is using the PerSession instance context mode. Therefore, the session will
maintain its own copy of the user’s shopping cart in memory, which renders these
method calls unnecessary.

	 6.	 In the RemoveItemFromCart method, comment out the statement that calls the restore
ShoppingCart method and the statement that calls the saveShoppingCart method.

	 7.	 In the GetShoppingCart method, comment out the statement that calls the restore
ShoppingCart method.

You can test the effects of these changes by modifying the client application.

Test the Operation Sequencing in the ShoppingCartService Service

	 1.	 Open the ShoppingCartServiceProxy.cs file for the ShoppingCartClient project. This is
the proxy class that you generated earlier. You have modified the service contract, so
you must update this class to reflect these changes. You can use the svcutil utility to
generate a new version of the proxy, but the changes are quite small so it is easier to
add them by hand, as follows:

	 a.	 Modify the ServiceContract attribute for the ShoppingCartService interface and
specify the SessionMode property:

[System.ServiceModel.ServiceContractAttribute(

 SessionMode=System.ServiceModel.SessionMode.Required, Namespace="...", ...)]

public interface ShoppingCartService

{

 ...

}

	 b.	 Add the IsInitiating property to the OperationContract attribute of the AddItem
ToCart, RemoveItemFromCart, and GetShoppingCart methods:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 275

[System.ServiceModel.OperationContractAttribute(IsInitiating = true,

 Action="...", ...)]

bool AddItemToCart(string productNumber);

[System.ServiceModel.OperationContractAttribute(IsInitiating = false,

 Action="...", ...)]

bool RemoveItemFromCart(string productNumber);

[System.ServiceModel.OperationContractAttribute(IsInitiating = false,

 Action="...", ...)]

string GetShoppingCart();

	 c.	 Add the IsInitiating property and the IsTerminating property to the Operation
Contract attribute of the Checkout method:

[System.ServiceModel.OperationContractAttribute(

 IsInitiating = false, IsTerminating = true, Action="...", ...)]

bool Checkout();

	 2.	 Edit the Program.cs file in the ShoppingCartClient project. Add the following statements
(shown in bold) between the code that displays the shopping cart and the statement
that closes the proxy:

static void Main(string[] args)

{

 ...

 try

 {

 ...

 // Query the shopping cart and display the result

 string cartContents = proxy.GetShoppingCart();

 Console.WriteLine(cartContents);

 // Buy the goods in the shopping cart

 proxy.Checkout();

 Console.WriteLine("Goods purchased");

 // Go on another shopping expedition and buy more goods

 // Add a road seat assembly to the shopping cart

 proxy.AddItemToCart("SA-R127");

 // Add a touring seat assembly to the shopping cart

 proxy.AddItemToCart("SA-T872");

 // Remove the road seat assembly

 proxy.RemoveItemFromCart("SA-R127");

 // Display the shopping basket

 cartContents = proxy.GetShoppingCart();

 Console.WriteLine(cartContents);

Download from Wow! eBook <www.wowebook.com>

276	 Windows Communication Foundation 4 Step by Step

 // Buy these goods as well

 proxy.Checkout();

 Console.WriteLine("Goods purchased");

 // Disconnect from the ShoppingCartService service

 proxy.Close();

 }

 ...

}

The first statement that invokes the Checkout operation terminates the session and
destroys the shopping cart. The statements that follow create and use a new session,
with its own shopping cart.

	 3.	 Start the solution without debugging. In the ShoppingCartClient console window, press
Enter.

The client application adds the three items to the shopping cart and outputs the con-
tents. It then displays an error:

This demonstrates that the first call to the Checkout operation successfully terminated
the session. However, the service has closed the connection that the client application
was using when the session finished. Therefore, the client application must open a new
connection and create a new session before it can communicate with the service again.

	 4.	 Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

	 5.	 The simplest way to create a new connection is to rebuild the proxy. However, you must
ensure that you provide the user’s credentials again because these will be lost when the
new instance of the proxy is created.

In Visual Studio, add the following statements after the code that performs the first
Checkout operation in the Main method:

static void Main(string[] args)

{

 ...

 try

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 277

 {

 ...

 // Buy the goods in the shopping cart

 proxy.Checkout();

 Console.WriteLine("Goods purchased");

 // Go on another shopping expedition and buy more goods

 proxy = new ShoppingCartServiceClient(

 "WS2007HttpBinding_IShoppingCartService");

 // Provide credentials to identify the user

 proxy.ClientCredentials.Windows.ClientCredential.Domain = "Domain";

 proxy.ClientCredentials.Windows.ClientCredential.UserName = "Fred";

 proxy.ClientCredentials.Windows.ClientCredential.Password = "Pa$$w0rd";

 // Add a road seat assembly to the shopping cart

 proxy.AddItemToCart("SA-R127");

 ...

 }

 ...

}

	 6.	 Start the solution again. In the ShoppingCartClient console window, press Enter.

This time, the client application creates a second session after terminating the first.
The second session has its own shopping cart:

	 7.	 Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

As an additional exercise, you can test the effects of invoking the RemoveItemFromCart,
GetShoppingCart, or Checkout operations without calling AddItemToCart first. These opera-
tions do not create a new session, and the client application should fail, with the exception
shown in Figure 7-1.

Download from Wow! eBook <www.wowebook.com>

278	 Windows Communication Foundation 4 Step by Step

Figure 7-1  Invoking operations in the wrong sequence.

Bindings and Sessions
You should be aware that sessions require support from the underlying protocol used
to connect to a WCF service. Not all protocols provide this level of support, and con-
sequently not all of the standard bindings available with WCF enable sessions. If you
attempt to configure a service to implement sessions by using a binding that does not
support sessions, the service will fail to start. The following table lists the standard WCF
bindings and indicates whether each binding supports sessions.

Binding Supports Sessions?

BasicHttpBinding No

BasicHttpContextBinding No

WSHttpBinding Yes

WSHttpContextBinding Yes

WS2007HttpBinding Yes

WSDualHttpBinding Yes

WebHttpBinding No

WSFederationHttpBinding Yes

WS2007FederationHttpBinding Yes

NetTcpBinding Yes

NetTcpContextBinding Yes

NetPeerTcpBinding No

NetNamedPipeBinding No

NetMsmqBinding No

MsmqIntegrationBinding No

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 279

Maintaining State by Using a Durable Service
In the earlier section, “Maintaining State with the PerCall Instance Context Mode,” on page
262, you saw how to maintain state in a session-less service by providing your own code to
serialize and deserialize state information. You were also made aware of some of the compli-
cations that you need to address if you wish to follow this approach in a professional applica-
tion. These are non-trivial issues. Fortunately, WCF provides the notion of durable services and
durable operations that can help you.

A durable service is a WCF service that uses sessions to maintain state information. However,
you can suspend or even halt a session, releasing the resources associated with the service
instance while preserving the state of the session. Later, you can start a new service instance,
resume a session, and reload the state for that session into the service instance. Durable ser-
vices are ideal for long-running sessions, during which a client application may be inactive for
a period of time; the session and resources associated with an inactive client can be swapped
out and reloaded when the client becomes active again. The workflow model for building
scalable WCF services relies heavily on durable services (as you will see in Chapter 8), as does
Windows Server AppFabric, if you are hosting WCF services in an enterprise environment.
However, you can also use durable services outside of these scenarios. You will investigate
how in the set of exercises to follow.

You indicate that a service is durable by tagging it with the DurableService attribute. A dura-
ble service requires a data store to persist the state of its sessions. WCF and Workflow Foun-
dation provide the SQL Persistence Provider for storing session state in a SQL Server database.
You can also build your own custom persistence provider if you wish to use some other
mechanism. You configure a durable service to reference a persistence provider and provide
the details for connecting to the persistence store used by that provider.

When a service instance is started and a new session is created, the WCF runtime generates
a unique instance ID for that session. This instance ID is passed in the header of SOAP mes-
sages that flow between the client application and the service, and the WCF runtime uses this
instance ID to correlate the client requests with the corresponding service instance. When the
client closes the connection to the service, the WCF runtime saves the state of the session,
including the instance ID, to the persistence store. Later on, if the client application resumes,
it can populate the header of the request messages that it sends to the WCF service host with
the instance ID of the earlier session. The WCF runtime for the service can create a new session,
look up the session state from the persistence store, and use this information to populate the
session. To the client application, this new session appears to be exactly the same as the old one.

As well as marking a service as durable, you also need to specify which operations can cause
the service to save and resume session state. You do this with the DurableOperation attribute.
This attribute provides similar functionality to the IsInitiating and IsTerminating properties of
the OperationBehavior attribute; you can set a property named CanCreateInstance to true to

Download from Wow! eBook <www.wowebook.com>

280	 Windows Communication Foundation 4 Step by Step

specify that the WCF runtime can create a new instance of a durable service when the opera-
tion is invoked. You can also set this property to false to indicate that the operation can only
run by using an existing instance. Additionally, you can set the CompletesInstance property to
true to indicate that the operation finishes the session, and any saved state held in the persis-
tence store should be removed when the operation completes.

In the following exercises, you will modify the ShoppingCartService to be a durable service,
and examine how to interact with this service from a simple graphical client application.

Examine the ShoppingCartGUIClient Application

	 1.	 In Visual Studio, open the ShoppingCart solution located in the DurableShoppingCart
folder in the Microsoft Press\WCF Step By Step\Chapter 7 folder.

This solution contains a version of the ShoppingCartService but with the Operation
Behavior attributes removed. The service implements the PerSession instance context
mode. The ShoppingCartGUIClient project is a WPF application that invokes the opera-
tions in the ShoppingCartService service and displays the results in a GUI.

	 2.	 In the ShoppingCartGUIClient project, open the MainWindow.xaml file in the Design
View window.

When the user runs the application, she can enter a product number and then click Add
Item to add the specified item to the shopping cart. The contents of the shopping cart
are displayed in the text area below the buttons. The user can remove an item from the
shopping cart by clicking the Remove Item button, and the contents of the shopping
cart will be redisplayed. The user can click the Checkout button to invoke the Checkout
operation, which also clears the shopping cart.

	 3.	 Start the solution without debugging. In the Shopping Cart GUI Client window, enter
WB-H098 in the Product Number text box, and then click Add Item. After a short delay,
the contents of the shopping cart will appear, displaying a water bottle, as shown in the
following image:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 281

	 4.	 Click Add Item again and verify that the volume and total cost are updated.

	 5.	 In the Product Number text box, type SA-M198, and then click Add Item one more
time. A mountain seat assembly should be added and appear in the shopping cart
displayed in the window.

	 6.	 Click Remove Item. The mountain seat assembly should be removed from the shopping
cart.

	 7.	 Click Checkout. The shopping cart should be emptied.

	 8.	 Close the Shopping Cart GUI Client window. In the service host application console
window, press Enter to stop the service.

	 9	 In Solution Explorer, expand the MainWindow.xaml node in the ShoppingCartGUI
Client project, and then open the MainWindow.xaml.cs file in the Code And Text Editor
window.

This file contains the code behind the user interface. The highlights are reproduced in
the following code example:

public partial class MainWindow : Window

{

 private ShoppingCartServiceClient proxy = null;

 ...

 private void Window_Loaded(object sender, RoutedEventArgs e)

 {

 // Connect to the ShoppingCartService service

 proxy = new ShoppingCartServiceClient(

 "WS2007HttpBinding_IShoppingCartService");

 }

 private void Window_Unloaded(object sender, RoutedEventArgs e)

 {

 // Disconnect from the service

 proxy.Close();

 }

 // Add the item specified in the productNumber Text Box to the shopping cart

 private void addItem_Click(object sender, RoutedEventArgs e)

 {

 try

 {

 // Add the item to the shoppping cart

 proxy.AddItemToCart(productNumber.Text);

 // Display the shopping cart

 string cartContents = proxy.GetShoppingCart();

 shoppingCartContents.Text = cartContents;

 }

Download from Wow! eBook <www.wowebook.com>

282	 Windows Communication Foundation 4 Step by Step

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message, "Error adding item to cart",

 MessageBoxButton.OK, MessageBoxImage.Error);

 }

 }

 // Remove the item specified in the productNumber Text Box from the shopping cart

 private void removeItem_Click(object sender, RoutedEventArgs e)

 {

 try

 {

 // Remove the item from the shoppping cart

 proxy.RemoveItemFromCart(productNumber.Text);

 // Display the shopping cart

 string cartContents = proxy.GetShoppingCart();

 shoppingCartContents.Text = cartContents;

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message, "Error removing item from cart",

 MessageBoxButton.OK, MessageBoxImage.Error);

 }

 }

 // Checkout

 private void checkout_Click(object sender, RoutedEventArgs e)

 {

 try

 {

 proxy.Checkout();

 // Clear the shopping cart displayed in the window

 shoppingCartContents.Clear();

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message, "Error checking out",

 MessageBoxButton.OK, MessageBoxImage.Error);

 }

 }

}

The connection to the service is held in the proxy variable. The connection is established
when the window appears, and it is terminated when the window disappears.

The addItem_Click method runs when the user clicks Add Item. This method invokes the
AddItemToCart operation, passing the product number specified in the productNumber
text box as the parameter. The method then calls GetShoppingCart to retrieve the con-
tents of the shopping cart from the service, which it then displays in the shoppingCart
Contents text area in the window.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 283

The logic behind the removeItem_Click method is similar. This method runs when the
user clicks Remove Item, and it calls the RemoveItemFromCart operation followed by
GetShoppingCart to retrieve the updated shopping cart information.

The checkout_Click method runs when the user clicks Checkout. This method calls the
Checkout operation and then clears the shopping cart displayed in the window.

This client application is straightforward, but it exhibits some very poor practice that does not
lend itself to building a professional, scalable system. The problem is that the connection to
the service is established and the session initiated when the user starts the application and
opens the window, and this connection and session remain in memory in the service host
until the user closes the window and stops the application. If the user forgets to close the cli-
ent application before she goes off on holiday for two weeks, the resources associated with
the session will remain in memory for this time. Additionally, if the service host is shut down
during this period, the session state information (the shopping cart) will be lost.

Reconfiguring ShoppingCartService as a durable service and making some adjustments to the
code in the client application can rectify these problems. You will start by creating the persis-
tence store for the durable service.

Create the Persistence Store for the SQL Persistence Provider

	 1.	 In Visual Studio, select View | Server Explorer.

	 2.	 In Server Explorer, right-click Data Connections, and then click Create New SQL Server
Database. In the Create New SQL Server Database dialog box, set the Server Name to
.\SQLExpress, click Use Windows Authentication, enter WCFPersistence in the New
Database Name text box, and then click OK.

	 3.	 From the File menu, click Open, and then click File. In the Open File dialog box move
to the folder C:\Windows\Microsoft.NET\Framework\v4.0.30319\SQL\en, select the
SqlPersistenceProviderSchema.sql file, and then click Open.

Download from Wow! eBook <www.wowebook.com>

284	 Windows Communication Foundation 4 Step by Step

This SQL script creates the InstanceData table in the persistence database. The SQL Per-
sistence Provider uses this table to store session information.

Note  The name of the folder (v4.0.30319) may change as newer versions of the .NET
Framework are released.

	 4.	 From the Data menu, click Transact-SQL Editor, click Connection, and then click Connect.
In the Connect to Database Engine dialog box, in the Server Name text box, enter
.\SQLExpress. Ensure that Authentication is set to Windows Authentication, and then
click Connect.

	 5.	 In the Visual Studio toolbar, in the Database drop-down, click WCFPersistence.

Important  This step is important; otherwise, the script will be run in the SQL Server
master database.

	 6.	 From the Data menu, click Transact-SQL Editor, and then click Execute SQL. Verify that
the SQL script runs and displays the message “Command(s) completed successfully.”

	 7.	 Follow the process described in steps 3 through 6 to open and run the SqlPersistence
ProviderLogic.sql script located in the C:\Windows\Microsoft.NET\Framework\
v4.0.30319\SQL\en folder.

This script creates the stored procedures required by the SQL Persistence Provider to
insert, update, and delete information about sessions in the InstanceData table. These
operations are performed in a thread-safe manner by using logic that locks the session
data while it is being manipulated.

You can now modify the service and configure it as a durable service that uses this persistence
store.

Reconfigure the ShoppingCartService Service as a Durable Service

	 1.	 In Solution Explorer, click the ShoppingCartService project. From the Project menu,
select ShoppingCartService Properties.

	 2.	 In the ShoppingCartService Properties window, click the Application tab. In the Target
Framework drop-down, click .NET Framework 4. In the Target Framework Change mes-
sage box, click Yes to allow Visual Studio to change the target framework.

The project was originally built by using the more lightweight version of the .NET
Framework provided by the Client Profile. However, the persistence functionality of
durable services requires assemblies that are only available with the full-blown version
of the .NET Framework.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 285

	 3.	 Add a reference to the System.WorkflowServices assembly to the ShoppingCartService
project.

This assembly contains the implementation of the DurableService and DurableOperation
attributes.

	 4.	 Open the IShoppingCartService.cs file for the ShoppingCartService project in the Code
And Text Editor window. Examine the ShoppingCartItem class.

Remember that this class holds the session data for each service instance. You marked
this class as serializable earlier so you could save instances of this class as XML data. The
SQL Persistence Provider also requires that this—and any other data stored as part of
the session state—is serializable, so leave the Serializable attribute in place.

	 5.	 Open the ShoppingCartService.cs file for the ShoppingCartService project in the Code
And Text Editor window. Add the following using statement to the list at the top of the
file:

using System.ServiceModel.Description;

The DurableService and DurableOperation attributes implemented by the System.Work
flowServices assembly are defined in this namespace.

	 6.	 Verify that the InstanceContextMode property of the ServiceBehavior attribute for the
ShoppingCartServceImpl class is set to InstanceContextMode.PerSession.

All durable services must implement sessions.

	 7.	 Add the Serializable and DurableService attributes (shown in bold in the following) to
the ShoppingCartServiceImpl class.

[ServiceBehavior(InstanceContextMode=InstanceContextMode.PerSession)]

[Serializable]

[DurableService]

public class ShoppingCartServiceImpl : IShoppingCartService

{

 ...

}

The SQL Persistence Provider requires that all durable services are also serializable so
that their state can be saved to the persistence database.

	 8.	 Locate the AddItemToCart method in the ShoppingCartServiceImpl class. Tag this
method as a durable operation and set the CanCreateInstance property to true, as
shown in the following.

[DurableOperation(CanCreateInstance = true)]

public bool AddItemToCart(string productNumber)

{

 ...

}

Download from Wow! eBook <www.wowebook.com>

286	 Windows Communication Foundation 4 Step by Step

Following the same logic described in the section “Sequencing Operations in a WCF
Service” on page 271, a client application can use this operation to start a new session if
one has not already been created.

	 9.	 Mark the RemoveItemFromCart method as a durable operation, but set the CanCreate
Instance property to false. Do the same for the GetShoppingCart method.

[DurableOperation(CanCreateInstance = false)]

public bool RemoveItemFromCart(string productNumber)

{

 ...

}

...

[DurableOperation(CanCreateInstance = false)]

public string GetShoppingCartCart()

{

 ...

}

Neither of these methods can be invoked unless a session already exists.

	 10.	 Tag the Checkout operation with the DurableOperation attribute. Set the CanCreate
Instance property to false and set the CompletesInstance property to true.

[DurableOperation(CanCreateInstance = false, CompletesInstance = true)]

public bool Checkout()

{

 ...

}

This operation finishes a session and removes the state from the persistence store when
it completes.

	 11.	 In Solution Explorer, click the ShoppingCartHost project. From the Project menu,
select ShoppingCartHost Properties. In the ShoppingCartHost Properties window,
click the Application tab. In the Target Framework drop-down, click .NET Framework 4.
In the Target Framework Change message box, click Yes to allow Visual Studio to change
the target framework.

The ShoppingCartHost project references the ShoppingCartService project and must run
by using the same version of the .NET Framework.

	 12.	 Open the App.config file for the ShoppingCartHost project in the Code And Text Editor
window. Add the following connection string (shown in bold) to the connectionStrings
section.

<?xml version="1.0"?>

<configuration>

 <connectionStrings>

 <add name="AdventureWorksEntities" connectionString="..."/>

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 287

 <add name="DurableServiceConnectionString" connectionString=

"Data Source=.\SQLExpress;Initial Catalog=WCFPersistence;IntegratedSecurity=True"/>

 </connectionStrings>

 ...

</configuration>

This connection string contains the information that the SQL Persistence Provider
requires for connecting to the SQL Server database that you created in the previous
exercise. You will reference this connection by its name, DurableServiceConnectionString,
in the WCF configuration for the service host.

	 13.	 Save the App.config file, and then edit it again using the Service Configuration Editor.

	 14.	 In the Configuration pane, expand the Advanced folder, and then click Service Behaviors.
In the Service Behaviors pane, click New Service Behavior Configuration.

	 15.	 In the Behavior: NewBehavior() pane, in the Name field, enter DurableServiceBehavior.
In the lower pane, click Add.

	 16.	 In the Adding Behavior Element Extension Sections dialog box, click persistenceProvider,
and then click Add.

	 17.	 In the Configuration pane, under the DurableServiceBehavior node, click the persistence
Provider node.

	 18.	 In the PersistenceProvider pane, in the Type field, enter System.ServiceModel.
Persistence.SqlPersistenceProviderFactory.

	 19.	 In the Configuration pane, expand the persistenceProvider node, and then click persistence
ProvideArguments.

	 20.	 In the PersistenceProviderArguments pane, click New.

	 21.	 In the Persistence Provider Arguments Editor dialog box, in the Name field, enter
connectionStringName. In the Value field enter DurableServiceConnectionString,
and then click OK.

These parameters specify that the WCF runtime should use the SqlPersistenceProvider
Factory class to create a SqlPersistenceProvider object for persisting session data. This
object will use the information specified by the connectionStringName parameter to
connect to the SQL Server database.

Note  The SqlPersistenceProviderFactory class is implemented in the System.WorkflowServices
assembly.

	 22.	 In the Configuration pane, under the Services folder, click the ShoppingCartService.
ShoppingCartServiceImpl service. In the Service:ShoppingCartService.ShoppingCart
ServiceImpl pane, set the BehaviorConfiguration property to DurableServiceBehavior.

Download from Wow! eBook <www.wowebook.com>

288	 Windows Communication Foundation 4 Step by Step

	 23.	 In the Configuration pane, expand the ShoppingCartService.ShoppingCartServiceImpl
service, expand the Endpoints folder, and then click the (Empty Name) endpoint.

	 24.	 In the Service Endpoint pane, change the Binding property to wsHttpContextBinding.

As mentioned earlier, the instance ID generated by the durable service is passed in
the header of the SOAP messages that are exchanged by the client application and the
service. The protocol used by the service must populate and examine this information
automatically; the wsHttpContextBinding binding provides this functionality.

Note  Remember from Chapter 2, “Hosting a WCF Service,” that WCF provides three built-
in bindings that can pass context information; wsHttpContextBinding, basicHttpContext
Binding, and netTcpContextBinding. As described here, the wsHttpContextBinding binding
passes information in the SOAP header of messages, as does the netTcpContextBinding
binding. The basicHttpContextBinding binding uses cookies.

	 25.	 Save the configuration file, and then exit the Service Configuration Editor.

Note  If you examine the app.config file by using the Code And Text Editor window,
you may receive a warning that the connectionStringName attribute is not allowed in the
persistenceProvider element. You can ignore this warning.

The next step is to modify the client application. You must configure it to use the same binding
as the service (wsHttpContextBinding), and you will also update it to take better advantage of
the durable service. Specifically, you will modify the code behind the MainWindow window
to open and close connections to the service as they are required rather than creating a con-
nection when the application starts and holding this connection open until the application
finishes.

Update the ShoppingCartGUIClient Application

	 1.	 Open the app.config file for the ShoppingCartGUIClient project in the Code And Text
Editor window. Modify the client endpoint to use the wsHttpContextBinding binding,
and change the name of the endpoint to WSHttpContextBinding_IShoppingCart
Service, for consistency, as shown in bold in the following:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.serviceModel>

 <client>

 <endpoint address="http://localhost:9000/ShoppingCartService/ShoppingCart

 Service.svc"

 binding="wsHttpContextBinding" bindingConfiguration=""

 contract="ShoppingCartClient.ShoppingCartService.ShoppingCartService"

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 289

 name="WSHttpContextBinding_IShoppingCartService" kind=""

 endpointConfiguration="">

 </endpoint>

 </client>

 </system.serviceModel>

</configuration>

	 2.	 Open the MainWindow.xaml.cs file in the Code And Text Editor window. Comment out
the code in the Window_Loaded and Window_Unloaded methods.

	 3.	 Add the following using statements to the list at the top of the file:

using System.ServiceModel;

using System.ServiceModel.Channels;

	 4.	 In the MainWIndow class, add the private context variable (shown in bold in the follow-
ing) after the definition of the proxy variable:

public partial class MainWindow : Window

{

 private ShoppingCartServiceClient proxy = null;

 private IDictionary<string, string> context = null;

 ...

}

You will use the context variable to capture the context generated by the service when
it creates the session on the initial call to the AddItemToCart operation. The context is a
dictionary of key/value pairs and will include the instance ID (with the key “instanceId”)
that the WCF runtime creates and uses to identify the session and correlate with the
client application. You will pass this context in the SOAP header of subsequent calls to
operations.

	 5.	 Modify the code in the try block of the addItem_Click method, as shown in bold in the
following:

// Add the item specified in the productNumber Text Box to the shopping cart

private void addItem_Click(object sender, RoutedEventArgs e)

{

 try

 {

 // Create the proxy and connect to the service

 using (proxy = new ShoppingCartServiceClient(

 "WSHttpContextBinding_IShoppingCartService"))

 {

 // If the context is not null, then the client application

 // has already created the durable session.

 // Set the context in the IContextManager object for

 // the proxy so that this context is passed in the SOAP

 // header of the AddItemToCart and

 // GetShoppingCart requests.

 IContextManager contextManager =

 proxy.InnerChannel.GetProperty<IContextManager>();

 if (context != null)

Download from Wow! eBook <www.wowebook.com>

290	 Windows Communication Foundation 4 Step by Step

 {

 contextManager.SetContext(context);

 }

 // Add the item to the shoppping cart

 proxy.AddItemToCart(productNumber.Text);

 // If the context is null, then this was the first call

 // made to the session.

 // Capture the context and save it so it can be

 // passed to subsequent requests

 if (context == null)

 {

 context = contextManager.GetContext();

 MessageBox.Show(context["instanceId"], "New context created",

 MessageBoxButton.OK, MessageBoxImage.Information);

 }

 // Display the shopping cart

 string cartContents = proxy.GetShoppingCart();

 shoppingCartContents.Text = cartContents;

 }

 }

 catch (Exception e)

 {

 ...

 }

}

The main items to notice in this code are:

❏❏ The method now creates the proxy object which it uses to communicate with the
service. The method also destroys the proxy object when it has finished with it;
this action closes the communications channel with the service and releases the
in-memory resources associated with the session. At this point the WCF runtime
for the service persists the session state to the persistence store.

❏❏ The name of the endpoint used to create the proxy is WSHttpContextBinding_
IShoppingCartService; this is the name that you specified in the application con-
figuration file.

❏❏ The method creates an IContextManager object which provides access to the con-
text information held in the SOAP header of messages sent and received by using
the proxy. Notice that you obtain a reference to this object by using the GetProperty
method of the InnerChannel property of the proxy. The InnerChannel property
gives you direct access to the communications channel used by the proxy.

❏❏ The method examines the context variable, and if this variable is not null, then
the user must have clicked the Add Item button previously to initiate the session
and create the shopping cart. In this case, before calling AddItemToCart again,
the code invokes the SetContext method of the IContextManager object with the
previously saved context information. The IContextManager object will pass this

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 291

information in the SOAP header as part of the subsequent AddItemToCart and
GetShoppingCart request messages, and the WCF runtime for the service will use
this information to resurrect the session state associated with this context.

❏❏ The code that retrieves the context from the SOAP header of the response
received from the service after calling the AddItemToCart operation and saves
it if the context variable is null. In this case, this is the first time that the user has
clicked the Add Item button, so the WCF runtime has created an entirely new
session. The context is passed back to the client application in the SOAP header
of the response message, and the client application can access it through the
GetContext method of the IContextManager object. For your information, the code
also displays the instance ID found in the context. You will see that the instance ID
is simply a GUID that the SQL Persistence Provider uses as the key for storing and
retrieving information in the persistence database.

	 6.	 Make the changes highlighted in bold in the code that follows to the removeItem_Click
method. Remember that this method calls the RemoveItemFromCart operation which
cannot be used to initiate a session. The logic in this method therefore assumes that
the session has already been created, and so it simply populates the IContextManager
object with the previously saved context information. This context is transmitted to the
service in the SOAP header as part of the RemoveItemFromCart and GetShoppingCart
request messages.

// Remove the item specified in the productNumber Text Box from the shopping cart
private void removeItem_Click(object sender, RoutedEventArgs e)
{
 try
 {
 // Create the proxy and connect to the service
 using (proxy =
 new ShoppingCartServiceClient("WSHttpContextBinding_IShoppingCartService"))
 {
 // Set the context in the IContextManager object for the proxy so
 // that this context s passed in the SOAP header of the
 // RemoveItemFromCart and GetShoppingCart requests.
 IContextManager contextManager =
 proxy.InnerChannel.GetProperty<IContextManager>();
 contextManager.SetContext(context);

 // Remove the item from the shoppping cart
 proxy.RemoveItemFromCart(productNumber.Text);

 // Display the shopping cart
 string cartContents = proxy.GetShoppingCart();
 shoppingCartContents.Text = cartContents;
 }
 }
 catch (Exception e)
 {
 ...
 }
}

Download from Wow! eBook <www.wowebook.com>

292	 Windows Communication Foundation 4 Step by Step

	 7.	 Update the checkout_Click method, as shown in bold in the code that follows. The logic
is similar to that in the removeItem_Click method. The principal difference is that the
method sets the context variable to null as it finishes. This is because the Checkout oper-
ation terminates the session, so the context is no longer valid; a subsequent call to the
AddItemToCart method must create a new session with a new context.

// Checkout

private void checkout_Click(object sender, RoutedEventArgs e)

{

 try

 {

 // Create the proxy and connect to the service

 using (proxy = new ShoppingCartServiceClient(

 "WSHttpContextBinding_IShoppingCartService"))

 {

 // Set the context in the IContextManager object for the proxy

 // so that this context is passed in the SOAP header of the

 // Checkout request.

 IContextManager contextManager =

 proxy.InnerChannel.GetProperty<IContextManager>();

 contextManager.SetContext(context);

 proxy.Checkout();

 // Clear the shopping cart displayed in the window

 shoppingCartContents.Clear();

 // Clear the context - the session has completed

 context = null;

 }

 }

 catch (Exception e)

 {

 ...

 }

}

Test the Durable Service

	 1.	 Start the solution without debugging. In the Shopping Cart GUI Client window, enter
WB-H098 in the Product Number text box, and then click Add Item.

A message box similar to that shown in the following image should appear, displaying
the instance ID of the session that has been created by the durable service (the GUID for
your session will be different from that shown in the image):

Download from Wow! eBook <www.wowebook.com>

	 Chapter 7  Maintaining State and Sequencing Operations	 293

	 2.	 Click OK and verify that a water bottle has been added to the shopping cart.

	 3.	 Leave the Shopping Cart GUI Client window and the service host console application
window running and return to Visual Studio.

	 4.	 In the Server Explorer pane, expand the Data Connections folder, expand the Your
Computer\sqlexpress.WCFPersistence.dbo connection (where YourComputer is the name
of your computer), expand Tables, right-click the InstanceData table, and then click
Show Table Data.

The SQL Persistence Provider stores session information in this table. You should see
a single row in this table, and the value in the id column should be the same as the
instance ID displayed previously by the message box in the client application. The ses-
sion data is held in a binary format in the instance column.

	 5.	 Return to the Shopping Cart GUI Client window. Enter SA-M198 in the Product Number
text box, and then click Add Item.

This time, no message box appears because the addItem_Click ascertains that the con-
text variable has a value, so a session must have already been created. The context is
passed to the ShoppingCartService service. The WCF runtime for the service creates a
new service instance, extracts the instance ID from the context, retrieves the session data
for this instance ID from the InstanceData table in the WCFPersistence database, and
uses this data to populate the service instance. The mountain seat assembly is added
to the shopping cart in this service instance. When the addItem_Click method finishes,
the WCF runtime for the service saves the session data back to the InstanceData table
before destroying the service instance.

	 6.	 Leave the Shopping Cart GUI Client window running, but close the service host console
application window. In Solution Explorer, right-click the ShoppingCartHost project, point
to Debug, and then click Start New Instance.

This step simulates a user leaving the client application running while the service host is
shut down and restarted.

	 7.	 Return to the Shopping Cart GUI Client window. Enter PU-M044 in the Product Number
text box, and then click Add Item.

Download from Wow! eBook <www.wowebook.com>

294	 Windows Communication Foundation 4 Step by Step

A mountain bike pump is added to the shopping cart. Notice that the WCF runtime has
successfully restored the existing contents of the shopping cart, despite the fact that the
service host has been shut down and restarted in the period since the previous request.

	 8.	 Click Checkout.

This operation completes the session, and the shopping cart is emptied.

	 9.	 Leave the Shopping Cart GUI Client window and the service host console application
window running and return to Visual Studio displaying the data from the InstanceData
table. In the Visual Studio toolbar, click the Execute SQL button (it has an image of a red
exclamation mark). The table should now be empty.

When the Checkout operation completed, the session was terminated, and the session
information saved in the persistence store was removed.

Note  If you now click the Add Item button in the Shopping Cart GUI Client window, the
client application will initiate a new session with its own unique session ID and shopping
cart.

	 10.	 Close the Shopping Cart GUI Client window and the service host console application
window.

Summary
In this chapter, you have seen the different options that the WCF runtime provides for creat-
ing an instance of a service. A service instance can exist for the duration of a single operation
or for the entire session, until the client application closes the connection. In many cases, a
service instance is private to a client, but WCF also supports singleton service instances that
can be shared by multiple instances of a client. You have also seen how you can selectively
control which operations create a new session and which operations close a session. Finally,
you saw how you can create a durable service with which you can maintain session state with-
out requiring that the corresponding service instance is active. Durable services are ideal for
building systems that involve potentially long-running sessions that need to be able to survive
service shutdown and restart.

Download from Wow! eBook <www.wowebook.com>

295

Chapter 8

Implementing Services by Using
Workflows

After completing this chapter, you will be able to:

■■ Describe how to build WCF–services-based Windows Workflow Foundation (WF) workflows.

■■ Build client applications that can consume WCF services based on WF workflows.

■■ Explain how to use the WF messaging activities to implement common messaging patterns.

■■ Manage state and correlate messages in a WCF service built by using WF.

■■ Configure the WF host environment to support long-running, durable services.

One of the principal reasons that organizations use WCF is to build service-oriented wrappers
around existing components and applications so that they can be reused in an easily adapt-
able manner. This strategy gives organizations the flexibility to more easily respond to rapidly
changing business requirements and create or adapt systems quickly that can meet those
requirements.

The business processes followed by most organizations comprise a distinct series of steps that
must be performed in a specific order. Some of these steps may involve invoking an operation
in a service. This implies that there may be a requirement to ensure that the operations in a
WCF service should be invoked in a sequence that matches the steps in the underlying busi-
ness process. You have seen that you can tag methods in a service to specify which operations
can initiate or terminate a session, but other than that, a service has little control over the
sequence in which a client application invokes its operations. That makes it difficult to enforce
an ordering and could possibly lead to bugs that are difficult to spot (and rectify). Defining
a service by using a WF workflow can help to address this issue and enforce an ordering
between operations.

Another potential issue is that of who should actually define and implement the logic for a
business process. A business analyst might be best positioned to understand the processes
that an organization follows. However, you could not necessarily expect a business analyst to
be well versed in WCF or to understand how to implement the operations for a WCF service;
this is clearly a task for a developer. On the other hand, a developer might be highly skilled
in building reusable components and services but may not have a full understanding of the
business processes that use them. WF can help to address this problem as well. A business
analyst can work with a developer using WF to define a graphical model of the various busi-
ness processes required, and a developer can implement the code required to perform the
various tasks described by the model.

Download from Wow! eBook <www.wowebook.com>

296	 Windows Communication Foundation 4 Step by Step

Yet another consideration (as discussed in Chapter 7, “Maintaining State and Sequencing
Operations”) is that of scalability. WF provides an ideal framework for implementing long-
running business processes as workflows. WCF services that you build by using WF workflows
can easily take advantage of the persistence functionality described in Chapter 7 for maintain-
ing durable state information, swapping sessions out of memory as they become inactive, and
reloading them when they are reactivated. Additionally, you can use Window Server AppFabric
to host and manage WCF services based on WF workflows in an enterprise environment.

In this chapter, you will see how to build WCF services based on business processes modeled
by using WF workflows, and how you can construct client applications that interact with these
services.

Note  The documentation provided with Visual Studio refers to WCF services built by using WF
workflows simply as “Workflow services”. To save space and avoid unnecessary repetition, I will use
the same terminology throughout this chapter.

Building a Simple Workflow Service and Client
Application

A good place to start is to use WF to build a simple service that exposes a single stateless
operation. You can then see how you can invoke this operation from a client application.

Implementing a Workflow Service
In the first set of exercises in this chapter, you will revisit the ProductsService service that a
client application can use to obtain information about products sold by AdventureWorks.
You will implement the GetProduct operation, which takes a product number and returns the
details of that product, as part of a WF service.

Note  The exercises in this chapter assume that you are familiar with building workflows by using
Windows Workflow Foundation and Visual Studio 2010.

Create the ProductsWorkflowService Service

	 1.	 Using Visual Studio, create a new WCF Workflow Service Application project:

	 a.	 In the New Project dialog box, navigate to the Visual C# | WCF folder in the
Installed Templates pane.

	 b. 	Choose the WCF Workflow Service Application template.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 297

	 c.	 Specify the following properties for the solution:

Property Value

Name ProductsWorkflowService

Location Microsoft Press\WCF Step By Step\Chapter 8 (within
your Documents folder)

Solution name ProductsWorkflow

Visual Studio generates a new workflow service called Service1.xamlx in the Products
WorkflowService project (all workflow services have the .xamlx file extension). The fol-
lowing image shows this service:

This is a simple sequential service consisting of a WorkflowService activity that contains
a series of steps defined in a Sequence activity. The ReceiveRequest activity waits for
an incoming request message from a client application specifying an operation called
GetData. The SendResponse activity sends a response message back to the client appli-
cation. Currently there is no additional processing performed by this operation; you are
expected to add the necessary logic between the ReceiveRequest and SendResponse
activities.

Download from Wow! eBook <www.wowebook.com>

298	 Windows Communication Foundation 4 Step by Step

The ReceiveRequest and SendResponse activities define the service interface. You will see
in the following steps how you can change the name of the operation and the service
contract that is generated if you do not want to use the default values.

	 2.	 In Solution Explorer, rename the Service1.xamlx file to ProductsService.xamlx.

	 3.	 In the Design View window that is displaying the workflow, click the background,
outside the bounds of the Sequential Service activity. In the Properties window, set the
ConfigurationName and Name properties to ProductsService.

The ConfigurationName property of a workflow service specifies the name of the service
in the Web.config file for configuring this service. The Name property is the name of the
service that appears in the WSDL description of the metadata for the service.

	 4.	 Click the ReceiveRequest activity in the Design View window. In the OperationName box,
type GetProduct. This is the name of the operation that will be generated in the service
contract.

	 5.	 In the Properties window, change the ServiceContractName property to
{http://adventure-works.com/}IProductsService.

The curly bracket characters shown above act as delimiters for the namespace gener-
ated for the service.

	 6.	 Ensure that the ReceiveRequest activity is still selected, and then click the Variables tab in
the lower-left corner of the Design View window. Change the name of the data variable
to localProductNumber and change the type of the variable to String. The GetProduct
operation will expect a message that contains a product number provided by the client
application; it will respond with another message that contains the details of this prod-
uct. You will use this variable to hold the product number retrieved from the request
message sent by the client application.

Be careful not to modify or delete the handle variable. The workflow uses this variable to
correlate the SendResponse activity with the ReceiveRequest activity; message correlation
will be described in more detail later in this chapter.

When you are done, click the Variables tab again to hide the variable definitions.

Note  Renaming the data variable causes several validation errors to appear in the work-
flow (they are displayed as exclamation marks in red circles). This is because the Receive
Request and SendResponse activities still reference the original data variable. You will modify
the ReceiveRequest activity in the next step, and update the SendResponse activity later in
the exercise to reference the correct variables and fix the validation errors.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 299

	 7.	 In the ReceiveRequest activity, in the Content property, click View Message.

The Content Definition dialog box appears. You use this dialog box to specify the data
passed to the operation. You can specify this information either as a message object or
a list of parameters. A message object is a type that implements the IMessage interface.
You will learn more about Message objects and the IMessage interface in Chapter 11,
“Programmatically Controlling the Configuration and Communications.”

	 8.	 In the Content Definition dialog box, select the Parameters option, and then click Add
New Parameter. Use the information in the following table to specify the details of the
parameter, and then click OK:

Property Value

Name ProductNumber

Type String

Assign To localProductNumber

The SOAP message for this operation should contain the data specified by any param-
eters that you define here (the client application must populate the message with this
data). The Assign To field in the parameter definition causes the workflow runtime to
retrieve the parameter into the specified variable so that you can access it in other activ-
ities in the workflow.

Note  If you are unfamiliar with Windows Workflow Foundation, you may be surprised
to see that the value in the Assign To field is designated as a Visual Basic expression, despite
the fact that you are using Visual C#. This is not an error. When you design a workflow and
have to specify an expression as part of the definition of an activity, you always use Visual
Basic syntax. However, when you are writing the code to support activities and workflows,
you use the language that you specified when you created the project (Visual C# in this
case).

	 9.	 In the Design View window, click the ReceiveRequest activity. In the Properties window,
verify that the CanCreateInstance check box is selected (select it if it is not currently
checked).

This property specifies that a client application can invoke this operation to create a new
instance of the service and start a new session. At least one operation in a service must
enable this property; otherwise, the client application has no way of initiating a service
instance.

You have now defined the request message for the GetProduct operation. If you recall from
the earlier chapters, the purpose of this operation is to retrieve the details of the product
from the AdventureWorks database, create a ProductData object and populate it with this

Download from Wow! eBook <www.wowebook.com>

300	 Windows Communication Foundation 4 Step by Step

information, and then return the ProductData object back to the client. To refresh your
memory, the code that follows shows how you implemented this operation in Chapter 6,
“Maintaining Service Contracts and Data Contracts.”

public class ProductsServiceImpl : IProductsService

{

 public bool ProductExists(string productNumber, AdventureWorksEntities database)

 {

 // Check to see whether the specified product exists in the database

 int numProducts = (from p in database.Products

 where string.Equals(p.ProductNumber, productNumber)

 select p).Count();

 return numProducts > 0;

 }

 ...

 public ProductData GetProduct(string productNumber)

 {

 // Create a reference to a ProductData object

 // This object will be instantiated if a matching product is found

 ProductData productData = null;

 try

 {

 // Connect to the AdventureWorks database by using the Entity Framework

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 // Check that the specified product exists

 if (ProductExists(productNumber, database))

 {

 // Find the first product that matches the specified product number

 Product matchingProduct = database.Products.First(

 p => String.Compare(p.ProductNumber, productNumber) == 0);

 productData = new ProductData()

 {

 Name = matchingProduct.Name,

 ProductNumber = matchingProduct.ProductNumber,

 Color = matchingProduct.Color,

 ListPrice = matchingProduct.ListPrice

 };

 }

 }

 }

 catch

 {

 // Ignore exceptions in this implementation

 }

 // Return the product

 return productData;

 }

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 301

It is possible to implement the basic logic of this operation by using the standard workflow
activities provided with Visual Studio. However, none of the activities provided as standard
with WF help you interact with a database. Consequently, in the next exercise you will create
some custom code activities for querying the AdventureWorks database, and then you will
incorporate these activities into the workflow that defines the GetProduct operation.

The code activities that you will implement are:

■■ ProductExists  This activity will test whether a product with a specified product number
exists in the AdventureWorks database, and then return a Boolean value. You will con-
nect to the database by using the Entity Framework and the same ProductsEntityModel
assembly that you have employed in earlier chapters. You will pass the AdventureWorks
Entities object that connects to the database, and the product number, as input argu-
ments to the activity.

■■ FindProduct  This activity will retrieve the details of a specified product from the
AdventureWorks database and populate a ProductData object. As before, for input argu-
ments to the activity, you will pass the AdventureWorksEntities object that connects to
the database along with the product number, and the activity will return the populated
ProductData object.

Create the ProductData type, and Implement the ProductExists and FindProduct
Activities

	 1.	 In Visual Studio, add a new item to the ProductsWorkflowService project using the
information in the following table:

Property Value

Template Code Activity (in the Workflow templates list in the Add New Item
dialog box)

Name ProductsService.Activities.cs

Hint  It is common practice to implement activities for a workflow in a file that follows this
naming convention.

	 2.	 Add a reference to the ProductsEntityModel assembly located in the Microsoft Press\
WCF Step By Step\Chapter 8 folder. Remember that this assembly contains a copy of
the entity model for the Product and ProductInventory tables in the AdventureWorks
database.

	 3.	 Add references to the System.Data.Entity assembly and the System.Runtime.Serialization
assembly.

Download from Wow! eBook <www.wowebook.com>

302	 Windows Communication Foundation 4 Step by Step

	 4.	 In the Code And Text Editor window displaying the ProductsService.Activities.cs file, add
the following using statements to the list at the top of the file:

using System.Runtime.Serialization;

using System.ServiceModel;

using ProductsEntityModel;

	 5.	 In the ProductsWorkflowService namespace, before the ProductsService class, add the
ProductData class shown in the code that follows. This is the same class that you used
in the earlier chapters. Notice that the ProductData class is defined as a data contract
so that it can be easily serialized by the WCF runtime.

// Data contract describing the details of a product passed to client applications

[DataContract]

public class ProductData

{

 [DataMember]

 public string Name;

 [DataMember]

 public string ProductNumber;

 [DataMember]

 public string Color;

 [DataMember]

 public decimal ListPrice;

}

Note  The code for this class is available in the ProductData.txt file, which is located in the
Microsoft Press\WCF Step By Step\Chapter 8 folder.

	 6.	 In the Code And Text Editor window, change the name of the ProductsService class to
ProductExists, as shown in bold in the following:

public sealed class ProductExists : CodeActivity

{

 ...

}

All code activities inherit from the CodeActivity class. The CodeActivity class provides a
method called Execute that runs when the code activity is invoked from a workflow. You
override this method with the code that you wish to perform when the activity runs.

	 7.	 In the ProductExists class, replace the Text property above the Execute method with the
following pair of properties.

public sealed class ProductExists : CodeActivity

{

 public InArgument<AdventureWorksEntities> Database { get; set; }

 public InArgument<string> ProductNumber { get; set; }

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 303

 // If your activity returns a value, derive from CodeActivity<TResult>

 // and return the value from the Execute method.

 protected override void Execute(CodeActivityContext context)

 {

 ...

 }

}

You pass information into an activity from a workflow by defining one or more input
arguments. An input argument is a property based on the InArgument generic type.
You can also define output arguments by using the OutArgument generic type, but in
this exercise, you will return a value from the activity directly rather than by passing an
output argument.

	 8.	 When you return a value from the Execute method of an activity, you must specify the
return type in the activity definition.

Modify the definition of the ProductExists class so that it inherits from the
CodeActivity<Boolean> generic class. Change the Execute method so it returns a
Boolean value, as shown in bold in the example that follows.

public sealed class ProductExists : CodeActivity<Boolean>

{

 ...

 // If your activity returns a value, derive from CodeActivity<TResult>

 // and return the value from the Execute method.

 protected override bool Execute(CodeActivityContext context)

 {

 ...

 }

}

	 9.	 Remove the existing comment and line of code in the Execute method, and replace it
with the code shown in bold in the following:

protected override bool Execute(CodeActivityContext context)

{

 // Retrieve the product number and database reference from the input arguments

 string productNumber = ProductNumber.Get(context);

 AdventureWorksEntities database = Database.Get(context);

 // Check to see whether the specified product exists in the database

 int numProducts = (from p in database.Products

 where string.Equals(p.ProductNumber, productNumber)

 select p).Count();

 return numProducts > 0;

}

This code is very similar to the code for the ProductExists method shown earlier. The
principal difference is that it retrieves the values for the productNumber and database
variables from the input arguments rather than from input parameters. At runtime,
the workflow host packages up the input arguments specified by the workflow into a

Download from Wow! eBook <www.wowebook.com>

304	 Windows Communication Foundation 4 Step by Step

CodeActivityContext object and passes it to the Execute method. You retrieve the value
of an input argument by using the Get method and specifying this CodeActivityContext
object.

Note  The code for this method is available in the ProductExists.txt file, which is located in
the Microsoft Press\WCF Step By Step\Chapter 8 folder.

	 10.	 In the ProductsWorkflowService namespace, after the ProductExists class, add the Find
Product class shown in the following code example:

public sealed class FindProduct : CodeActivity<ProductData>

{

 public InArgument<AdventureWorksEntities> Database { get; set; }

 public InArgument<string> ProductNumber { get; set; }

 protected override ProductData Execute(CodeActivityContext context)

 {

 // Retrieve the product number and database reference from the input arguments

 string productNumber = ProductNumber.Get(context);

 AdventureWorksEntities database = Database.Get(context);

 // Find the first product that matches the specified product number

 Product matchingProduct = database.Products.First(

 p => String.Compare(p.ProductNumber, productNumber) == 0);

 ProductData productData = new ProductData()

 {

 Name = matchingProduct.Name,

 ProductNumber = matchingProduct.ProductNumber,

 Color = matchingProduct.Color,

 ListPrice = matchingProduct.ListPrice

 };

 return productData;

 }

}

This class is another code activity. It retrieves the details of a product and returns a
ProductData object. Notice that, like the ProductExists code activity, you specify the
database to which you want to connect as well as the product number as input argu-
ments. The Execute method returns a ProductData object, so the class inherits from the
CodeActivity<ProductData> type.

Note  The code for this class is available in the FindProduct.txt file, which is located in the
Microsoft Press\WCF Step By Step\Chapter 8 folder.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 305

	 11.	 Build the solution.

You will receive the following error message: “Compiler error(s) encountered processing
expression data.ToString(). ToString is not a member of ‘Data’”. This is caused by the vali-
dation errors in the SendResponse activity in the workflow which you have not yet fixed.
You can ignore this error for the time being. If you have any other error messages, you
will need to correct them before moving on to the next stage.

You can now return to the workflow that defines the GetProduct operation and implement the
business logic. Assuming that your code compiled successfully (apart from the one error just
described), you will find that the ToolBox for the Design View window contains the FindProduct
and ProductExists activities.

Implement the Logic for the GetProduct Operation

	 1.	 Return to the ProductsService.xamlx service in the Design View window. In the Toolbox,
verify that the FindProduct and ProductExists activities have been added:

	 2.	 In the Design View window, click the Sequential Service activity to hide the Toolbox, and
then click the Variables tab in the lower-left corner of the Design View window. Add the
variables specified in the following table to the workflow. Notice that the values in the
Default column use Visual Basic notation.

Download from Wow! eBook <www.wowebook.com>

306	 Windows Communication Foundation 4 Step by Step

Name Variable type Scope Default

database ProductsEntityModel.
AdventureWorksEntities

Sequential
Service

New AdventureWorksEntities()

productData ProductsWorkflowService.
ProductData

Sequential
Service

Nothing

exists Boolean Sequential
Service

False

To specify the type for the database variable, in the Variable type drop-down list, click
Browse For Types. In the Browse And Select A .Net Type dialog box, under <Referenced
assemblies>, expand ProductsEntityModel [1.0.0.0], expand ProductsEntityModel, click
AdventureWorksEntities, and then click OK.

To specify the type for the productData variable, in the Browse And Select A .Net Type
dialog box, expand <Current Project>, expand ProductsWorkflowService [1.0.0.0],
expand ProductsWorkflowService, click ProductData, and then click OK.

	 3.	 In the Toolbox, drag the ProductExists activity into the Sequential Service activity,
between the ReceiveRequest and SendResponse activities. Your workflow should now
look like the image that follows.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 307

	 4.	 In the Properties window, set the Database property of the ProductExists activity to
database, the ProductNumber property of the ProductExists activity to localProduct
Number, and the Result property to exists.

The Database and ProductNumber properties are the input arguments that you defined
for the ProductExists code activity. The localProductNumber variable contains the product
number from the message sent to the ReceiveRequest activity, and the database vari-
able contains a new instance of the AdventureWorksEntities type for connecting to the
AdventureWorks database. The Result property is the value returned by the Execute
method, and this step assigns this value to the exists variable.

Note  The ProductExists and FindProduct activities only provide the default mechanism
for binding input parameters and results to workflow variables. You can also implement an
Activity Designer for each activity with which you can specify the input values in a more
user-friendly manner in the Design View window, in the same way as the ReceiveRequest and
the SendResponse activities. However, this technique is beyond the scope of this book.

	 5.	 In the Toolbox, expand the Control Flow section, drag the If activity into the Sequential
Service activity, between the ProductExists and SendResponse activities. In the Condition
box, type exists.

	 6.	 In the Toolbox, drag the FindProduct activity into the Then box of the If activity. The
workflow should now appear as shown in the image that follows.

Download from Wow! eBook <www.wowebook.com>

308	 Windows Communication Foundation 4 Step by Step

	 7.	 In the Properties window, set the Database property of the FindProduct activity to
database, the ProductNumber property of the FindProduct activity to localProduct
Number, and the Result property to productData.

The FindProduct activity is invoked only when the exists variable is true. The Database
and ProductNumber properties are the input arguments that you defined for the Find
Product activity. The Result property is the ProductData object containing the details of
the product retrieved from the AdventureWorks database.

If the exists variable is false, then the value in the productData variable will remain set to
Nothing (a null value in C# terminology).

	 8.	 In the Design View window, click the SendResponse activity, and then click View Message
in the Content box. In the Content Definition dialog box, select the Parameters option,
and then click Add New Parameter. Use the values in the following table to define the
parameter. You can click Browse For Types to specify the type for this parameter. Click
OK when you have finished.

Property Value

Name Product

Type ProductsWorkflowService.ProductData

Value productData

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 309

These settings specify the message that the SendResponse activity sends back to the
client. In this case, the message contains the details of the product retrieved by calling
the FindProduct activity.

You have now completed the workflow that defines the GetProduct operation. You can
add further operations to the service if you require additional functionality, but you need
to remember that this is a workflow; that carries some implications about when and how a
client application can invoke these operations (this will be discussed in more detail later in
this chapter).

As it currently stands, the ProductsWorkflowService project contains a WCF service that you
can deploy and access from a client application in much the same way as any other WCF ser-
vice. If you examine the Web.config file, you will see that it contains the basic, minimal con-
figuration information required, so you can retrieve the metadata for the service and build a
client application:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.web>

 <compilation debug="true" targetFramework="4.0" />

 </system.web>

 <system.serviceModel>

 <behaviors>

 <serviceBehaviors>

 <behavior>

 <!-- To avoid disclosing metadata information, set the value below

to false and remove the metadata endpoint above before deployment -->

 <serviceMetadata httpGetEnabled="true"/>

 <!-- To receive exception details in faults for debugging purposes,

set the value below to true. Set to false before deployment to avoid disclosing

exception information -->

 <serviceDebug includeExceptionDetailInFaults="false"/>

 </behavior>

 </serviceBehaviors>

 </behaviors>

 <serviceHostingEnvironment multipleSiteBindingsEnabled="true" />

 </system.serviceModel>

 <system.webServer>

 <modules runAllManagedModulesForAllRequests="true"/>

 </system.webServer>

</configuration>

You can modify the configuration and define service endpoints if you wish to use non-default
bindings.

The next step is to test that the service works and that the GetProduct operation returns the
correct information. The simplest way to do this is to use the default WCF Test Client Application
that was described in Chapter 2, “Hosting a WCF Service.”

Download from Wow! eBook <www.wowebook.com>

310	 Windows Communication Foundation 4 Step by Step

Test the ProductsWorkflowService Service

	 1.	 Open the Web.config file for the ProductsWorkflowService project in the Code And Text
Editor window. Add the following connection string to the <configuration> section of
the file.

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <connectionStrings>

 <add name="AdventureWorksEntities"

connectionString="metadata=res://*/ProductsModel.csdl|res://*/ProductsModel.

ssdl|res://*/ProductsModel.msl;provider=System.Data.SqlClient;provider connection

string="DataSource=.\SQLExpress;Initial Catalog=AdventureWorks;Integrated

Security=True;MultipleActiveResultSets=True""

providerName="System.Data.EntityClient" />

 </connectionStrings>

 ...

</configuration>

This connection string is used by the ProductsEntityModel assembly to connect to the
AdventureWorks database.

Note  Make sure that you enter the <add name … /> element on a single line without any
breaks. A copy of this connection string is available in the ConnectionString.txt file, which is
located in the Microsoft Press\WCF Step By Step\Chapter 8 folder.

	 2.	 Save the Web.config file, and then return to the ProductsService.xamlx workflow in the
Design View window.

	 3.	 On the Debug menu, click Start Debugging.

The ASP.NET Development Server starts and acts as the host for your service. The WCF
Test Client application also starts and connects to your service. The WCF Test Client
application queries the metadata for your service and displays the operations that your
service provides in the left pane, as shown in the following image:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 311

Note  If Internet Explorer starts instead of the WCF Test Client application, make sure that
the ProductsService.xamlx workflow is displayed in the Design View window, and then start
debugging again.

	 4.	 In the WCF Test Client application, in the left pane, double-click GetProduct().

	 5.	 In the GetProduct pane, in the Request area at the top, type WB-H098 into the Value
field, and then click Invoke. If a Security Warning message box appears, click OK—you
are only sending test messages to a local service running on your computer, so security
is not an issue.

	 6.	 Verify that the service sends a response that contains the details of product WB-H098
(a water bottle with a list price of 4.9900):

Download from Wow! eBook <www.wowebook.com>

312	 Windows Communication Foundation 4 Step by Step

	 7.	 Click the XML tab at the bottom of the right pane.

The pane displays the XML content of the request and response messages. You can see
how the ProductData object has been serialized as part of the response.

	 8.	 Close the WCF Test Client window.

Debugging a Workflow Service
You can debug and step through the activities in a workflow in a manner similar to step-
ping through C# code. If you right-click an activity in the Design View window and point
to the Breakpoint command, you can set a breakpoint on that activity. When you start
the service in debug mode, you can step through the workflow one activity at a time,
displaying the values of the workflow variables at each step, as shown in Figure 8-1.

Figure 8-1  Debugging a workflow service.

And of course, if you have defined any code activities, you can set breakpoints in the
code for these activities in the usual manner.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 313

Implementing a Client Application for a Workflow Service
A client application does not need to understand how a service has been implemented or
even be aware of the technology used to create and host it. The important thing is that the
developer building the client application has access to the service metadata and knows which
protocol to use to connect to the service. Consequently, you can implement a client applica-
tion that consumes a workflow service in exactly the same way as you create a client application
for any other type of WCF service.

However, you can also build a client application by using a workflow. Because it’s instructive to
see this approach, this is what you will do in the next exercise.

Create the Workflow Client Application

	 1.	 In Visual Studio, add a new project to the ProductsWorkflow solution. Use the Workflow
Console Application template in the Workflow folder under the Visual C# folder in the
Installed Templates pane. Specify the following properties for the project:

Property Value

Name ProductsWorkflowClient

Location Microsoft Press\WCF Step By Step\Chapter 8\ProductsWorkflow within
your Documents folder

	 2.	 In Solution Explorer, rename the Workflow1.xml file to ClientWorkflow.xaml.

	 3.	 Open the ClientWorkflow.xaml file in the Design View window.

This workflow is currently empty. You will add activities to the workflow to connect to
the ProductsWorkflowService and invoke the GetProduct operation shortly.

	 4.	 In the Properties window, change the workflow’s Name property to ProductsWork
flowClient.ClientWorkflow.

	 5.	 Open the Program.cs file in the Code And Text Editor window. In the Main method,
modify the statement that starts the default Workflow1 workflow so it starts the Client-
Workflow workflow instead, as shown in bold in the following:

static void Main(string[] args)

{

 WorkflowInvoker.Invoke(new ClientWorkflow());

}

The static Invoke method of the WorkflowInvoker class loads and runs the specified
workflow.

Download from Wow! eBook <www.wowebook.com>

314	 Windows Communication Foundation 4 Step by Step

	 6.	 Add a service reference for the ProductsWorkflowService service to the ProductsWork
flowClient project as follows:

	 a.	 Right-click the ProductsWorkflowClient project, and then click Add Service
Reference.

	 b.	 In the Add Service Reference dialog box, click Discover. Verify that the
ProductsService.xamlx service appears in the Services list.

	 c.	 In the Namespace box, type ProductsWorkflowService, and then click OK.

	 d.	 If the Microsoft Visual Studio message box appears stating that the operation has
completed successfully, click OK.

	 e.	 Rebuild the project.

	 7.	 Return to the ClientWorkflow workflow in the Design View window and display the
Toolbox.

Notice that a new section appears at the top of the Toolbox, called ProductsWork
flowClient.ProductsWorkflowService.Activities. This section contains a code activity
called GetProduct.

When you add a service reference to a workflow application, the Add Service Reference
Wizard generates a code activity for each operation exposed by the service. You can use
these code activities to invoke the service operations. Each activity acts as a proxy, con-
necting to the service, sending a request message, and waiting for the response.

	 8.	 In the Toolbox, expand the Control Flow section, drag the Sequence activity onto the
empty ClientWorkflow workflow in the Design View window.

	 9.	 Drag the GetProduct activity in the Toolbox onto the Sequence activity in the Design
View window.

	 10.	 In the Properties window, change the DisplayName property of the GetProduct activity
to Get Water Bottle.

	 11.	 Examine the other properties for this activity.

The EndpointConfiguration property specifies the name of the client endpoint in the
app.config file that the workflow will use to connect to the service. The app.config file
was generated by the Add Service Reference Wizard, and you can edit it if you need
to reconfigure the bindings used by the client application if the service application
changes or relocates to a different address (you will do this later, when you deploy the
service to a different host environment).

The ProductNumber property corresponds to the parameter expected by the Receive
Request activity for the GetProduct operation in the service. You should populate this
property with the number that identifies a product before calling the operation. The
details of the product found by the service and transmitted in the parameter specified
by the SendResponse activity are returned in the Product property.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 315

	 12.	 In the Design View window, click the Get Water Bottle activity. Using the Variables tab,
add the following variable to the workflow:

Name Variable type Scope Default

productReturned ProductsWorkflowClient.ProductsWorkflowService.
ProductData

Sequence Nothing

Hint  To set the variable type, click Browse For Types in the drop-down list. In the Browse
And Select a .NET Type dialog box, expand <Current project>, expand ProductsWorkflow
Client [1.0.0.0], expand ProductsClientWorkflow.ProductsWorkflowService, click ProductData,
and then click OK.

	 13.	 Click the Get Water Bottle activity in the Design View window. In the Properties window
for the Get Water Bottle activity, in the ProductNumber property, type “WB-H098”
(including the quotes). In the Product property, type productReturned.

When the workflow performs the Get Water Bottle activity, it will call the GetProduct
operation in the service and pass it the string WB-H098. The data returned by the oper-
ation will be stored in the productReturned variable.

	 14.	 In the Toolbox, expand the Primitives section. Drag the WriteLine activity into the
Sequence activity below the Get Water Bottle activity. In the Text box for the WriteLine
activity, type productReturned.Name, as shown in the following image:

This activity displays the name of the product retrieved by the GetProduct operation in a
console window.

Download from Wow! eBook <www.wowebook.com>

316	 Windows Communication Foundation 4 Step by Step

	 15.	 Add another GetProduct activity to the workflow, below the WriteLine activity. Set the
properties for this activity as follows:

Property Value

DisplayName Get Mountain Seat Assembly

EndpointConfiguration BasicHttpBinding_IProductsService (this is the default value)

Product productReturned

ProductNumber “SA-M198” (include the quotes)

	 16.	 In the Design View window, copy the WriteLine activity and paste the copy underneath
the Get Mountain Seat Assembly activity.

Hint  To copy an activity in the Design View window, right-click the activity, and then select
Copy.

The complete workflow should look like this:

	 17.	 Build the solution.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 317

Test the Workflow Client Application

	 1.	 In Solution Explorer, right-click the ProductsWorkflow solution, and then click Properties.

	 2.	 In the Solution ‘ProductsWorkflow’ Property Pages window, in the left pane, click
Startup Project under Common Properties. In the right pane, click Multiple Startup
Projects, and then set the Action property for the ProductsWorkflowClient and Prod-
uctsWorkflowService projects to Start. Click OK when you are done.

	 3.	 Start the solution without debugging.

The ASP.NET Development Server starts and hosts the ProductsWorkflowService service.
The client application also runs and displays the full names of products WB-H098 and
SA-M198 in the console window:

Note  If Internet Explorer also starts and displays a list of files for the ProductsWorkflow
Service service, close it.

	 4.	 Press Enter to close the client console window and return to Visual Studio.

Handling Faults in a Workflow Service
You saw in Chapter 3, “Making Applications and Services Robust,” that catching exceptions in
a service and reporting them back to a client application are an important part of building a
resilient system. To recap, the basic steps are:

	 1.	 Define the structure of strongly-typed faults as classes tagged with the DataContract
attribute.

	 2.	 In the logic for each service operation, catch any exceptions that might occur.

Download from Wow! eBook <www.wowebook.com>

318	 Windows Communication Foundation 4 Step by Step

	 3.	 In the exception handlers, determine the cause of the exception, construct an instance
of the appropriate fault class, and populate it with the relevant information.

	 4.	 Throw a strongly-typed FaultException<> exception that wraps the fault object.

You can apply the same logic to a workflow service; the way in which you can catch excep-
tions in a workflow service and report them as strongly-typed faults to a client application is
very similar to the technique used when you construct a service by using procedural code.
The issue with workflow services is how do you actually send the FaultException<> exception
back to a client application?

In a procedural service implemented by using C#, you tagged operations with the Fault
Contract attribute to specify the faults that they could generate. In the body of the method
that defined an operation, you simply threw a FaultException<> exception, and the WCF
runtime did the rest for you; it constructed a fault message with the data specified in the
FaultException<> exception and transmitted this message back to the client as the response.
When you build a workflow service, the operations are derived from the properties specified
for the Receive activities in your service. You can specify items such as the operation name,
the service contract name, and the shape of the request messages that the operation expects,
but you cannot apply the FaultContract attribute. Consequently, to throw a FaultException<>
exception from an operation in a workflow service, you need to perform some tasks explic-
itly, as part of the workflow. Specifically, you must add additional SendReply activities at the
appropriate points in your workflow and configure them to send the different types of Fault
Exception<> exception that can occur.

In the following set of exercises, you will reimplement the SystemFault and DatabaseFault
classes from Chapter 3 in the ProductsWorkflowService service. You will modify the GetProduct
operation to catch any exceptions. If the cause of the exception is a database problem, the
operation will throw a DatabaseFault; otherwise, it will throw a SystemFault.

Add Fault-Handling to the ProductsWorkflowService Service

	 1.	 In the ProductsWorkflowService project, open the ProductsService.Activities.cs file in the
Code And Text Editor window.

	 2.	 Add the following classes (shown in bold) to the ProductsWorkflowService namespace,
above the existing classes in this namespace. These new classes define types that you
will use for passing the details of faults from the service back to a client:

namespace ProductsWorkflowService

{

 // Classes for passing fault information back to client applications

 [DataContract]

 public class SystemFault

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 319

 {

 [DataMember]

 public string SystemOperation { get; set; }

 [DataMember]

 public string SystemReason { get; set; }

 [DataMember]

 public string SystemMessage { get; set; }

 }

 [DataContract]

 public class DatabaseFault

 {

 [DataMember]

 public string DbOperation { get; set; }

 [DataMember]

 public string DbReason { get; set; }

 [DataMember]

 public string DbMessage { get; set; }

 }

 // Data contract describing the details of a product passed to client applications

 [DataContract]

 public class ProductData

 {

 ...

 }

 ...

}

	 3.	 Rebuild the project.

This step is important; otherwise, these new types will not be available when you edit
the workflow in the following steps.

	 4.	 Open the ProductsService.xamlx file in the Design View window. In the Toolbox, expand
the Error Handling section and drag a TryCatch activity into the Sequential Service activity,
between the ReceiveRequest activity and the ProductExists activity.

	 5.	 In the Toolbox, drag a Sequence activity from the Control Flow section into the Try box
of the TryCatch activity in the Design View window.

	 6.	 In the Design View window, drag the ProductExists, If, and SendResponse activities and
their contents into the Sequence activity located in the Try box of the TryCatch activity,
as shown in the image that follows.

Download from Wow! eBook <www.wowebook.com>

320	 Windows Communication Foundation 4 Step by Step

	 7.	 In the Catches section of the TryCatch activity, click Add New Catch. In the Exception
drop-down list that appears, click System.Exception, and then press Enter. The Catches
section expands and displays an area in which you can add activities to handle the
exception.

	 8.	 Add an If activity from the Control Flow section of the Toolbox to the Exception han-
dler in the Catches section of the TryCatch activity. In the Condition box, type TypeOf
exception.InnerException Is System.Data.SqlClient.SqlException.

This expression examines the type of the InnerException property of the exception to
determine whether it is a SqlException.

	 9.	 Click the Variables tab and use the information in the following table to add a variable
to the workflow:

Name Variable type Scope Default

dbf ProductsWorkflowService.DatabaseFault TryCatch Nothing

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 321

Hint  To set the variable type, click Browse For Types in the drop-down list. In the Browse
And Select A .Net Type dialog box, expand <Current project>, expand ProductsWorkflow
Service [1.0.0.0], expand ProductsWorkflowService, click DatabaseFault, and then click OK.

	 10.	 Add a Sequence activity to the Then section of the If activity in the Exception handler.

	 11.	 Add an Assign activity from the Primitives section of the Toolbox to the new Sequence
activity.

In the To box of the Assign activity, type dbf. In the Properties window, click the ellipsis
(…) button adjacent to the Value property.

In the Expression Editor dialog box that appears, type the following expression, and
then click OK:

New DatabaseFault() With {

 .DbOperation = "Connect to database",

 .DbReason = "Exception accessing database",

 .DbMessage = exception.InnerException.Message

}

This expression is Visual Basic code that creates a new DatabaseFault object and popu-
lates it with the details of the exception that caused the fault. You will send this object
back in a FaultException<> message to the client application.

You send a response message by using a SendReply activity. You won’t find this activity
in the Toolbox. Instead, Visual Studio can generate a preconfigured SendReply activity for
you directly from a Receive activity.

	 12.	 In the Design View window, locate the ReceiveRequest activity near the start of the
workflow. Right-click this activity, and then click Create SendReply.

The designer adds a SendReply activity called SendReplyToReceiveRequest to the work-
flow directly beneath the ReceiveRequest activity. Drag the SendReplyToReceiveRequest
activity down to the Sequence activity in the If activity for the Exception handler, after
the Assign activity.

In the Properties window, change the DisplayName property of this activity to Send
DatabaseFault.

	 13.	 In the Send DatabaseFault activity, click Define in the Content box. The Content Definition
dialog box appears. Select the Parameters option, and then add the parameter specified
in the following table to the message. Click OK when you are done.

Name Type Value

databaseFaultException System.ServiceModel.Fault
Exception<ProductsWorkflow
Service.DatabaseFault>

New FaultException(Of
DatabaseFault)(dbf)

Download from Wow! eBook <www.wowebook.com>

322	 Windows Communication Foundation 4 Step by Step

Hint  To specify the type for this parameter, in the Type drop-down list, click Browse
For Types. In the Browse And Select A .Net Type dialog box, expand <Referenced assem-
blies>, expand System.ServiceModel [4.0.0.0], expand System.ServiceModel, and then click
FaultException<TDetail>. At the top of the dialog box, in the System.ServiceModel.Fault
Exception drop-down list, click Browse For Types again. In the Browse And Select A .Net
Type dialog box, expand <Current Project>, expand ProductsWorkflowService [1.0.0.0],
expand ProductsWorkflowService, click DatabaseFault, and then click OK. Click OK again
to return to the Content Definition dialog box.

	 14.	 Using the Variables tab, add another variable to the workflow using the following:

Name Variable type Scope Default

sf ProductsWorkflow.SystemFault TryCatch Nothing

Hint  The SystemFault type is in the <Current project> | ProductsWorkflowService [1.0.0.0] |
ProductsWorkflowService folder, in the Browse And Select a .Net Type dialog box.

	 15.	 Add a Sequence activity to the Else section of the If activity in the Exception handler, and
then add an Assign activity to this Sequence activity.

In the To box of the Assign activity, type sf and enter the following code for the expres-
sion assigned to sf.

New SystemFault() With {

 .SystemOperation = "GetProduct",

 .SystemReason = "Exception finding product details",

 .SystemMessage = exception.Message

}

This expression creates a new SystemFault object and populates it with the details of the
exception that caused the fault. This will be a non-database exception.

	 16.	 In the Design View window, find the ReceiveRequest activity near the start of the work-
flow, right-click this activity, and then click Create SendReply again.

Drag the SendReplyToReceiveRequest activity down to the Sequence activity in the Else
part of the If activity for the Exception handler, after the Assign activity.

In the Properties window, change the DisplayName property of this activity to Send
SystemFault.

	 17.	 In the Send SystemFault activity, click Define in the Content box. In the Content Definition
dialog box, select the Parameters option, and then add the parameters in the following
table to the message. Click OK when you are done.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 323

Name Type Value

systemFaultException System.ServiceModel.FaultException<
ProductsWorkflowService.SystemFault>

New FaultException(Of
SystemFault)(sf)

	 18.	 Rebuild the ProductsWorkflowService project.

You can quickly verify whether the service has been implemented correctly by examining the
metadata. To do this, right-click the ProductsService.xamlx file in ProductsWorkflowService
project in Solution Explorer, and then click View In Browser. Internet Explorer will appear
displaying the ProductsService Service page. In this page, click the http://localhost:99999/
ProductsService.xamlx?wsdl link (replace 99999 with the port number displayed for your ser-
vice). If you examine the WSDL description of the service, you should see that the GetProduct
operation can generate DatabaseFaultFault and SystemFaultFault messages, as highlighted in
bold in the following:

<?xml version="1.0" encoding="utf-8"?>

...

 <wsdl:binding name="BasicHttpBinding_IProductsService" type="i0:IProductsService">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="GetProduct">

 <soap:operation soapAction="http://adventure-works.com/IProductsService/

GetProduct" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 <wsdl:fault name="DatabaseFaultFault">

 <soap:fault name="DatabaseFaultFault" use="literal"/>

 </wsdl:fault>

 <wsdl:fault name="SystemFaultFault">

 <soap:fault name="SystemFaultFault" use="literal"/>

 </wsdl:fault>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="ProductsService">

 <wsdl:port name="BasicHttpBinding_IProductsService"

binding="tns:BasicHttpBinding_IProductsService">

 <soap:address location="http://localhost:99999/ProductsService.xamlx"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

You can test the fault handling capabilities of the service by adding a TryCatch activity to the
client application that catches FaultException<SystemFault> and FaultException<DatabaseFault>
exceptions. However, to save some repetition, and also to demonstrate that a workflow service
works perfectly well with non-workflow client applications, you will test the service by using a
stripped-down version of the procedural C# client application that you used in Chapter 3.

Download from Wow! eBook <www.wowebook.com>

324	 Windows Communication Foundation 4 Step by Step

Test the Fault Handling in the ProductsWorkflowService Service

	 1.	 In Visual Studio, remove the ProductsWorkflowClient project from the
ProductsWorkflowSolution.

	 2.	 Add the ProductsClient project to the solution. This project is located in the Microsoft
Press\WCF Step By Step\Chapter 8\ProductsClient folder.

	 3.	 Open the Program.cs file for the ProductsClient project in the Code And Text Editor
window.

You can see that the application creates a proxy object to connect to the service and
calls the GetProduct operation. The exception handlers trap and handle the various
FaultException exceptions that can occur.

Notice that there are some missing references highlighted by Visual Studio. This is
because the project does not have a service reference yet. You will fix this now.

	 4.	 Right-click the Services References folder in Solution Explorer, and then click Add Service
Reference. In the Add Service Reference dialog box, click Discover. In the Namespace
box, type ProductsService, and then click OK.

	 5.	 Using the solution properties dialog box, configure the ProductsClient and Products
WorkflowService projects as startup projects for the solution.

	 6.	 Start the solution without debugging. In the client console window, press Enter to con-
nect to the service and verify that the details of the Water Bottle are displayed. Press
Enter again to close the client console window.

Note  If an Internet Explorer window also appears displaying the files for the service, just
close it.

	 7.	 In the ProductsWorkflowService project, open the Web.config file in the Code And Text
Editor window. In the <add> element of the <connectionStrings> section, change the
Initial Catalog part of the connectionString attribute to refer to the Junk database rather
than AdventureWorks, as follows (do not change any other parts of the connectionString
attribute):

<connectionStrings>

 <add ... connectionString="...;Initial Catalog=Junk;..." />

</connectionStrings>	

	 8.	 Build and run the solution again. In the client console window, press Enter to connect to
the service. This time, the service should return a FaultException<DatabaseFault> mes-
sage stating that it cannot open the database “Junk” and that the attempt to log on to
the database has failed, as shown in the following illustration:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 325

	 9.	 Close the client console window and return to Visual Studio.

	 10.	 In the ProductsWorkflowService project, edit the Web.config file, restore the Initial
Catalog part of the connectionString attribute to refer to the AdventureWorks database
as shown in the following code, and then save the Web.config file:

<connectionStrings>

 <add ... connectionString="...;Initial Catalog=AdventureWorks;..." />

</connectionStrings>	

Hosting a Workflow Service
So far, you have used the ASP.NET Development Server to host the workflow service. However,
as with regular WCF services, you can host a workflow service in other environments, such as
IIS/WAS or a custom host application.

Hosting a Workflow Service in IIS
The technique for hosting a workflow service in IIS is very similar to hosting a regular WCF
service, except that you can take advantage of the Build Deployment Package Wizard in Visual
Studio if you prefer, rather than the Publish Web Site Wizard described in Chapter 1, “Intro-
ducing Windows Communication Foundation.” You will use this wizard in the next exercise.

Deploy the ProductsWorkflowService Service to IIS

	 1.	 In Visual Studio, right-click the ProductsWorkflowService project in Solution Explorer,
and then click Package/Publish Settings.

The Properties page for the ProductsWorkflowService project appears and is opened at
the Package/Publish Web tab.

	 2.	 In the Location Where The Package Will Be Created box, specify the file ProductsWork
flowService.zip in the Microsoft Press\WCF Step By Step\Chapter 8 folder.

Download from Wow! eBook <www.wowebook.com>

326	 Windows Communication Foundation 4 Step by Step

Note  Visual Studio might change this path to ..\..\ProductsWorkflowService.zip. This is OK.

	 3.	 In the IIS Web Site/Application Name To Use On The Destination Server box, change the
default value to Default Web Site/ProductsWorkflowService.

	 4.	 In Solution Explorer, right-click the ProductsWorkflowService project again, and then
click Build Deployment Package. Wait until the message “Publish succeeded” appears in
the Visual Studio status bar.

	 5.	 Using Windows Explorer, move to the Microsoft Press\WCF Step By Step\Chapter 8
folder and verify that the file ProductsWorkflowService.zip has been created.

This file contains the deployment package for the service. You can copy this file to the
server running IIS and then install this package on that server. In this exercise, you will
use IIS running on the same computer, so there is no need to copy the file.

Note  The following steps assume that you have installed the Web Deployment Tool with
Visual Studio 2010. This tool provides the Import Application Package Wizard in IIS. If you
have not installed this utility, you can download it from the Web Deploy site at http://
www.iis.net/download/webdeploy.

If you are unable to install the Web Deployment Tool, you can still deploy the service to IIS.
The Chapter 8 folder should contain some additional files generated at the same time as
the ProductsWorkflowService.zip package: ProductsWorkflowService.deploy.cmd, Products
WorkflowService.deploy-readme.txt, ProductsWorkflowService.SetParameters.xml, and
ProductsWorkflowService.SourceManifest.xml. To deploy the service, open a command
prompt as Administrator, move to the Microsoft Press\WCF Step By Step\Chapter 8 folder,
and type the following command:

ProductsWorkflowService.deploy.cmd /Y

You can resume the exercise at step 13.

	 6.	 Start Internet Information Services Manager as an administrator.

	 7.	 In the Connections pane, expand the node that corresponds to your computer, expand
Sites, and then click Default Web Site.

	 8.	 In the Actions pane, click Import Application. The Import Application Package Wizard
starts.

	 9.	 On the Select The Package page of the wizard, click Browse, move to the Microsoft
Press\WCF Step By Step\Chapter 8 folder, select the file ProductsWorkflowService.zip,
and then click Open. On the Select The Package page, click Next.

	 10.	 On the Select The Contents Of The Package page, verify that the entire contents of the
package is selected (all listed items have a check mark against them), and then click
Next.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 327

	 11.	 On the Enter The Application Package Information page, verify that the Application Path
box specifies the name ProductsWorkflowService. You can also examine the connection
string and verify that it references the AdventureWorks database (if the name of the
database or server is different in your production environment, you can change it here).
Click Next.

Important  Depending on how you have previously configured IIS, the Import Application
Package dialog may appear with the message “The application you’re installing requires a
.NET 4.0 application pool. Do you want to change this application to run in the default .NET
4.0 application pool?” If this message box appears, click Yes.

	 12.	 Wait while the service is installed. In the Installation Progress And Summary page, verify
that the summary indicates that the wizard added two directories and five files, and
then click Finish.

	 13.	 In Internet Information Services Manager, expand the Default Web Site node in the
Connections pane. You should see the ProductsWorkflowService application listed.

	 14.	 Click the ProductsWorkflowService application, and then click the Content View tab
below the middle pane. You should see that the application contains the following
items:

❏❏ A bin folder

❏❏ The ProductsService.xamlx file

❏❏ The Web.config file

The bin folder should contain the binary executables for the service:

❏❏ ProductsEntityModel.dll

❏❏ ProductsWorkflowService.dll

❏❏ ProductsWorkflowService.pdb

	 15.	 In the Connections pane, right-click the ProductsWorkflowService application, point to
Manage Application, and then click Advanced Settings. In the Advanced Settings dialog
box, verify that the Application Pool property is set to ASP.NET v4.0, and then click OK.

	 16.	 In the Content View pane for the the ProductsWorkflowService application, right-click
the ProductsService.xamlx file, and then click Browse. Internet Explorer should start and
open the ProductsService Service page. Click the http://localhost/ProductsWorkflow
Service/ProductsService.xamlx?wsdl link and verify that Internet Explorer successfully
displays the metadata for your service.

	 17.	 Close Internet Explorer and return to Visual Studio.

You can test that the service is functioning correctly by reconfiguring the client application to
connect to the service in IIS.

Download from Wow! eBook <www.wowebook.com>

328	 Windows Communication Foundation 4 Step by Step

Test the ProductsWorkflowService Hosted by IIS

	 1.	 Return to Visual Studio and open the app.config file for the ProductsClient application
in the Code And Text Editor window.

	 2.	 In the <client> section of the configuration file, change the endpoint address to match
that of the ProductsWorkflowService hosted by IIS, as shown in bold in the following:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.serviceModel>

 ...

 <client>

 <endpoint address=

 "http://localhost/ProductsWorkflowService/ProductsService.xamlx"

 binding="basicHttpBinding"

 bindingConfiguration="BasicHttpBinding_IProductsService"

 contract="ProductsService.IProductsService"

 name="BasicHttpBinding_IProductsService" />

 </client>

 </system.serviceModel>

</configuration>

	 3.	 In Solution Explorer, right-click the ProductsClient project, click Set As StartUp Project,
and then start the solution without debugging.

	 4.	 In the client application console window, press Enter to connect to the service. Verify
that the client application successfully connects to the service, which returns the details
for a water bottle.

	 5.	 Close the client console window and return to Visual Studio.

Hosting a Workflow Service in a Custom Application
Hosting a workflow service in a custom application is similar but not identical to hosting a
non-workflow service. The primary difference is that the host application must provide run-
time support for creating and managing workflows. Fortunately, the .NET Framework provides
the WorkflowServiceHost class which includes this support. The WorkflowServiceHost class lives
in the System.ServiceModel.Activities namespace, so to use it, you should add a reference to
the System.ServiceModel.Activities assembly to your application.

Important  Rather confusingly, there are actually two WorkflowServiceHost classes available;
there is another one located in the System.ServiceModel namespace. The class in the System.
ServiceModel namespace was built for the .NET Framework 3.0, which implemented a different
model for workflows. If you are hosting workflow services built by using the .NET Framework 4.0
or later, always use the WorkflowServiceHost class in the System.ServiceModel.Activities namespace.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 329

The WorkflowServiceHost class is analogous to the ServiceHost class that you should now be
familiar with, and it provides a similar set of methods, properties, and events, with one or two
additions that are specific to hosting workflow services. The most noticeable difference is that
the WorkflowServiceHost class provides a constructor that can take an activity that defines the
root of a workflow service (such as the Sequence activity encapsulating the workflow in the
ProductsWorkflowService service) and starts the specified activity when a request is received
by the host. Another useful constructor—and the one that you will use in the following exer-
cise—takes a WorkflowService object. The WorkflowService class provides a wrapper around a
workflow service that you can use to configure and modify the properties of the service.

Build a Custom Application for Hosting the ProductsWorkflowService Service

	 1.	 Add a new project to the ProductsWorkflow solution by using the Workflow Console
Application template. Specify the following properties for the project:

Property Value

Name ProductsWorkflowHost

Location Microsoft Press\WCF Step By Step\Chapter 8\ProductsWorkflow

	 2.	 Delete the file Workflow1.xaml from the ProductsWorkflowHost project.

	 3.	 Add a reference to the ProductsWorkflowService project.

	 4.	 Open the Program.cs file for the ProductsWorkflowHost project in the Code And Text
Editor window. Add the following using statements to the list at the top of the file:

using System.ServiceModel.Activities;

using System.Xaml;

	 5.	 Delete the existing statement in the Main method that uses the WorkflowInvoker class
to create and start a workflow. Replace this statement with the code shown in bold in
the following:

static void Main(string[] args)

{

 WorkflowService service =

 XamlServices.Load(@"..\..\..\ProductsWorkflowService\ProductsService.xamlx")

 as WorkflowService;

 WorkflowServiceHost host = new WorkflowServiceHost(service);

 host.Open();

 Console.WriteLine("Service running. Press ENTER to stop");

 Console.ReadLine();

 host.Close();

}

Download from Wow! eBook <www.wowebook.com>

330	 Windows Communication Foundation 4 Step by Step

The first statement creates a WorkflowService object based on the ProductsService.
xamlx file in the ProductsWorkflowService project. Remember that this file contains
the description of the ProductsWorkflowService service. The static Load method of the
XamlServices class can read any file that contains the description of a workflow and
parse it into an object graph (you can actually read any XAML file by using this method,
not just a workflow). The ProductsService.xamlx file contains a workflow service, so it is
safe to cast the result into a WorkflowService object.

The next statement creates a WorkflowServiceHost object that hosts the workflow service.
Like the ServiceHost class, the WorkflowServiceHost class lets you configure the service
endpoint in code or by reading the configuration information specified in the App.
config file. In this exercise, you will configure the service by using the App.config file.

The remainder of the code should be familiar to you. The Open method of the Work
flowServiceHost class starts the host listening for requests; the Close method stops the
service.

	 6.	 Open the App.config file for the ProductsWorkflowHost project by using the Service
Configuration Editor.

	 7.	 In the Configuration pane, click the Services node. In the Services pane, click Create A
New Service to start the New Service Element Wizard and create a new service end-
point. Step through the wizard and enter the information shown in the following table:

Page Prompt Value

What is the service type of your service? Service type: ProductsService

What service contract are you using? Contract: IProductsService

What communication mode is your
service using?

TCP

What is the address of your endpoint? Address net.tcp://localhost:8080/Products
Service.xamlx

These setting configure the service to communicate with client applications by using
a TCP connection (as a variation from HTTP). Remember that you named the service
by setting the Name property of the WorkflowService activity in step 3 of the exercise
“Create the ProductsWorkflowService Service,” earlier in this chapter. You also defined
the service contract, IProductsService, in step 5 of the same exercise.

	 8.	 Save the configuration file and exit the Service Configuration Editor.

	 9.	 Open the App.config file in the Code And Text Editor window and add the connection
string for connecting to the AdventureWorks database to the <configuration> section of
the file, above the <startup> section, as shown in bold in the following.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 331

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <connectionStrings>

 <add name="AdventureWorksEntities"

 connectionString="metadata=res://*/ProductsModel.csdl|res://*/ProductsModel.

 ssdl|res://*/ProductsModel.msl;provider=System.Data.SqlClient;provider

 connection string="DataSource=.\SQLExpress;Initial Catalog=AdventureWorks;

 Integrated Security=True;MultipleActiveResultSets=True""

 providerName="System.Data.EntityClient" />

 </connectionStrings>

 <startup>

 ...

 </startup>

 ...

</configuration>

Note  A copy of this connection string is available in the ConnectionString.txt file, which is
located in the Microsoft Press\WCF Step By Step\Chapter 8 folder.

	 10.	 Save the App.config file.

Test the Hosted Service

	 1.	 Open the app.config file for the ProductsClient application in the Code And Text Editor
window. Add the following <endpoint> definition (shown in bold) to the <client>
section of the file, after the existing <endpoint> that connects to the version of the
ProductsWorkflowService service hosted by IIS:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.serviceModel>

 ...

 <client>

 <endpoint address=

 "http://localhost/ProductsWorkflowService/ProductsService.xamlx"

 binding="basicHttpBinding"

 bindingConfiguration="BasicHttpBinding_IProductsService"

 contract="ProductsService.IProductsService"

 name="BasicHttpBinding_IProductsService" />

 <endpoint address="net.tcp://localhost:8080/ProductsService.xamlx"

 binding="netTcpBinding" contract="ProductsService.IProductsService"

 name="NetTcpBinding_IProductsService" />

 </client>

 </system.serviceModel>

</configuration>

Download from Wow! eBook <www.wowebook.com>

332	 Windows Communication Foundation 4 Step by Step

	 2.	 Open the Program.cs file for the ProductsClient project in the Code And Text Editor win-
dow. Modify the statement that creates the proxy to connect to the service by using the
NetTcpBinding_IProductsService endpoint, as shown in bold in the following:

static void Main(string[] args)

{

 Console.WriteLine("Press ENTER when the service has started");

 Console.ReadLine();

 // Create a proxy object and connect to the service

 ProductsServiceClient proxy = new ProductsServiceClient(

 "NetTcpBinding_IProductsService");

 // Test the operations in the service

 ...

}

	 3.	 Using the Properties dialog box for the ProductsWorkflow solution, set the Products
Client and ProductsWorkflowHost as startup products. Verify that the startup action for
the ProductsWorkflowService project is set to None.

	 4.	 Start the solution without debugging. If a Windows Security Alert appears, click Allow
Access to enable the ProductsServiceHost application to open TCP port 8080.

	 5.	 In the client application console window, press Enter to connect to the service. Verify
that the client application functions as before and successfully connects to the service
to retrieve the details for a water bottle.

	 6.	 Close the client console window, close the service host console window, and return to
Visual Studio.

Implementing Common Messaging Patterns in a
Workflow Service

You have seen that you can build workflow services that behave in the classic “Wait for
request, Send Response” cycle of message processing. However, this is just one of the mes-
saging patterns that client applications and services commonly implement. In this mode of
operation, as far as a client application is concerned, there is essentially a single synchronous
thread of control that passes from the client to the service and back again; when a client
application sends a request to a service it acts as though it were invoking a local method call
and does not resume processing until the service sends a response. You will see in Chapter 12,
“Invoking One-Way and Asynchronous Operations,” that you can build WCF client applications
and services that act in other ways and implement other messaging patterns. For example,
not all request messages necessarily expect a response, so a client application can send a one-
way message to a service and then carry on processing immediately.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 333

The asynchronous messaging pattern enables a client application to send a request and then
carry on running while the service processes the request. If the service needs to send a reply,
it can do so, but the client application needs to be configured to listen for a response on a
separate thread and be prepared to handle it.

Another common messaging pattern concerns callbacks. In this pattern, a service can call in to
a client application and possibly alert it about some change in state in the service. In this pat-
tern, a single request message from a client application can open a channel to the service that
the service uses to send any number of informational messages back to the client, or even
send request messages that expect a response from the client (effectively, turning the client
into a service and vice versa for the purposes of that message exchange). You will learn more
about callbacks in Chapter 16, “Using a Callback Contract to Publish and Subscribe to Events.”

WCF provides attributes and properties that you can use to configure service contracts, oper-
ation contracts, services, and client applications when you are implementing them by using
procedural code. If you are using workflows to implement services and client applications, you
can implement these and many other messaging patterns by using the messaging activities.

Messaging Activities
You may have noticed that the Workflow Toolbox has a section named Messaging. The activi-
ties in this section are designed for use by workflow services for sending, receiving, and cor-
relating messages. The following table summarizes the purpose of some of these activities. If
you need more information, consult the documentation provided with Visual Studio.

Activity Description

Receive This activity encapsulates the functionality for listening to an endpoint
and waiting for an incoming message. You can set properties that specify
the expected shape of the information of the incoming message by using
the Content property and assign this information to variables in the
workflow (you did this earlier). You can also specify the OperationName and
ServiceContractName properties, which the Workflow runtime uses to derive
the service contract.

Another important property is CanCreateInstance. If this property is true,
an incoming message of the type specified by this activity can start a new
service instance and establish a new session for the client if one is not
already running. If the CanCreateInstance property is false, then a session
must already exist for the client before the service will accept and process
this message.

If you wish to implement message-level security, you can use the Protection
Level property to sign and encrypt messages.

Download from Wow! eBook <www.wowebook.com>

334	 Windows Communication Foundation 4 Step by Step

Activity Description

SendReply As mentioned earlier, this activity does not actually appear in the Toolbox,
although you will use it very frequently. The purpose of this activity is to
send a response message back to a client. Every SendReply activity in a
workflow should have a corresponding Receive activity, and you can generate
a correctly configured SendReply activity by right-clicking the appropriate
Receive activity and selecting Create SendReply.

ReceiveAndSendReply This is a composite activity that consists of a Sequence activity containing a
Receive activity and its corresponding SendReply activity. The WCF Workflow
Service Application template in Visual Studio generates a workflow that
contains a single ReceiveAndSendReply activity that you can use as the
starting point for defining an operation.

Send A client application can use the Send activity to send a request message
to a service. As with the Receive activity, the Content property specifies the
type of the message to send. You are expected to provide the details of
the endpoint to send the message to as well as the endpoint configuration
to use by using a combination of the Endpoint, EndpointAddress, and
EndpointConfiguration properties. You must also specify the OperationName
and ServiceContractName properties to identify the operation to invoke in
the service.

If the service implements message-level security, you should set the
ProtectionLevel property of the Send activity to match that of the
corresponding Receive activity in the service.

ReceiveReply Like the SendReply activity, you will not find this activity in the Toolbox.
When a client application sends a request message by using a Send activity,
it should provide a corresponding ReceiveReply activity for obtaining
the response message from the service. You can generate a configured
ReceiveReply activity for a Send activity by right-clicking the Send activity and
selecting Create ReceiveReply.

SendAndReceiveReply Like ReceiveAndSendReply, this activity is a composite that comprises
a Sequence activity containing a Send activity and its corresponding
ReceiveReply activity.

Notice that when you created the workflow client application earlier in this chapter, you did
not explicitly use the Send or SendAndReceiveReply activities. Instead, you used the custom
GetProduct activity generated by the Add Service Reference Wizard. In fact, the GetProduct
activity is simply a composite activity containing a Sequence activity with nested Send, Receive
Reply, and Assign activities, as shown in the Figure 8-2. The Send activity sends the GetProduct
message to the service and waits for the response message. The value passed back by the ser-
vice to the response message is assigned to a temporary variable, which is passed back as the
value returned by the custom GetProduct activity.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 335

Figure 8-2  The GetProduct custom activity generated by the Add Service Reference Wizard.

Correlating Request and Reply Messages in a Workflow
Service Instance
Previous chapters have shown you that a single service host can support multiple instances
of a service. When a client application connects to a service instance, it creates a channel
that it uses to send request messages to the instance, and the WCF runtime ensures that
the responses are sent back down the appropriate channel to the correct client application.
When you send a message to a workflow service, the Receive activity creates an identifier for
the request and ensures that the corresponding reply is sent down the correct channel to the
client application by associating the SendReply activity with the same identifier. This identifier
is called a correlation handle. You can see this correlation handle in the Correlation Initializers
property of a Receive activity. When you create a SendReply activity for a Receive activity, the
WF Designer creates a CorrelationHandle variable for you automatically and populates the
Correlation Initializers property of the Receive activity with this variable—these variables are
typically called __handle1, __handle2, and so on. You do not need to understand the internal
details of how correlation handles work or the data that they contain (much of the mecha-
nism is hidden from you anyway), just accept that they uniquely identify a request and ensure
that the reply is routed correctly.

Download from Wow! eBook <www.wowebook.com>

336	 Windows Communication Foundation 4 Step by Step

The same logic applies when you add a Send activity to a workflow and then create a Receive
Reply activity. The Correlation Initializers property of the Send activity is populated with a cor-
relation handle, and the ReceiveReply activity is associated with this same correlation handle.

Important  Do not confuse request/reply correlation in a single workflow service instance with
context-based correlation used to identify an instance of a long-running durable service. Request/
reply correlation is implemented internally inside a service instance, and a client application has
no knowledge of how the various Receive and SendReply activities are correlated. Context-based
correlation, on the other hand, is used explicitly by a client application to ensure that it sends mes-
sages to a specific service instance; we will revisit context-based correlation toward the end of this
chapter.

Using Messaging Activities to Implement Messaging
Patterns
The most common messaging pattern for a service is the receive request/send reply message
cycle, which you can implement as shown earlier by using the ReceiveAndSendReply compos-
ite activity. To recap, you simply configure the Receive activity with the name of the operation,
the service contract, and the message type. When a workflow reaches a Receive activity, it
blocks until a matching message is received. You can provide the necessary logic to handle
the message and construct a response, which you send back to the client by using the Send
Reply activity. Remember that the SendReply activity uses the same communications channel
that was used to receive the message. If the service detects an exception, you can configure
additional SendReply activities to send FaultException messages back to the client.

In this pattern, the client application uses a SendAndReceiveReply composite activity, usually
in the preconfigured form of a proxy activity generated by the Add Service Reference Wizard.
The SendAndReceiveReply activity mirrors the actions of the service; the Send activity sends
the message to the service and then performs the ReceiveReply activity, which blocks until a
response has been received on the channel used to send the message. Like the Receive
AndSendReply activity utilized by the service, the Send and ReceiveReply activities are held as
part of a Sequence activity, so you can insert additional logic after sending the request but
before receiving the response. However, you should endeavor to keep any processing short,
because if the client is not performing the ReceiveReply when the service sends the response,
the service will be blocked.

You can implement a simple form of one-way messaging by using the Send activity in a client
application, and not waiting for a response. The service should use a Receive activity to accept
the message but must not attempt to send a response; otherwise, it will be blocked, possibly
indefinitely—this includes sending any fault messages.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 337

The basic asynchronous messaging pattern requires a little more configuration. A client appli-
cation can use a Send activity to submit a request to a service and then carry on performing
whatever processing it requires. However, the client must be prepared to receive a response
from the service and not block the service unduly. A good way to achieve this is to employ
the Parallel activity in the client; one sequence in this activity can wait for the response from
the service while another performs the client processing.

In the asynchronous model, the service listens for the request by waiting on a Receive activity
and then generates a response message. However, there is nothing to stop the service from
generating more than one reply. Consider the scenario in which a client application sends
a message to a brokerage service asking for the price of a product. The service might send
requests to many other services operated by suppliers who are requesting price informa-
tion. When the service receives a response from each supplier, it can send a corresponding
reply back to the client. If more than one supplier responds, the service might send multiple
replies to the client. In this pattern, the client must therefore be prepared to receive multiple
responses. You can achieve this by using a While activity in the part of the client workflow that
listens for response messages, receiving and processing each response message in turn.

Managing Sessions and Maintaining State in a
Workflow Service

The example workflow service that you have investigated so far in this chapter is a very simple
creature, exposing a single, stateless operation to client applications. In the real world, work-
flow services are more complex; they frequently need to maintain session state and typically
provide more than one operation. When you implement a WCF service by using procedural
code, you can specify the session mode of the service and implement each operation as a
method. The WCF runtime manages the service instances, and the operations can be imple-
mented in any sequence because the order of methods in a C# class has no significance.

However, the same is not true for workflow services. The whole point of a workflow is to
define an order for the various tasks that it performs. You implement a workflow service by
using Receive and SendReply activities for each operation, but in which order do you place
these activities if you need to implement more than one operation and listen for different
request messages? Additionally, how do you keep a service instance alive and maintain
session state information? For example, consider the shopping cart service that you imple-
mented in Chapter 7. This service exposed four operations; AddItemToCart, RemoveItem
FromCart, GetShoppingCart, and Checkout. The business rules of the service specified that a
client application had to call AddItemToCart as the first request to initiate a session, create
the service instance and initialize any session state, and that the Checkout operation termi-
nated the session and discarded any state information. Other than that, a client could make
calls to AddItemToCart, RemoveItemFromCart, and GetShoppingCart in any sequence. If you

Download from Wow! eBook <www.wowebook.com>

338	 Windows Communication Foundation 4 Step by Step

think about how the WCF runtime handles this situation, you can see that essentially, it simply
performs some sort of loop, waiting for request messages and dispatching them to the appro-
priate method. To provide the same functionality in a workflow service, you can implement
the same logic by using While and Pick activities, which is what you will do in the following
exercises.

Create the ShoppingCartService Workflow Service

	 1.	 Using Visual Studio, create a new solution by using the WCF Workflow Service Application
template. Specify the following properties for the solution:

Property Value

Name ShoppingCartService

Location Microsoft Press\WCF Step By Step\Chapter 8

Solution name ShoppingCart

	 2.	 In Solution Explorer, rename the Service1.xamlx file to ShoppingCartService.xamlx.

	 3.	 In the Design View window, click the background, outside the bounds of the Sequential
Service activity. In the Properties window, set the ConfigurationName and Name proper-
ties to ShoppingCartService.

	 4.	 Add a reference to the ProductsEntityModel assembly located in the Microsoft Press\
WCF Step By Step\Chapter 8 folder. Also, add a reference to the System.Data.Entity
assembly.

The ShoppingCartService service will use these assemblies to access the AdventureWorks
database.

	 5.	 Add the ShoppingCartService.Activitities.cs file to the ShoppingCartService project. This
file is located in the Microsoft Press\WCF Step By Step\Chapter 8 folder.

The ShoppingCartService.Activities.cs file contains three items:

❏❏ The ShoppingCartItem class.  This is the same class that you created in Chapter 7. It
defines the structure of the shopping cart. Each session will create its own instance
of this class, and it will hold the state of the shopping cart for the session between
requests made by a client.

❏❏ The FindItem code activity.  This is an implementation of the find utility method
that examines a shopping cart to determine whether it already contains an item
with the specified product number. The shopping cart and product number are
specified as input arguments to the activity. The activity returns a reference to the
item if it is found in the shopping cart, or a null reference if it is not.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 339

❏❏ The GetItemFromDatabase code activity.  This is another utility that retrieves the
details for a specified product from the database by using the Entity Framework.
The entity context for connecting to the database and the product number are
provided as input arguments. The activity creates a Product object and returns it if
a matching product is found in the database, or a null reference if not.

	 6.	 Build the solution.

	 7.	 Return to the Design View window that is displaying the ShoppingCartService.xamlx file
and delete the Sequential Service activity and its contents. The workflow should now be
empty.

	 8.	 From the Control Flow section in the Toolbox, add a Sequence activity to the workflow.

	 9.	 Add a While activity (in the Control Flow section of the Toolbox) to the Sequence activity.

	 10.	 Using the Variables tab, add a Boolean variable called serviceRunning to the workflow.
Limit the scope to the While activity and set the default value to True.

	 11.	 In the While activity, set the Condition expression to serviceRunning.

You will add activities to this While activity that listen for request messages. The While
activity will halt and the service instance will shut down when the serviceRunning
variable is set to False.

	 12.	 Click the Imports tab at the base of the Design View window. In the Enter Or Select
Namespace box, type ShoppingCartService, and then press Enter.

The ShoppingCartItem class and the FindItem and GetItemFromDatabase code activities
are defined in this namespace in the ShoppingCartService.Activities.cs file. Using the
Imports tab, you can bring a namespace into scope in the same way that a using state-
ment does when you are writing C# code.

	 13.	 In the Variables tab, add another variable called shoppingCart. The type of this variable
should be System.Collections.Generic.List<ShoppingCartService.ShoppingCartItem>. Set
the scope of this variable to the While activity and specify the following default value:

New List(Of ShoppingCartItem)()

This variable is the shopping cart that the various operations implemented by the
ShoppingCartService service will manipulate.

Note  The System.Collections.Generic.List<T> type is defined in the mscorlib assembly.

Download from Wow! eBook <www.wowebook.com>

340	 Windows Communication Foundation 4 Step by Step

	 12.	 Add a Pick activity from the Control Flow section of the Toolbox to the While activity.

The Pick activity is extremely useful for building workflows that need to respond to
events that can occur in any order. It contains one or more PickBranch activities, and a
PickBranch has two elements: a trigger and an action. In the Trigger section, you specify
an activity that waits for an event, such as an incoming message, and in the Action
section you specify the workflow that runs when this event occurs. When a workflow
reaches a Pick activity, it halts until one of the specified events occurs, and then it per-
forms the corresponding actions.

	 13.	 Click the Branch1 PickBranch activity, and in the Properties window change the Display
Name property to Add Item To Cart.

	 14.	 In the Variables tab, add a string variable called productNumber with a default value of
Nothing. Set the scope of this variable to the Add Item To Cart activity.

	 15.	 From the Messaging section of the Toolbox, add a Receive activity to the Trigger section
of the Add Item To Cart activity. Set the properties of this Receive activity to the values
shown in the following table:

Property Value

DisplayName Receive AddItemToCart Request

CanCreateInstance Checked

OperationName AddItemToCart

ServiceContractName {http://adventure-works.com/}IShoppingCartService

Remember that the CanCreateInstance property specifies whether this message can be
used to create a new instance of the service and start a new session.

	 16.	 In the Properties window for the Receive activity, click the ellipsis (…) button adjacent to
the Content property. In the Content Definition dialog box, select the Parameters option,
add the following parameter to the incoming message, and then click OK:

Property Value

Name ProductNumber

Type String

Assign To productNumber

The message received by the AddItemToCart operation contains the product number of
the product to add to the shopping cart.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 341

	 17.	 Add the AddItemToCart.xaml file to the ShoppingCartService project. This file is located
in the Microsoft Press\WCF Step By Step\Chapter 8 folder.

The AddtemToCart.xaml file contains a custom activity (I created it by using the Activity
template). If you examine this activity, you will see that it contains the workflow equiva-
lent of the logic for the AddItemToCart operation that you implemented in Chapter 7.
The product number for the product to add to the cart and the shopping cart itself are
defined as input arguments (click the Arguments tab to see them). The activity performs
the following tasks:

❏❏ It calls the FindItem code activity, passing the product number and shopping cart
as input arguments. The FindItem code activity determines whether the specified
product has already been added to the shopping cart. The value returned by the
FindItem activity is stored in a variable called item, of type ShoppingCartItem.

❏❏ If the value of item is not Nothing, then the product has already been added
to the shopping cart, so the Volume property of the item in the cart is simply
incremented.

❏❏ If the value of item is Nothing, then the product has not previously been added to
the shopping cart. The Else branch of the If activity calls invokes the GetItemFrom
Database activity to obtain the details of the product and creates a new Shopping
CartItem product with this information, which it assigns to the item variable. The
object referenced by the item variable is added to the shopping cart by using an
AddToCollection activity.

❏❏ If either branch of the If activity is successful, the value True is assigned to the
Result argument. The Result argument is an output argument that is used to pass
an indication back to the caller of whether the activity was successful or not.

❏❏ If an exception occurs, the Catches section of the TryCatch activity that encloses
the entire activity sets the value of the Result argument to False to indicate that
the activity was unsuccessful.

	 18.	 Rebuild the solution.

	 19.	 Return to the ShoppingCartService.xamlx file in the Design View window. In the Action
section of the Add Item To Cart activity, add a Sequence activity and define the following
variable for this sequence:

Property Value

Name result

Type Boolean

Scope Sequence

Default False

Download from Wow! eBook <www.wowebook.com>

342	 Windows Communication Foundation 4 Step by Step

	 20.	 From the ShoppingCartService section of the Toolbox, add an AddItemToCart activity
to the Sequence activity in the Action section of the Add Item To Cart activity. In the
Properties window, set the following properties for this activity (these properties are
the input and output arguments for the activity):

Property Value

ProductNumber productNumber

Result Result

ShoppingCart shoppingCart

	 21.	 In the Trigger section of the Add Item To Cart activity, right-click the Receive AddItem
ToCart Request activity, and then click Create SendReply.

Visual Studio displays a message box stating that the activity has been created and cop-
ied to the clipboard. Click OK to close this message box.

	 22.	 Right-click the Sequence activity in the Action section of the Add Item To Cart activity, and
then click Paste. If necessary, drag the SendReplyToReceive AddItemToCart activity below
the AddItemToCart activity. In the Properties window, change the DisplayName property
to Send AddItemToCart Response.

	 23.	 In the Send AddItemToCart Response activity, click Define, which is adjacent to the Content
property. In the Content Definition dialog box, select the Parameters option, add the
following parameter to the incoming message, and then click OK:

Property Value

Name Result

Type Boolean

Value result

The activity sends back a Boolean value in the response message indicating whether the
product was successfully added to the shopping cart or not.

You have now implemented the AddItemToCart operation for the ShoppingCartService service.
You can implement the RemoveItemFromCart, GetShoppingCart, and Checkout operations in
a similar manner, by defining the logic for these operations in custom activities and adding
PickBranch activities for each possible request message. To save you some time and avoid
unnecessary repetition, you can find a copy of the completed ShoppingCartService service in
the ShoppingCart folder within the Chapter 8\Completed folder. You will use this project in
the remaining exercises in this chapter.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 343

Host the ShoppingCartService Workflow Service

	 1.	 Using Visual Studio, open the ShoppingCart solution in the Microsoft Press\WCF Step By
Step\Chapter 8\Completed\ShoppingCart folder.

	 2.	 Open the ShoppingCartService.xamlx file in the Design View window.

	 3.	 In the Trigger section of the Remove Item From Cart activity, click the Receive Remove
ItemFromCart Request activity. In the Properties window, notice that the CanCreate
Instance property is not selected. The same applies to the Receive GetShoppingCart
Request and Receive Checkout Request activities. Only the AddItemToCart operation can
create a new session.

	 4.	 Examine the Action section of the Checkout activity. After the response message has
been sent, an Assignment activity sets the serviceRunning variable to False. This action
causes the While activity encompassing the Pick activity to finish, terminating the work-
flow and stopping the service instance.

	 5.	 Add a new Workflow Console Application project to the ShoppingCart solution. Name
the project ShoppingCartHost.

	 6.	 In Solution Explorer, delete the Workflow1.xamlx file.

	 7.	 Add a reference to the ShoppingCartService project to the ShoppingCartHost project.

	 8.	 Open the Program.cs file in the Code And Text Editor window. Add the following using
statements to the list at the top of the file:

using System.ServiceModel.Activities;

using System.Xaml;

	 9.	 In the Main method, replace the statement that uses the WorkflowInvoker class to start
and run the Workflow1 workflow with the code shown in bold in the following:

static void Main(string[] args)

{

 WorkflowService service =

 XamlServices.Load(@"..\..\..\ShoppingCartService\ShoppingCartService.xamlx")

 as WorkflowService;

 WorkflowServiceHost host = new WorkflowServiceHost(service);

 host.Open();

 Console.WriteLine("Service running. Press ENTER to stop");

 Console.ReadLine();

 host.Close();

}

This code is very similar to that which you saw previously, except that it starts the
ShoppingCartService.xamlx service.

Download from Wow! eBook <www.wowebook.com>

344	 Windows Communication Foundation 4 Step by Step

	 10.	 Open the App.config file in the Code And Text Editor window. Add the following con-
nection string (shown in bold) to the <configuration> section of the file.

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <connectionStrings>

 <add name="AdventureWorksEntities"

 connectionString="metadata=res://*/ProductsModel.csdl|res://*/ProductsModel.

 ssdl|res://*/ProductsModel.msl;provider=System.Data.SqlClient;provider

 connection string="DataSource=.\SQLExpress;Initial Catalog=AdventureWorks;

 Integrated Security=True;MultipleActiveResultSets=True""

 providerName="System.Data.EntityClient" />

 </connectionStrings>

 ...

</configuration>

Note  As before, you can use the copy of this connection string that is available in the
ConnectionString.txt file, which is located in the Microsoft Press\WCF Step By Step\
Chapter 8 folder.

	 11.	 Add a <system.serviceModel> section to the file, and then add the following service
endpoint.

<?xml version="1.0"?>

<configuration>

 ...

 <system.serviceModel>

 <services>

 <service name="ShoppingCartService">

 <endpoint address="net.tcp://localhost:8080/ShoppingCartService.xamlx"

 binding="netTcpContextBinding" contract="IShoppingCartService" />

 </service>

 </services>

 </system.serviceModel>

</configuration>

The service host listens for requests by using the TCP protocol. Note that the host uses
the NetTcpContextBinding binding. This is necessary because, by default, when a work-
flow service receives a request message, it attempts to create a new service instance if
the incoming request does not contain any context information that identifies an exist-
ing service instance.

	 12.	 Rebuild the solution.

To test the ShoppingCartService, you will use the version of the ShoppingCartGUIClient appli-
cation from Chapter 7 that communicates with the non-durable version of the Shopping
CartService service. (A copy of this application is provided in the Chapter 8 folder.) In the next

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 345

exercise, you will add the ShoppingCartGUIClient application to the solution, configure it to
connect to the ShoppingCartHost by using the TCP protocol, and then test the Shopping
CartService service.

Test the ShoppingCartService Workflow Service

	 1.	 Add the ShoppingCartGUIClient project to the ShoppingCart solution. This project is
located in the Microsoft Press\WCF Step By Step\Chapter 8\ShoppingCartGUIClient
folder.

	 2.	 In Solution Explorer, right-click the Service References folder in the ShoppingCartGUI
Client project, and then click Add Service Reference. In the Add Service Reference dia-
log box, click Discover. In the Namespace box, type ShoppingCartService, and then
click OK.

This action generates the proxy that the client application can use to connect to the
service and configures the client. However, the Add Service Reference Wizard generates
client endpoint information based on the HTTP protocol, whereas the ShoppingCart
Host application exposes the service by using the TCP protocol. Therefore, you need to
amend the client configuration.

	 3.	 Open the app.config file for the ShoppingCartGUIClient project in the Code And Text
Editor window. Delete the contents of the <system.serviceModel> section and replace it
with the client endpoint configuration, shown in bold in the following:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.serviceModel>

 <client>

 <endpoint address="net.tcp://localhost:8080/ShoppingCartService.xamlx"

 binding="netTcpContextBinding"

 contract="ShoppingCartService.IShoppingCartService"

 name="NetTcpContextBinding_IShoppingCartService" />

 </client>

 </system.serviceModel>

</configuration>

	 4.	 Open the MainWindow.xaml.cs file for the ShoppingCartGUIClient project in the Code
And Text Editor window. In the MainWindow class, locate the clientEndpointName vari-
able. The various methods in the client application use this variable to specify the name
of the client endpoint through which to connect. Verify that it is set to NetTcpContext
Binding_IShoppingCartService, as shown in bold in the following:

public partial class MainWindow : Window

{

 private ShoppingCartServiceClient proxy = null;

 private IDictionary<string, string> context = null;

 private string clientEndpointName = "NetTcpContextBinding_IShoppingCartService";

 ...

}

Download from Wow! eBook <www.wowebook.com>

346	 Windows Communication Foundation 4 Step by Step

	 5.	 Set the ShoppingCartGUIClient and ShoppingCartHost projects as the startup projects
for the ShoppingCart solution.

	 6.	 Build and run the solution without debugging. In the Shopping Cart GUI Client win-
dow, in the Product Number box, type WB-H098, and then click Add Item. Verify that a
water bottle is added to the shopping cart and appears in the client window.

	 7.	 Type SA-M198, and then click Add Item again. A Mountain Seat Assembly should be
added to the shopping cart.

	 8.	 Click Remove Item, and verify that the Mountain Seat Assembly disappears from the
shopping cart.

	 9.	 Click Checkout. The shopping cart should be emptied.

	 10.	 Close the Shopping Cart GUI Client window. Stop the service, and then return to Visual
Studio.

Correlating Clients and Service Instances
Chapter 7 described how client applications and services can use the WSHttpContext
Binding binding to pass context information in the SOAP header of request and response
messages to identify to which service instance a client application should connect. The
discussion in Chapter 7 focused on durable services, but the same principles apply
to workflow services. When an operation is marked as CanCreateInstance, the work-
flow service host can create a new service instance and generates an instance ID (a
unique identifier) which it passes back to the client as part of the response message.
The client can provide this same instance ID in the header of subsequent requests, and
the workflow service host will direct these requests to the correct service instance. The
NetTcpContextBinding binding provides the same facility. However, you can also corre-
late client applications and service instances by using other bindings that don’t support
this form of automatic correlation. To do this, you must configure the Receive activities
for the service and specify the data it should use to correlate request messages with ser-
vice instances.

The Receive activity provides the CorrelatesOn property. You can use this property to spec-
ify that one or more message parameters should be used to identify the service instance
rather than an instance ID generated by the workflow runtime. When the service host
receives a request message, the workflow runtime examines the values of these parame-
ters and uses them to direct the request to the appropriate service instance, or create a
new service instance as necessary (assuming that the CanCreateInstance property of the
corresponding Receive activity is set to True). You should be careful to ensure that the
corresponding fields are populated as part of any requests sent by client applications;
otherwise, correlation will not occur as expected. Additionally, if two or more clients
provide the same information as message parameters, the workflow service runtime will

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 347

assume that they are the same client and will direct them both to the same workflow
service instance; this may be useful if you need to share session data between clients,
but it may also pose a security risk if this sharing is unintentional.

For more information about configuring this form of correlation, look up Content Based
Correlation in the documentation provided with Visual Studio (also available on the
Microsoft Web site at http://msdn.microsoft.com/en-us/library/ee358755.aspx).

Building Durable Workflow Services
A key aspect of workflow services is their support for scalability. Like the procedural services
described in Chapter 7, workflow services can be durable, enabling service instances to sur-
vive the service host shutting down and restarting. Additionally, you can configure a workflow
service to temporarily suspend a service instance if it becomes idle for a period of time, save
its state to the persistence store, and remove it from memory. If a request is received for this
instance subsequently, the workflow host can load the instance state from the persistence
store and resume the service instance.

Note  Windows Server AppFabric provides extensions to Internet Information Services Manager
with which you can configure persistence for workflow services hosted by using IIS. An administra-
tor can examine the state of services, forcibly terminate service instances, and even restart failed
service instances. The details of Windows Server AppFabric are outside the scope of this book, but
by employing the techniques presented in this section, you can build workflow services that can
take full advantage of the AppFabric environment.

In the final set of exercises in this chapter, you will configure the ShoppingCartService as a
durable workflow service.

Configure the ShoppingCartService Workflow Service as a Durable Service

	 1.	 Open the ShoppingCartService.xamlx file for the ShoppingCartService project in the
Design View window.

	 2.	 In the Action section of the Add Item To Cart activity, click the Send AddItemToCart
Response activity. In the Properties window, select the PersistBeforeSend property check
box.

When the service instance sends the response message, the state of the service instance
will be automatically saved to the persistence store.

	 3.	 Check the PersistBeforeSend property of the Send RemoveItemFromCart Response and
Send GetShoppingCart Response activities. The state of the service instance will also be
saved whenever either of these messages is sent by the service.

Download from Wow! eBook <www.wowebook.com>

348	 Windows Communication Foundation 4 Step by Step

	 4.	 Leave the check box for the PersistBeforeSend property of the Send Checkout Response
activity cleared.

The Checkout operation is the final action that a client performs, and the session should
terminate when this operation completes. By not selecting the PersistBeforeSend prop-
erty, the state is removed from the persistence store when the operation completes.

The persistence store for workflow services employs a different database schema from
that of durable procedural services described in Chapter 7. Scripts for creating the
schema and stored procedures needed by durable workflow services are available in
the C:\Windows\Microsoft.NET\Framework\v4.0.30319\SQL\en folder, in the SqlWorkflow
InstanceStoreSchema.sql and SqlWorkflowInstanceStoreLogic.sql files.

Note  The following steps assume that you have created the WCFPersistence SQL Server
database, as described in Chapter 7. If you have not already created this database, perform
the following steps:

	 1.	 In Server Explorer, right-click Data Connections, and then click Create New SQL Server
Database.

	 2.	 In the Create New SQL Server Database dialog box, set the Server Name to .\SQLExpress,
click Use Windows Authentication, enter WCFPersistence in the New Database Name text
box, and then click OK.

	 5.	 On the File menu, point to Open, and then click File. In the Open File dialog box move
to the C:\Windows\Microsoft.NET\Framework\v4.0.30319\SQL\en folder, select the
SqlWorkflowInstanceStoreSchema.sql file, and then click Open.

	 6.	 On the Data menu, point to Transact-SQL Editor, point to Connection, and then click
Connect. In the Connect to Database Engine dialog box, in the Server Name text box
enter .\SQLExpress, ensure that Authentication is set to Windows Authentication, and
then click Connect.

	 7.	 In the Visual Studio toolbar, in the Database drop-down, click WCFPersistence.

	 8.	 On the Data menu, point to Transact-SQL Editor, and then click Execute SQL. Verify that
the SQL script runs and displays the message “Command(s) completed successfully”.

	 9.	 Follow the process described in steps 5 through 8 to open and run the SqlWorkflow
InstanceStoreLogic.sql script, which is located in the C:\Windows\Microsoft.NET\
Framework\v4.0.30319\SQL\en folder.

	 10.	 Add references to the System.Activities.DurableInstancing and System.Runtime.Durable
Instancing assemblies to the ShoppingCartHost project.

	 11.	 Open the Program.cs file for the ShoppingCartHost project in the Code And Text Editor
window, and add the following using statement to the file:

using System.Activities.DurableInstancing;

Download from Wow! eBook <www.wowebook.com>

	 Chapter 8  Implementing Services by Using Workflows	 349

	 12.	 Add the following statements (shown in bold) to the Main method.

static void Main(string[] args)

{

 WorkflowService service =

 XamlServices.Load(@"..\..\..\ShoppingCartService\ShoppingCartService.xamlx")

 as WorkflowService;

 WorkflowServiceHost host = new WorkflowServiceHost(service);

 string persistenceStoreConnectionString =

 @"Data Source=.\SQLExpress;Initial Catalog=WCFPersistence;

 Integrated Security=True";

 SqlWorkflowInstanceStore instanceStore =

 new SqlWorkflowInstanceStore(persistenceStoreConnectionString);

 host.DurableInstancingOptions.InstanceStore = instanceStore;

 host.Open();

 Console.WriteLine("Service running. Press ENTER to stop");

 Console.ReadLine();

 host.Close();

}

This code specifies that the WorkflowServiceHost object should support persistence and
specifies the connection string for the persistence database. You can also provide this
information in the application configuration file by defining a service behavior and add-
ing the workflowRuntime element. For more information, consult the documentation
provided with Visual Studio.

Test the Durable Service

	 1.	 Start the solution without debugging. In the Shopping Cart GUI Client window, enter
WB-H098 in the Product Number text box, and then click Add Item. Verify that a water
bottle has been added to the shopping cart.

	 2.	 Leave the Shopping Cart GUI Client window and the service host console application
window running. Return to Visual Studio.

	 3.	 In the Server Explorer pane, expand the Data Connections folder, expand the Your
Computer\sqlexpress.WCFPersistence.dbo connection (where YourComputer is the name
of your computer), expand Tables, right-click the InstancesTable table, and then click
Show Table Data.

The workflow host stores session information in this table. You should see a single row
in this table. The session data is held in a binary format in the PrimitiveDataProperties,
ComplexDataProperties, WriteOnlyPrimitiveDataProperties, and WriteOnlyPrimitive-
DataProperties columns (some of these columns may be empty). Other properties in
this table provide information about the state of the service instance.

Download from Wow! eBook <www.wowebook.com>

350	 Windows Communication Foundation 4 Step by Step

	 4.	 Leave the Shopping Cart GUI Client window running, but press Enter in the service host
console application window to stop the service.

Important  Do not simply close the service host console window; wait for the service host
to finish first. Otherwise, the session information for the client application may not be per-
sisted fully.

	 5.	 In Solution Explorer, right-click the ShoppingCartHost project, point to Debug, and then
click Start New Instance.

	 6.	 Return to the Shopping Cart GUI Client window. Enter PU-M044 in the Product Number
text box, and then click Add Item.

A mountain bike pump is added to the shopping cart. Notice that the workflow runtime
has successfully restored the existing contents of the shopping cart from the state infor-
mation in the persistence store.

	 7.	 Click Checkout.

This operation completes the session, and the shopping cart is emptied.

	 8.	 Leave the Shopping Cart GUI Client application and the service host console applica-
tion running, and return to Visual Studio. Click the InstancesTable tab, and in the Visual
Studio toolbar, click the Execute SQL button (the button with the red exclamation mark).
The table should now be empty.

When the Checkout operation completed, the session was terminated, and the session
information saved in the persistence store was removed.

	 8.	 Close the Shopping Cart GUI Client window and the service host console application
window.

Summary
In this chapter, you have seen how to use the Workflow Foundation to build robust workflow
services. WF provides a small but complete set of messaging activities. You can use these
activities to build services that implement almost any messaging pattern.

You learned how to listen for requests by using a Receive activity and how to send a response
by using a SendReply activity. You also saw how to deploy a workflow service and include
activities that can detect and handle faults. You learned how to build workflow client applica-
tions and how the Add Service Reference Wizard can create custom activities that encapsulate
sending a request message and waiting for the response.

Finally, you learned how workflow services correlate client applications with service instances
and how to configure a workflow service as a durable service.

Download from Wow! eBook <www.wowebook.com>

351

Chapter 9

Supporting Transactions
After completing this chapter, you will be able to:

■■ Describe the transaction management protocols available with WCF.

■■ Use transactions with WCF services and operations.

■■ Describe the impact that using transactions can have on the design of a WCF service.

■■ Explain how to implement secure, distributed transactions by using the WS-AtomicTransaction
protocol.

■■ Describe how to implement transactions in a workflow service.

Most applications commonly need to ensure the internal consistency of the data that they
manipulate. You can use transactions to help achieve this consistency. A transaction is an
atomic unit of work or a series of operations that should either all be performed success-
fully, or, if something unexpected happens, none should be performed. The classic example
of a transaction is transferring funds between two bank accounts, deducting an amount of
money from one account and adding an equivalent amount to the other account. If the addi-
tion operation fails, then the deduction operation must be undone, otherwise the money is
lost (and the bank risks losing its trading license!). Similarly, if the deduction operation fails,
the addition operation must not occur, either. Traditionally, transactions were associated with
database systems, but the semantics of transactions can be applied to any series of operations
that involve making changes to data.

In a Service-Oriented Application (SOA) environment, a transaction can span several services,
possibly running on different computers within different organizations—this is called a distrib-
uted transaction. In this environment, the underlying infrastructure must be able to guarantee
consistency across a network and between potentially heterogeneous data stores. Making
such a guarantee is a complex task because of the number of possible failure points in a
network. This problem has been the subject of much research. The commonly accepted stan-
dard mechanism for handling distributed transactions is the two-phase commit protocol. The
OASIS organization has proposed the Web Services Atomic Transaction (WS-AtomicTransaction)
specification, which describes a standard mechanism for handling transactions in a Web ser-
vices infrastructure. The WS-AtomicTransaction specification defines the semantics of the two-
phase commit protocol between Web services. Web services running on an infrastructure that
conforms to the WS-AtomicTransaction specification should be interoperable with each other
from a transactional perspective.

Download from Wow! eBook <www.wowebook.com>

352	 Windows Communication Foundation 4 Step by Step

More Info  There are two versions of the WS-AtomicTransaction specification in use: the 2004
version, and the more recent version 1.1. Prior to the .NET Framework 4.0, WCF implemented only
the 2004 version, but WCF 4.0 now supports both. For detailed information about the WS-Atomic
Transaction specification, see the “Transaction Specification Index Page” page on the Microsoft
Web site at http://msdn.microsoft.com/en-us/library/ms951262.aspx

The WS-AtomicTransaction specification is primarily useful when building Web services. How-
ever, WCF is not just concerned with Web services; you can use WCF to build applications
based on many other technologies, such as COM, MSMQ, and .NET Framework Remoting.
Microsoft has provided its own transaction management features, which are built in to the
current family of Microsoft Windows operating systems under the name Distributed Transac-
tion Coordinator, or DTC. DTC uses its own optimized transaction protocol. Transactions based
on the DTC transaction protocol are referred to as OLE transactions (OLE was the name of a
technology that was the forerunner of COM). OLE transactions are ideal if you are building
solutions based on Microsoft technologies.

The .NET Framework 4.0 provides a number of classes, structures, interfaces, delegates, and
enumerations in the System.Transactions namespace. These types provide an interface to the
transaction management features of WCF, letting you develop code that is independent of
the technology used to control the transactions that your code performs. In this chapter, you
will see how to create a WCF service that supports transactions and how to build client appli-
cations that can initiate and control those transactions.

Using Transactions in a WCF Service
The ShoppingCartService service that you implemented in previous chapters currently lets
users add items to their shopping cart, but it does not perform many of the consistency
checks that a production application should include. For example, the service always assumes
that goods are in stock when a user adds them the shopping cart. Similarly, the service cur-
rently makes no attempt to update stock levels. You will rectify these shortcomings in the
exercises in this section. You will make the service transactional to ensure that any changes
made to the data result in a consistent state.

Implementing OLE Transactions
You will start by examining how to configure a WCF service to use transactions with a TCP
endpoint. Endpoints established by using the TCP transport can incorporate OLE transactions.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 9  Supporting Transactions	 353

Enable Transactions in the ShoppingCartService Service

	 1.	 Using Visual Studio, open the ShoppingCart solution located in the Microsoft Press\WCF
Step By Step\Chapter 9\ShoppingCartService folder, located within your Documents
folder.

This solution contains a modified copy of the non-durable ShoppingCartService, as well
as the ShoppingCartServiceHost and ShoppingCartClient projects from Chapter 7,
“Maintaining State and Sequencing Operations.” The ShoppingCartHost project exposes
a TCP endpoint rather than the HTTP endpoint that you configured in Chapter 7, and
the ShoppingCartClient application has been simplified and modified to communicate
with the service by using that TCP endpoint.

	 2.	 Add a reference to the System.Transactions assembly to the ShoppingCartService proj-
ect. This assembly contains some of the classes and attributes required to manage
transactions. You’ll also use other types and attributes from the System.ServiceModel
assembly, which the ShoppingCartService project already references.

	 3.	 Open the ShoppingCartService.cs file for the ShoppingCartService project in the Code
And Text Editor window.

	 4.	 Add the following using statement to the list at the top of the file:

using System.Transactions;

	 5.	 Locate the ServiceBehavior attribute that precedes the ShoppingCartServiceImpl class.
Add the following TransactionIsolationLevel property (shown in bold) to this attribute:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerSession,

 TransactionIsolationLevel=IsolationLevel.RepeatableRead)]

public class ShoppingCartServiceImpl : IShoppingCartService

{

 ...

}

The TransactionIsolationLevel property determines how the database management
system (SQL Server in the exercises in this book) lets concurrent transactions overlap.
In a typical system, multiple concurrent users access the database at the same time.
However, this can lead to problems when two users try to modify the same data at the
same time, or when one user tries to query data that another user is modifying. You
must ensure that concurrent users cannot interfere adversely with each other—they
must be isolated. Typically, whenever a user modifies, inserts, or deletes data during a
transaction, the database management system locks the affected data until the transac-
tion completes. If the transaction commits, the database management system makes the
changes permanent. If an error occurs and the transaction rolls back, the database man-
agement system cancels the changes. The TransactionIsolationLevel property specifies

Download from Wow! eBook <www.wowebook.com>

354	 Windows Communication Foundation 4 Step by Step

how the locks applied during a data-modification transaction affect other transactions
attempting to access the same data. The TransactionIsolationLevel property can take one
of several values. The most common isolation levels are:

❏❏ IsolationLevel.ReadUncommitted  This isolation level enables the transaction to
read data that another transaction has modified and locked, but not yet commit-
ted. This isolation level provides the most concurrency; however, there is the risk of
the user being presented with “dirty” data that might change unexpectedly if the
modifying transaction rolls back the changes rather than committing them.

❏❏ IsolationLevel.ReadCommitted  This isolation level prevents the transaction from
reading data that another transaction has modified, but not yet committed. The
reading transaction will be forced to wait until the modified data is unlocked.
Although this isolation level prevents read access to dirty data, it does not guaran-
tee consistency; if the transaction reads the same data twice, there is the possibility
that another transaction might have modified the data in between reads, thus the
reading transaction would be presented with two different versions of the data.

❏❏ IsolationLevel.RepeatableRead  This isolation level is similar to the ReadCommitted
isolation level, but it causes the transaction reading the data to lock this data until
the reading transaction finishes (the ReadCommitted isolation level does not cause
a transaction to lock data that it reads). The transaction can then safely read the
same data as many times as it wants without the data being changed by another
transaction until this transaction has completed. This isolation level therefore pro-
vides more consistency, at the cost of reduced concurrency.

❏❏ IsolationLevel.Serializable  This isolation level takes the RepeatableRead isolation
level one stage further. When using the RepeatableRead isolation level, data read
by a transaction cannot change. However, it is possible for a transaction to execute
the same query twice and obtain different results if another transaction inserts
data that matches the query criteria: new rows suddenly appear. The Serializable
isolation level prevents this inconsistency from occurring by restricting the rows
that other concurrent transactions can add to the database. This isolation level
provides the greatest level of consistency, but the degree of concurrency can be
significantly reduced.

Unless you have a good reason to choose otherwise, use the IsolationLevel.Repeatable
Read isolation level.

	 6.	 In the ShoppingCartServiceImpl class, add the following OperationBehavior attribute to
the AddItemToCart method:

[OperationBehavior(TransactionScopeRequired=true, TransactionAutoComplete=false)]

public bool AddItemToCart(string productNumber)

{

 ...

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 9  Supporting Transactions	 355

You are going to modify the AddItemToCart method to check the level of stock for the
selected product and modify the stock level if the product is available. This work will be
transactional, and the client application should invoke this operation only in the context
of a transaction, which ensures that the changes can be undone if some sort of failure
occurs. Setting the TransactionScopeRequired property of the OperationBehavior attri-
bute to true forces the operation to execute as part of a transaction; either the client
application must initiate the transaction (you will see how to do this shortly) or the WCF
runtime will automatically create a new transaction when this operation runs.

The TransactionAutoComplete property specifies what happens to the transaction
when the operation finishes. If you set this property to true, the transaction automati-
cally commits and makes all its changes permanent. Setting this property to false keeps
the transaction active; the changes are not committed yet. The default value for this
property is true. In the case of the AddItemToCart method, you don’t want to com-
mit changes and finish the transaction until the user has checked out and paid for the
goods, so the code sets this property to false.

	 7.	 Open the IShoppingCartService.cs file in the Code And Text Editor window. Add the
TransactionFlow attributes (shown in bold in the following code) to all the method defi-
nitions in the IShoppingCartService interface, just after the OperationContract attribute:

public interface IShoppingCartInterface

{

 [OperationContract(Name = "AddItemToCart", IsInitiating = true)]

 [TransactionFlow(TransactionFlowOption.Mandatory)]

 public bool AddItemToCart(string productNumber)

 [OperationContract(Name = "RemoveItemFromCart", IsInitiating = false)]

 [TransactionFlow(TransactionFlowOption.Mandatory)]

 bool RemoveItemFromCart(string productNumber);

 [OperationContract(Name = "GetShoppingCart", IsInitiating = false)]

 [TransactionFlow(TransactionFlowOption.Mandatory)]

 string GetShoppingCart();

 [OperationContract(Name = "Checkout", IsInitiating = false, IsTerminating = true)]

 [TransactionFlow(TransactionFlowOption.Mandatory)]

 bool Checkout();

}

The description of the TransactionScopeRequired property in the previous step men-
tioned that the WCF runtime automatically creates a new transaction when invoking an
operation, if necessary. In the shopping cart scenario, you want the client application
to be responsible for creating its own transactions and invoking the operations in the
ShoppingCartService service in the context of these transactions. You can enforce this
rule by applying the TransactionFlow attribute to the operation contract. Specifying a
parameter of TransactionFlowOption.Mandatory indicates that the client application
must create a transaction before calling this operation and must send the details of
this transaction as part of the SOAP message header when invoking the operation. The

Download from Wow! eBook <www.wowebook.com>

356	 Windows Communication Foundation 4 Step by Step

other values you can specify are TransactionFlowOption.Allowed, which will use a trans-
action created by the client if one exists (the WCF runtime will create a new transaction
if not), and TransactionFlowOption.NotAllowed, which causes the WCF runtime to dis-
regard any client transaction and always create a new one.

The default value is TransactionFlowOption.NotAllowed.

	 8.	 You can now amend the code in the ShoppingCartServiceImpl class to check stock levels
and update them in the database, safe in the knowledge that this functionality is pro-
tected by transactions—if anything should go wrong, the changes will be rolled back
automatically.

In the ShoppingCartService.cs file, add the decrementStockLevel method shown below
to the ShoppingCartServiceImpl class:

private bool decrementStockLevel(string productNumber)
{
 // Decrement the current stock level of the selected product
 // in the ProductInventory table.
 // If the update is successful then return true, otherwise return false.

 // The Product and ProductInventory tables are joined over the
 // ProductID column.

 try
 {
 // Connect to the AdventureWorks database by using the Entity Framework
 using (AdventureWorksEntities database = new AdventureWorksEntities())
 {
 // Find the ProductID for the specified product
 int productID =
 (from p in database.Products
 where String.Compare(p.ProductNumber, productNumber) == 0
 select p.ProductID).First();

 // Update the first row for this product in the ProductInventory table
 // that has a quantity value greater than zero.
 ProductInventory productInventory = database.ProductInventories.First(
 pi => pi.ProductID == productID && pi.Quantity > 0);

 // Update the stock level for the ProductInventory object
 productInventory.Quantity --;

 // Save the change back to the database
 database.SaveChanges();
 }
 }
 catch
 {
 // If an exception occurs, return false to indicate failure
 return false;
 }

 // Return true to indicate success
 return true;
}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 9  Supporting Transactions	 357

Note  The code for this method is available in the file DecrementStockLevel.txt, which is
located in the Chapter 9 folder.

This method verifies that the specified product is available, and then updates the stock
level for that product, decrementing the Quantity by one. You may recall from Chapter 1,
“Introducing Windows Communication Foundation,” that a product can be stored in
more than one location; thus it may exist in more than one row in the ProductInventory
table. This method simply updates the first matching product row in the ProductInventory
table that has a quantity greater than zero. If the update fails to modify a row, this
method returns false to indicate either insufficient stock (all rows have a zero for the
quantity) or that no such product exists (there are no rows). If the update changes
exactly one row, then this method returns true to indicate success.

Note  Strictly speaking, the service should record and save the value in the rowguid column
of the row it updates in the ProductInventory table, so that the corresponding row can be
incremented again if the user decides to remove the item from the shopping cart later.
However, this functionality is left as an exercise for readers to perform.

It is also possible for this method to cause a database deadlock if multiple service instances
execute it simultaneously. In this situation, SQL Server picks one of the transactions
(referred to rather prosaically as the “victim” by SQL Server) and aborts it, releasing any
locks held, and possibly letting other concurrent transactions complete. Aborting the
transaction will cause the SaveChanges method of the Entity Framework to fail and throw
an exception. When that happens, the method returns false. The important point to learn
from this is that using transactions ensures that the database will remain consistent, even
in the face of unforeseen eventualities.

	 9.	 In the AddItemToCart method, change the code that increments the volume of an item
in the shopping cart so that it calls the decrementStockLevel method you just created, as
shown in bold in the following:

public bool AddItemToCart(string productNumber)

{

 // Note: For clarity, this method performs very limited

 // security checking and exception handling

 try

 {

 // Check to see whether the user has already added this

 // product to the shopping cart

 ShoppingCartItem item = find(shoppingCart, productNumber);

 // If so, then simply increment the volume

 if (item != null)

 {

 if (decrementStockLevel(productNumber))

Download from Wow! eBook <www.wowebook.com>

358	 Windows Communication Foundation 4 Step by Step

 {

 item.Volume++;

 return true;

 }

 else

 {

 return false;

 }

 }

 // Otherwise, retrieve the details of the product from the database

 else

 {

 ...

 }

 }

 ...

}

	 10.	 Modify the else block in the AddItemToCart method so that it checks whether sufficient
stock is available in the database before retrieving the details of the product from the
database, as shown in bold in the following:

public bool AddItemToCart(string productNumber)

{

 // Note: For clarity, this method performs very limited

 // security checking and exception handling

 try

 {

 // Check to see whether the user has already added this

 // product to the shopping cart

 ShoppingCartItem item = find(shoppingCart, productNumber);

 // If so, then simply increment the volume

 if (item != null)

 {

 ...

 }

 // Otherwise, retrieve the details of the product from the database

 else if (decrementStockLevel(productNumber))

 {

 ...

 }

 else

 {

 return false;

 }

 }

 catch

 {

 ...

 }

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 9  Supporting Transactions	 359

Leave the block of code that connects to the database and retrieves the product details
untouched. Also, be sure to add the additional else statement to the end of the block,
immediately before the catch block, as shown in the previous example.

	 11.	 Add an OperationBehavior attribute to the RemoveItemFromCart method, setting the
TransactionScopeRequired property to true and the TransactionAutoComplete property
to false. The method should look like this:

[OperationBehavior(TransactionScopeRequired=true, TransactionAutoComplete=false)]

public bool RemoveItemFromCart(string productNumber)

{

 ...

}

Note  If you have the time, you might want to add the appropriate code to this method to
increment the stock level in the database after removing the item from the shopping cart.

	 12.	 Add another OperationBehavior attribute to the GetShoppingCart method, setting the
TransactionScopeRequired property to true and the TransactionAutoComplete property
to false:

[OperationBehavior(TransactionScopeRequired=true, TransactionAutoComplete=false)]

public bool GetShoppingCart()

{

 ...

}

The GetShoppingCart method does not actually query or modify the database, but it
could be (and probably would be) called by the client application during a transaction.
It is important that this method does not commit the transaction; hence, the need to
set the TransactionAutoComplete property to false. You cannot set the TransactionAuto
Complete property to false without setting the TransactionScopeRequired property to
true.

	 13.	 Add a final OperationBehavior attribute to the Checkout method, setting the Transaction-
ScopeRequired property to true and the TransactionAutoComplete property to false:

[OperationBehavior(TransactionScopeRequired=true, TransactionAutoComplete=false)]

public bool Checkout()

{

 ...

}

Having modified the code in the service, you must also change the configuration of the ser-
vice endpoint to enable the WCF runtime to “flow” transactions from the client application
into the service. Information about transactions is included in the headers of the SOAP mes-
sages sent by client applications invoking the operations.

Download from Wow! eBook <www.wowebook.com>

360	 Windows Communication Foundation 4 Step by Step

Note  Not all bindings allow you to flow transactions from client applications into a service. The
bindings that do not support transactions include BasicHttpBinding, NetMsmqBinding, NetPeer
TcpBinding, and WebHttpBinding.

Configure the ShoppingCartService Service to Flow Transactions from Client
Applications

	 1.	 Edit the App.config file for the ShoppingCartHost project by using the Service Configu-
ration Editor.

	 2.	 In the Service Configuration Editor, in the Configuration pane, click the Bindings folder.
In the right pane, click New Binding Configuration.

	 3.	 In the Create A New Binding dialog box, select the netTcpBinding binding type, and
then click OK.

	 4.	 In the right pane, change the Name property of the binding to ShoppingCartService
NetTcpBindingConfig. In the General section of the pane, set the TransactionFlow
property to True. Verify that the TransactionProtocol property is set to OleTransactions.

The TransactionFlow property indicates that the service should expect to receive infor-
mation about transactions in the SOAP messages it receives.

The TransactionProtocol property specifies the transaction protocol the service should
use. By default, endpoints based on the TCP transport use the internal DTC protocol
when performing distributed transactions. However, you can configure them to use
transactions that follow the WS-AtomicTransaction protocol by changing this property
to WSAtomicTransactionOctober2004 (for services that need to conform to the 2004
version of the specification), or WSAtomicTransaction11 (for services that need to con-
form to the more recent version 1.1 of the specification).

	 5.	 In the Configuration pane, in the Services folder, expand the ShoppingCartService.
ShoppingCartServiceImpl node, expand the Endpoints folder, and then click the (Empty
Name) node. In the Service Endpoint pane, set the BindingConfguration property of the
endpoint to ShoppingCartServiceNetTcpBindingConfig.

	 6.	 Save the configuration file then close the Service Configuration Editor.

You have configured the ShoppingCartService service to expect the client application to
invoke operations within the scope of a transaction. You now need to modify the client appli-
cation to actually create this transaction.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 9  Supporting Transactions	 361

Create a Transaction in the Client Application

	 1.	 In Visual Studio, add a reference to the System.Transactions assembly to the Shopping
CartClient project.

	 2.	 Open the Program.cs file for the ShoppingCartClient project in the Code And Text Editor
window and add the following using statement to the list at the top of the file:

using System.Transactions;

	 3.	 In the Main method, add the code shown below in bold, and surround the statements
that invoke the operations in the ShoppingCartService service with a using block:

static void Main(string[] args)

{

 ...

 try

 {

 // Connect to the ShoppingCartService service

 ShoppingCartServiceClient proxy =

 new ShoppingCartServiceClient("NetTcpBinding_IShoppingCartService");

 TransactionOptions tOpts = new TransactionOptions();

 tOpts.IsolationLevel = IsolationLevel.RepeatableRead;

 tOpts.Timeout = new TimeSpan(0, 1, 0);

 using (TransactionScope tx =

 new TransactionScope(TransactionScopeOption.RequiresNew, tOpts))

 {

 // Add two water bottles to the shopping cart

 proxy.AddItemToCart("WB-H098");

 proxy.AddItemToCart("WB-H098");

 // Add a mountain seat assembly to the shopping cart

 proxy.AddItemToCart("SA-M198");

 // Query the shopping cart and display the result

 string cartContents = proxy.GetShoppingCart();

 Console.WriteLine(cartContents);

 // Buy the goods in the shopping cart

 proxy.Checkout();

 Console.WriteLine("Goods purchased");

 }

 // Disconnect from the ShoppingCartService service

 proxy.Close();

 }

 catch (Exception e)

 {

 ...

 }

 ...

}

Download from Wow! eBook <www.wowebook.com>

362	 Windows Communication Foundation 4 Step by Step

You can create a new transaction in several ways: a service can initiate a new transaction
automatically by setting the TransactionScopeRequired attribute of the OperationBehavior
property to true as described earlier; an operation can explicitly start a new transaction
by creating a CommittableTransaction object; or the client application can implicitly
create a new transaction. In a WCF client application, the recommended approach is
to use a TransactionScope object.

When you create a new TransactionScope object, any transactional operations that fol-
low are automatically enlisted into a transaction. If the WCF runtime detects that there
is no active transaction when you create a new TransactionScope object, it can initiate a
new transaction and performs the operations in the context of this transaction. In this
case, the transaction remains active until the TransactionScope object is destroyed. For
this reason, it is common practice to employ a using block to explicitly delimit the scope
of a transaction.

The TransactionScopeOption parameter of the TransactionScope constructor determines
how the WCF runtime utilizes an existing transaction. If this parameter is set to Transaction
ScopeOption.RequiresNew, the WCF runtime will always create a new transaction. The
other values you can specify are TransactionScopeOption.Required, which will create
a new transaction only if no other transaction is currently in scope (referred to as the
“ambient transaction”), and TransactionScopeOption.Suppress, which causes all opera-
tions in the context of the TransactionScope object to be performed without using a
transaction (operations will not participate in the ambient transaction, if there is one).

Note  The TransactionScopeOption.Suppress option is useful for situations in which you
need to include non-transactional code within transactional code; the operations in the
non-transactional code can fail without causing the enclosing transaction to abort, and vice
versa. Scenarios include performing logging or audit operations; you want the log or audit
data to be saved, regardless of whether the enclosing transaction commits or aborts.

The transaction isolation level of any new transactions should match the requirements
of the service. You can specify the isolation level by creating a TransactionOptions object
and referencing it in the TransactionScope constructor, as shown in the previous example.
You can also specify a timeout value for transactions. This can improve the responsive-
ness of an application because transactions will not wait an indeterminate period for
resources locked by other transactions to become available; instead, the WCF runtime
throws an exception that the client application should be prepared to handle when a
timeout occurs. In this example, the timeout period is set to one minute.

	 4.	 Add an if block and the statement shown in the following around the code that invokes
the Checkout operation:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 9  Supporting Transactions	 363

// Buy the goods in the shopping cart

if (proxy.Checkout())

{

 tx.Complete();

 Console.WriteLine("Goods purchased");

}

By default, when the flow of control leaves the using block (either by the natural flow of
the code or because of an exception), unless you specify otherwise, the transaction will be
aborted and the work it performed undone. This is probably not what you want. Calling
the Complete method of the TransactionScope object before destroying it indicates that
work has been completed successfully and that the transaction should be committed.
In the ShoppingCartService service; the Checkout method returns true if the checkout
operation is successful and false if otherwise. If the Checkout method fails and returns
false, the Complete method will not be called and any changes made to the database by
the transaction will be rolled back.

Note  Calling the Complete method does not actually guarantee that your work will be
committed. It indicates only that the work performed inside the transaction scope was
successful and can be committed in the absence of any other problems. You can nest
transaction scopes; you can create a new TransactionScope object inside the using state-
ment of another TransactionScope object. If the nested TransactionScope object creates a
new transaction (called a nested transaction), calling the Complete method on the nested
TransactionScope object commits the nested transaction with respect to the transaction
(called the parent transaction) used by the outer TransactionScope object. If the parent
transaction aborts, then the nested transaction will also be aborted.

	 5.	 In an earlier exercise, you modified the contract for the ShoppingCartService by adding
the TransactionFlow attribute to each operation. You must therefore update the proxy
that the client application uses to ensure that the proxy sends the details of transactions
to the service. You can perform this task either by regenerating the code for the proxy
class using the svcutil utility (Chapter 7 contains the steps for doing this), or you can
modify the code manually. For this exercise, perform this task manually by editing the
code as follows:

	 a.	 Open the ShoppingCartServiceProxy.cs file for the ShoppingCartClient project in
the Code And Text Editor window.

	 b.	 Add the following using statement at the start of the file:

using System.ServiceModel;

	 c.	 Locate the ShoppingCartService interface. This is the first interface in the Shopping
CartCient.ShoppingCartService namespace.

Download from Wow! eBook <www.wowebook.com>

364	 Windows Communication Foundation 4 Step by Step

	 d.	 Add the TransactionFlow attribute to each method in this interface, as shown in
bold in the code that follows. Do not change any other code or attributes in this
interface (the properties of the OperationContractAttribute for each method have
been omitted, for clarity—leave those intact in your code):

public interface ShoppingCartService

{

 [System.ServiceModel.OperationContractAttribute(...)]

 [TransactionFlow(TransactionFlowOption.Mandatory)]

 bool AddItemToCart(string product

 Number);

 [System.ServiceModel.OperationContractAttribute(...)]

 [TransactionFlow(TransactionFlowOption.Mandatory)]

 bool RemoveItemFromCart(string productNumber);

 [System.ServiceModel.OperationContractAttribute(...)]

 [TransactionFlow(TransactionFlowOption.Mandatory)]

 string GetShoppingCart();

 [System.ServiceModel.OperationContractAttribute(...)]
 [TransactionFlow(TransactionFlowOption.Mandatory)]

 bool Checkout();

}

The final step is to configure the endpoint for the client application to send information about
its transactions across the network to the service.

Configure the Client Application to Flow Transactions to the ShoppingCartService
Service

	 1.	 Edit the App.config file for the ShoppingCartClient project using the Service Configuration
Editor.

	 2.	 In the Service Configuration Editor, in the Configuration pane, click the Bindings folder.
In the right pane, click New Binding Configuration.

	 3.	 In the Create A New Binding dialog box, select the netTcpBinding binding type, and
then click OK.

	 4.	 In the right pane, change the Name property of the binding to ShoppingCartClient
NetTcpBindingConfig. In the General section of the pane, set the TransactionFlow prop-
erty to True and verify that the TransactionProtocol property is set to OleTransactions.

	 5.	 In the Configuration pane, select the NetTcpBinding_IShoppingCartService node in the
Endpoints folder within the Client folder. In the Client Endpoint pane, set the Binding
Configuration property of the endpoint to ShoppingCartClientNetTcpBindingConfig.

	 6.	 Save the configuration file then close the Service Configuration Editor.

You can now test the transactional version of the ShoppingCartService service and the client
application.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 9  Supporting Transactions	 365

Test the Transactional Implementation of the ShoppingCartService Service

	 1.	 On the Windows Start menu, open the Control Panel, click System And Security, click
Administrative Tools, right-click Component Services, and then click Run As Administrator.
Provide the administrator password if you are prompted.

The Component Services console appears. You can use this console to monitor the
transactions being processed by DTC.

	 2.	 In the left pane of the Component Services console, click Services. In the right pane,
click the Distributed Transaction Coordinator service, and then click Restart The Service.

Stopping and restarting DTC clears its statistics so you can more easily monitor the
progress of your transactions.

	 3.	 In the left pane, expand the Component Services node, expand the Computers folder,
expand My Computer, expand the Distributed Transaction Coordinator folder, expand
Local DTC, and then click Transaction Statistics.

The right pane displays the statistics summarizing the activity since the DTC service was
last started. Currently all values should be set to zero.

	 4.	 Return to Visual Studio and start the solution without debugging.

Note  If a Windows Security Alert appears, click Allow Access to enable the service to open
TCP port 8080.

In the ShoppingCartClient console window that is displaying the message “Press ENTER
when the service has started,” press Enter.

The client application displays the shopping cart containing two water bottles and a
mountain seat assembly, followed by the “Goods purchased” message. However, there
also appears to be a problem because the application throws an exception reporting,
“The transaction has aborted.”

Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

Download from Wow! eBook <www.wowebook.com>

366	 Windows Communication Foundation 4 Step by Step

	 5.	 Switch to the Component Services console. It should confirm that the one transaction
you have performed since you restarted DTC has aborted:

The problem is actually quite subtle. Remember that the Complete method of a
TransactionScope object indicates only that the transaction can be committed. However,
before committing a transaction, the transaction must have actually done some work
and completed this work successfully. Although the AddItemToCart operation invoked
in the ShoppingCartService service clearly updates the database, it never actually indi-
cates that the work was successfully completed. The same is true of the other opera-
tions. Consequently, when the runtime examines the state of the transaction created
for the TransactionScope object, in the absence of any information indicating success, it
decides to abort the transaction and rollback the changes.

You need to make some modifications to the ShoppingCartService service to indicate
when a transaction has completed successfully. Bear in mind that you can complete a
transaction only once, so in the shopping cart scenario, the best place to do this is in
the Checkout method.

	 6.	 In Visual Studio, open the ShoppingCartService.cs file for the ShoppingCartService
project in the Code And Text Editor window and find the Checkout method, toward
the end of the file. The OperationBehavior attribute for this method currently sets the
TransactionAutoComplete property to false. You could set this property to true, and this
would cause the transaction to complete successfully at the end of the method, as long
as it did not throw an unhandled exception (if the method throws an exception that
you handle in the same method, the transaction will not abort). But in the real world,

Download from Wow! eBook <www.wowebook.com>

	 Chapter 9  Supporting Transactions	 367

you would probably want to be a bit more selective than this; for example, the transac-
tion should only commit if this method ascertains that the user has a valid account with
AdventureWorks, for billing purposes. However, for this exercise you will simply add a
statement that indicates that the transaction can be committed.

Modify the code in the Checkout method, as shown in bold in the following:

[OperationBehavior(TransactionScopeRequired = true,

 TransactionAutoComplete = false)]

public bool Checkout()

{
 // Not currently implemented

 // - just indicate that the transaction completed successfully

 // and return true

 OperationContext.Current.SetTransactionComplete();

 return true;

}

The static Current property of the OperationContext class provides access to the execu-
tion context of the operation. The SetTransactionComplete method indicates that the
current transaction has completed successfully and can be committed when the client
application calls the Complete method of the TransactionScope object containing this
transaction. If you need to abort the transaction, just exit the method without calling
the SetTransactionComplete method, as you did before.

Note  Calling the SetTransactionComplete method indicates that you have finished all the
transactional work. If a transaction spans multiple operations, you cannot invoke any fur-
ther operations that have the TransactionScopeRequired property of the OperationBehavior
attribute set to true and that execute in the same transaction scope. Additionally, you can
call the SetTransactionComplete method only once in a transaction. A subsequent call to
this method inside the scope of the same transaction will raise an exception. Finally, if you
call the SetTransactionComplete method, but later fail to call the Complete method of the
TransactionScope object, the transaction will be rolled back silently.

	 7.	 Start the solution without debugging. In the ShoppingCartClient console window, press
Enter.

This time, the client application executes without reporting that the transaction aborted.

	 8.	 Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

	 9.	 Return to the Component Services console. This time, as shown in the image that fol-
lows, you can see that the transaction committed.

Download from Wow! eBook <www.wowebook.com>

368	 Windows Communication Foundation 4 Step by Step

	 10.	 To verify that the database is being updated, open a Visual Studio command prompt
window and move to the Microsoft Press\WCF Step By Step\Chapter 9 folder. Type the
following command:

StockLevels

This command executes a script that queries the AdventureWorks database, displaying
the current stock level of water bottles and mountain seat assemblies:

Make a note of these stock levels.

Note  Your stock levels might be different from those shown in the previous image.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 9  Supporting Transactions	 369

	 11.	 Leave the command prompt window open and return to Visual Studio. Start the solu-
tion again without debugging. In the ShoppingCartClient console window, press Enter.
When the client application has finished, press Enter to close the client application con-
sole window. In the host application console window, press Enter to stop the service.

	 12.	 Return to the command prompt window and execute the StockLevels command again.
Verify that the stock level for water bottles has decreased by two and the stock level for
mountain seat assemblies has decreased by one.

	 13.	 Examine the transaction statistics in the Component Services console. You should see
that the number of committed transactions is now two.

	 14.	 Close the Component Services console.

Implementing the WS-AtomicTransaction Protocol
The NetTcpBinding binding uses OLE transactions and Microsoft’s own protocol for commu-
nicating through DTC to other Microsoft-specific services such as SQL Server. In a heteroge-
neous environment involving services based on non-Microsoft technologies, you may not be
able to employ OLE transactions. Instead, you should apply a more standardized mechanism,
such as the WS-AtomicTransaction protocol. When using the NetTcpContextBinding, NetTcp
Binding, or NetNamedPipeBinding bindings, you can explicitly specify which transaction pro-
tocol to use by setting the TransactionProtocol property that these bindings provide. With the
HTTP family of bindings, the WCF runtime itself selects the transaction protocol based on the
Windows configuration, the transport you are using, and the format of the SOAP header used
to flow the transaction from the client application to the service.

For example, a WCF client application connecting to a WCF service through an endpoint
based on the “http” scheme will use OLE transactions. If the computers hosting the WCF client
application and WCF service are configured to support the WS-AtomicTransaction protocol
over a specific port, and the client application connects to the service through an endpoint
based on the “https” scheme that uses this port, then transactions will follow the WS-Atomic
Transaction protocol (either the October 2004 specification, or version 1.1 as appropriate).

The choice of transaction protocol should be transparent to your services and client applica-
tions. The code that you write to initiate, control, and support transactions based on the WS-
AtomicTransaction protocol is the same as that for manipulating OLE transactions, so the same
service can execute using OLE transactions or WS-AtomicTransaction transactions, depending
on how you configure the service.

Important  The BasicHttpBinding binding does not support transactions (OLE or WS-Atomic
Transaction).

Download from Wow! eBook <www.wowebook.com>

370	 Windows Communication Foundation 4 Step by Step

If you wish to exploit the implementation of the WS-AtomicTransaction protocol provided by
the .NET Framework 4.0 with the HTTP bindings, you must configure support for the
WS-AtomicTransaction protocol in DTC.

The .NET Framework 4.0 includes the wsatConfig.exe utility in the C:\Windows\Microsoft.NET\
Framework\v4.0.30319 folder. This is a command line tool that you can use to configure WS-
AtomicTransaction protocol support. The Microsoft Windows SDK provides a graphical user
interface component that performs many of the same tasks and that plugs into the Compo-
nent Services console, as shown in Figure 9-1. You can access this interface by opening the
Properties dialog box for Local DTC in the Distributed Transaction Coordinator folder under
My Computer, and then clicking the WS-AT tab.

Figure 9-1  The WS-AtomicTransaction configuration tab in the Component Services console.

Note  You must register the assembly that implements the user interface before you can use it in
the Component Services console. Open a Visual Studio command prompt as administrator, move
to the C:\Windows\Microsoft.NET\Framework\v4.0.30319 folder (or the C:\Windows\Microsoft.
NET\Framework64\v4.0.30319 folder if you are running a 64-bit implementation of Windows 7)
and type the following command:

regasm /codebase wsatui.dll

To enable WS-AtomicTransaction support, you must first enable network DTC access and per-
mit inbound and outbound communications to and from DTC. You can perform these tasks by
using the Security tab in the Local DTC Properties dialog box.

The implementation of the WS-AtomicTransaction protocol over HTTP requires mutual
authentication, integrity, and confidentiality for all messages. This means that you must con-
figure the HTTPS transport. If the WCF service listens on a port other than 443 (the default

Download from Wow! eBook <www.wowebook.com>

	 Chapter 9  Supporting Transactions	 371

HTTPS port), you should specify the port in the WS-AT tab. You must also provide a certifi-
cate that the service can use to encrypt messages. Additionally, the WS-AT tab lets you specify
which users are authorized to access your service, identifying these accounts by their Windows
credentials or certificates.

More Info  If you require more information about configuring the WS-AtomicTransaction sup-
port with DTC, visit the “Configuring WS-Atomic Transaction” support page on the Microsoft Web
site at http://msdn.microsoft.com/en-us/library/ms733943.aspx.

Designing a WCF Service to Support Transactions
The previous sections have shown you how to implement transactions in a WCF service, but
there are a number of issues you should be aware of when designing a WCF service that
requires transactions.

Transactions, Sessions, and Service Instance Context Modes
If you set the TransactionAutoComplete property of the OperationBehavior attribute of one or
more operations in a WCF service to false, you must use the PerSession service instance con-
text mode. This is because the WCF runtime needs to maintain transactional state between
calls to operations. If you set the TransactionAutoComplete property to true for every opera-
tion, the WCF runtime does not need to maintain transactional state because it completes the
current transaction at the end of each operation, and you can use the PerCall or Single service
instance context modes.

When you use the PerSession instance context mode, WCF provides two additional properties
you can specify as part of the ServiceBehavior attribute:

■■ ReleaseServiceInstanceOnTransactionComplete  If you set this property to true, the WCF
runtime will automatically end the session and recycle the service instance at the end
of each transaction. If a client application invokes another operation, it must create and
connect to a new instance of the service, as described in Chapter 7. Setting this property
to false allows a session to handle multiple transactions. The default value of this prop-
erty is true.

■■ TransactionAutoCompleteOnSessionClose  If you set this property to true, the WCF
runtime will automatically complete the current transaction when the client application
closes the session. The default value for this property is false, which causes the transac-
tion to be aborted and any transactional work to be undone.

Download from Wow! eBook <www.wowebook.com>

372	 Windows Communication Foundation 4 Step by Step

An important point to bear in mind from the points just raised is that transactions cannot
span multiple sessions. What this means in practical terms is that if a client application initi-
ates a transaction, performs some work by sending requests to a service, and then closes
the connection, the transaction will be terminated. The outcome of the transaction depends
on whether the most recent operation completed the transaction successfully or not, either
by calling SetTransactionComplete or by virtue of the TransactionAutoComplete attribute of
the operation being set to true. If neither of these cases apply, then the transaction will be
aborted and all transactional work done will be rolled back.

It may sound like this is a shortcoming, but in fact it makes sense. If transactions could outlive
sessions, then there would be no guarantee that a transaction would ever terminate, and any
resources locked by a transaction might have those locks retained indefinitely.

Transactions and Messaging
A transactional operation sends information back to the client application about the state
of the transaction. All the operations you have defined so far have followed the request/
response model; the client application sends a request and waits for a response from the ser-
vice. You will see in Chapter 12, “Implementing One-Way and Asynchronous Operations,” that
you can define one-way operations that do not send a response back to the client application.
One-way operations cannot be transactional.

Transactions and Multi-Threading
You saw in Chapter 7 that a WCF service can enable multiple concurrent calls to operations if
you set the ConcurrencyMode property of the ServiceBehavior attribute to ConcurrencyMode.
Multiple. You should note the following points when attempting to use this mode:

■■ The TransactionAutoComplete property of the OperationBehavior attribute must be set
to true for every operation in the service. Transactions cannot span multiple operations.

■■ The ReleaseServiceInstanceOnTransactionComplete property of the ServiceBehavior attri-
bute for the service must be set to false. You must explicitly release the service instance
by closing the connection from the client.

■■ The TransactionAutoCompleteOnSessionClose property of the ServiceBehavior property
for the service must be set to true. All transactions on all threads must be terminated
when the session closes.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 9  Supporting Transactions	 373

Implementing Transactions in a Workflow Service
Windows Workflow Foundation provides the TransactedReceiveScope activity in the Messaging
section of the Toolbox for implementing transactional operations in a workflow service. This
activity exposes two properties:

■■ Request  This must be a Receive activity that defines a message received by the service,
effectively marking the start of an operation.

■■ Body  This contains an activity that defines the logic of the operation. Typically you will
implement this as a Sequence activity that processes the data sent by the client. This ele-
ment should also include a SendReply activity that sends a response message back to
the client.

Figure 9-2 shows an example of the TransactedReceiveScope activity implementing the Change
StockLevel operation in the products service. This operation updates the stock level of a product
in the AdventureWorks database. The code for this service is available in ProductsWorkflow
Service project in the ProductsWorkflow solution, in the Chapter 9 folder. Notice that the
Request property contains a Receive activity that listens for ChangeStockLevel messages. The
Body property comprises a Sequence activity that invokes the ChangeStockLevel custom activ-
ity (this activity actually does the work of modifying the stock level), and a SendReply activity
that sends the result of the update (true if the modification is successful, false if otherwise).

Figure 9-2  A TransactedReceiveScope activity implementing the ChangeStockLevel operation.

Download from Wow! eBook <www.wowebook.com>

374	 Windows Communication Foundation 4 Step by Step

Compared to the way you define and control transactions in a procedural WCF service, a
transactional activity in a workflow service has some fundamental differences:

■■ You cannot explicitly specify how the workflow runtime completes the transaction (there
is no notion of the TransactionAutoComplete attribute as there is for a procedural opera-
tion). In a workflow service, the TransactedReceiveScope activity decides the outcome of
the operation; if the Sequence activity defining the body of the TransactedReceiveScope
activity finishes without throwing an exception, then the operation is deemed to have
completed successfully and will be subject to commit processing when the transaction
finishes. If the body throws an exception, then the transaction will be aborted.

■■ The transactional work does not finish with the SendReply activity. The Sequence activity
defining the body of the TransactedReceiveScope activity can contain additional logic
after you send a reply. Any work implemented by this logic is performed within the
scope of the transaction. Only when the Sequence activity finishes is the outcome of
the transactional work known. Note that this means that a workflow service may send
a response message to a client and then carry on with some additional processing that
may fail and abort the transaction; but in this situation the client application may not be
immediately aware of the failure, so use this feature with care.

■■ Implementing an operation with a TransactedReceiveScope activity implies Transaction
FlowOption.Allowed semantics. You cannot specify that an operation must be performed
in the context of an existing transaction (TransactionFlowOption.Mandatory); if a client
application does not flow a transaction into the operation, the workflow runtime will
create a transaction automatically. Additionally, the default isolation level of the trans-
action is Serializable, although this will be overridden if the client application creates a
transaction scope with a different isolation level.

You can initiate a transaction in a workflow client application by using the TransactionScope
activity in the Transaction section of the Toolbox. This activity provides properties with which
you can specify the isolation level and timeout of the transaction (you set these same proper-
ties in the procedural client application, shown earlier in the constructor of the Transaction
Scope object). Figure 9.3 shows the workflow for a simple client application that invokes the
ChangeStockLevel operation (this code is also available as part of the ProductsWorkflow solu-
tion, in the ProductsWorkflowClient project).

Download from Wow! eBook <www.wowebook.com>

	 Chapter 9  Supporting Transactions	 375

Figure 9-3  A workflow client using a TransactionScope activity to initiate a transaction.

The workflow creates a TransactionScope activity encompassing a sequence that makes two
calls to the ChangeStockLevel operation. These two calls are made as part of the same transac-
tion. You can verify this by viewing the Transaction Statistics in the Component Services con-
sole as the application runs. As an additional check, the code in the ChangeStockLevel custom
activity prints the details of the transaction that has been created in the service host console
window, as shown in Figure 9-4. Notice that the transaction identifier is the same for both
invocations of the operation.

Figure 9-4  The output of the workflow service showing the transaction details.

Download from Wow! eBook <www.wowebook.com>

376	 Windows Communication Foundation 4 Step by Step

Note  You can obtain a reference to the currently executing transaction by using the static Current
property of the System.Transactions.Transaction class. The IsolationLevel property indicates the iso-
lation level of the transaction, and the TransactionInformation property provides details such as the
transaction identifier and the transaction status.

Long-Running Transactions
Transactions lock resources. To minimize the impact on other users and to maintain through-
put and concurrency, you should design transactions to be as short-lived as possible. Avoid
performing tasks such as waiting for user input while executing a transaction. For example,
although this chapter used the shopping cart service to illustrate transactions, the implemen-
tation shown is not necessarily good practice; if a user ran the GUI client application from
the previous chapters to access the service, the transaction could last for a considerable time
(you have no control over when the user invokes the Checkout operation), keeping resources
locked for this duration.

Another common scenario concerns business-to-business solutions. It is common for inter-
business transactions to take a significant period of time (possibly days). Such long-running
transactions require you to adopt an alternative strategy to the techniques shown in this
chapter. The most common solution is for a service to perform any updates and release any
locks on resources immediately, effectively treating each modification as a singleton trans-
action in its own right. The service should maintain a list of changes it has made. At some
later point, if the service needs to rollback these changes, it can consult this list and perform
updates that reverse their effect. This undo operation is sometimes referred to as a “compen-
sating transaction.” Windows Workflow Foundation provides the CompensableActivity activity
in the Transaction section of the Toolbox for just this purpose.

The CompensableActivity activity provides a Body property with which you can define the
workflow for a long-running task, such as waiting for input from a client application or a mes-
sage from another service. If some sort of failure occurs, you can define compensation logic
in the CancellationHandler property to undo any changes made so far by the Body workflow.
If the logic in the Body workflow has completed, you can still undo the work performed by
defining the appropriate logic in the CompensationHandler property. Only when the work
performed by a CompensableActivity activity has been confirmed are the changes considered
permanent. To confirm the work performed by a CompensableActivity, you use a Confirm
activity.

Building compensating transactions raises a number of issues. For example, it might not be
possible to undo an operation if another user has made further changes to the same data
in the interim. Additionally, other users can see the changes that have been made, so if you
undo these changes, other users’ transactions might result in some inconsistencies.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 9  Supporting Transactions	 377

A detailed discussion of creating and rolling back long-running transactions by using the
CompensableActivity activity is outside the scope of this book, but for more information see
the “Compensation” page on the Microsoft Web site at http://msdn.microsoft.com/en-us/
library/dd489432.aspx.

Summary
In this chapter, you have seen how to define and control transactions in a WCF client applica-
tion and service. An application can enlist in an existing transaction, or create a new transac-
tion by instantiating a TransactionScope object with the appropriate parameters. Transactions
can flow from a client application, across the network, and to the service. You can specify the
transactional requirements of a WCF service by using the ServiceBehavior and Operation
Behavior attributes. The operations in a WCF service can indicate that the transaction can be
committed by executing the OperationContext.Current.SetTransactionComplete method. An
application can then finish a transaction by calling the Complete method of the Transaction
Scope object.

You learned how to configure a WCF service and client application to include information
about the transactions they are performing in the SOAP messages that they send and receive.
You have also learned how using transactions can affect the design of a WCF service.

Finally, you have seen how to implement transactions in a workflow service by using the
TransactedReceiveScope activity. The TransactedReceiveScope activity is intended for imple-
menting short-lived transactions. If your service needs to support long-running operations,
then it may be more appropriate to define compensating logic by using the Compensable
Activity activity and avoid locking resources for an extended period of time.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

379

Chapter 10

Implementing Reliable Sessions
After completing this chapter, you will be able to:

■■ Explain how to implement reliable sessions in a WCF service and client application.

■■ Describe how the WS-ReliableMessaging protocol works with the WCF runtime.

■■ Create a custom binding that implements replay detection.

Most of the time when building WCF client applications and services (apart from when you
are performing the exercises in this book), you will expect them to be deployed to different
computers and communicate with each other across a connecting network—after all, that’s
the principal reason for using WCF. Aside from the concerns surrounding security issues, the
other main problem with networks is that they can be unreliable. It is very easy for a cable or
wireless connection to be interrupted and for messages to be intercepted, interfered with,
or just lost. This is clearly unacceptable.

Additionally, if a WCF service is running using the PerSession service instance mode, a con-
versation between a client application and the WCF service can comprise several messages. In
a wide area network such as the Internet, different messages can take different routes when
traveling to their destination, and so it is possible for messages to arrive in a sequence dif-
ferent from that in which they were sent. It could be important for a service to process mes-
sages in the same order that the client sent them rather than the order that they were received,
so the client application and service may need to implement a protocol that indicates the
sequence of messages.

Messages traveling across an open network are vulnerable. They can be intercepted, corrupted,
diverted, or have a variety of other nasty things happen to them. Several of the Web service
(WS-*) specifications are intended to help protect messages, and you have seen how WCF
implements some of these specifications in earlier chapters. Another common security issue is
the “replay attack,” in which a third party intercepts messages and repeatedly forwards them
on to the intended destination. A relevant specification when you need to send messages reli-
ably and mitigate replay attacks is WS-ReliableMessaging.

Strictly speaking, reliable messaging and reliable sessions are different but related concepts.
Reliable messaging is concerned with ensuring that messages are delivered exactly once, and
a reliable session provides a context for sending and receiving a series of reliable messages.
However, in WCF, reliable sessions have a dependency on reliable messaging; you use reliable
messaging to provide an end-to-end reliable session between a client application and a ser-
vice. This chapter examines both aspects together; you will look at the ways in which you can
use WCF to provide reliable sessions and messaging, and configure replay detection.

Download from Wow! eBook <www.wowebook.com>

380	 Windows Communication Foundation 4 Step by Step

Using Reliable Messaging
To handle the problems of lost messages, or messages arriving in the wrong order, the OASIS
organization has proposed the WS-ReliableMessaging specification. This specification defines
an interoperable protocol for transmitting messages in a reliable manner between a single
source and a single destination. Messages can pass through any number of intermediary sites
en route to the destination. WCF provides an implementation of this protocol that attempts to
ensure that all messages sent from the source will arrive at the destination without duplication
(in other words, they will arrive exactly once). The protocol implemented by the WCF runtime
also attempts to detect missing messages and resend them if possible. At worst, the WCF run-
time will throw an exception if a message disappears irrevocably. This means that if a message
is lost, either the client application or the service, or both, will be made aware of the problem
and can take corrective action.

WCF optionally supports sequencing, ensuring that messages are processed by the destina-
tion in the order in which they were sent. Using this protocol, messages might arrive in a dif-
ferent order, but the WCF infrastructure can buffer them to present them to a service in the
correct sequence.

More Info  For detailed information about the WS-ReliableMessaging specification, see the
“WS-ReliableMessaging Specification Index Page” page on the Microsoft Web site at http://
msdn.microsoft.com/en-us/library/ms951271.aspx.

It is important to understand that reliable messaging as specified by the WS-ReliableMessaging
specification does not imply any form of message persistence or message queuing. The pro-
tocol requires that both the source application sending the message and the destination
application receiving the message are running at the same time. If it is not possible to receive
messages, either because the destination application is not running or because of a network
failure, the source application will receive an error. In other words, when using reliable mes-
saging, the WCF runtime will guarantee to deliver a message if it can, or it will alert the sender
if it cannot—WCF will not silently lose messages.

More Info  Message queuing implements its own form of reliable messaging through the use
of transactions and message durability rather than the WS-ReliableMessaging protocol. You will
learn about using message queues as a transport mechanism for WCF messages in Chapter 12,
“Implementing One-Way and Asynchronous Operations.”

Download from Wow! eBook <www.wowebook.com>

	 Chapter 10  Implementing Reliable Sessions	 381

Implementing Reliable Sessions with WCF
Configuring reliable messaging with a WCF service is straightforward. The WS-ReliableMessaging
protocol generates a number of additional messages used by the WCF runtime on the client
and service to coordinate their activities. It is instructive to enable tracing, because that can
help you understand how it all works.

Enable Reliable Sessions in the ShoppingCartService Service and Client Application

	 1.	 Using Visual Studio, open the solution file ShoppingCart.sln located in the Microsoft
Press\WCF Step By Step\Chapter 10\ShoppingCartService folder (within your Documents
folder).

This solution contains a copy of the completed ShoppingCartService, and Shopping
CartHost and ShoppingCartClient projects from Chapter 9, “Supporting Transactions.”
Remember that the ShoppingCartService service exposes a TCP endpoint and requires
the client application to create a transaction to maintain the integrity of the database.

Note  This set of exercises uses the NetTcpBinding binding and transport-level security. As
such, you can easily examine the messages and headers generated by the reliable messag-
ing protocol. Reliable messaging works with the WSHttpBinding over an HTTP endpoint with
message-level security in exactly the same way. However, in this configuration the messages
are intermingled with other messages negotiating the various security tokens, and the mes-
sages also contain encrypted data and additional headers making it more difficult to pick
out the elements associated with reliable messaging.

	 2.	 In Solution Explorer, edit the App.config file for the ShoppingCartHost project by using
the Service Configuration Editor.

	 3.	 In the Configuration pane, expand the Bindings folder, and then select the Shopping
CartServiceNetTcpBindingConfig binding configuration. In the right pane, scroll down
to display the ReliableSession Properties section, and then set the Enabled property to
True. Verify that the Ordered property is also set to True, and note that the Inactivity
Timeout property is set to 10 minutes (00:10:00) by default.

The WCF runtime uses the Ordered property to determine whether to pass messages to
the service in the same order that the client sent them; this is an optional but useful fea-
ture of reliable messaging. The WCF runtime will wait for the time period specified by
the InactivityTimeout property between messages before deciding that something has
gone wrong and messages have gone missing. If this timeout expires, the WCF runtime
sends a “sequence terminated” SOAP fault message to the client application (which it
might not receive if the client application is no longer running or communications have
failed) and then terminates the session, rolling back any changes that have occurred if
the service uses transactions.

Download from Wow! eBook <www.wowebook.com>

382	 Windows Communication Foundation 4 Step by Step

Note  If you are using the NetTcpBinding or NetNamedPipeBinding bindings you must also
verify that the TransferMode property in the General section of the binding configuration
page is set to Buffered.

Setting the TransferMode property to Buffered specifies that the WCF runtime buffers com-
plete messages in memory before passing them to the service or sending out responses.
The TCP and named pipe transports also support streaming, so you can send large mes-
sages as a series of small chunks. In streaming mode, the receiver does not have to wait
for the sender to finish transmitting the message before it can start processing it. Using
streaming removes the need for holding large messages in memory and can improve
scalability. However, the implementation of reliable sessions in WCF requires that an entire
message has been received before it can be processed, so buffering is mandatory.

If you are using the WSHttpBinding binding, messages are automatically buffered (the
HTTP protocol does not support streaming).

Incidentally, transactions and message-level security also require WCF to buffer messages
before transmitting them.

You will examine the messages generated by the WS-ReliableMessaging protocol, so the
next step is to configure tracing.

	 4.	 In the Configuration pane, click the Diagnostics folder. In the Diagnostics pane, click
EnableMessageLogging.

	 5.	 In the Configuration pane, expand the Diagnostics folder, and then click the Message
Logging node. In the Message Logging pane, set the LogEntireMessage property to True
and set the LogMalformedMessages property to False.

	 6.	 In the Configuration pane, expand the Listeners folder, and then click the ServiceModel
MessageLoggingListener node. In the right pane, change the path in the InitData prop-
erty to refer to the file app_messages.svclog in the Microsoft Press\WCF Step By Step\
Chapter 10 folder.

	 7.	 Save the configuration file, and then exit the Service Configuration Editor.

	 8.	 The binding configuration for the client endpoint must match the properties used by
the service endpoint.

Edit the App.config file for the ShoppingCartClient project by using the Service Con-
figuration Editor. Display the properties for the ShoppingCartClientNetTcpBindingConfig
binding configuration in the Bindings folder, and set the Enabled property in the Reliable
Session Properties section to True. Verify that the Ordered property is set to True, and
the InactivityTimeout property is set to 10 minutes (00:10:00).

Reliable messaging in the client application can cause a timeout and throw an exception
if it doesn’t receive any messages within the period specified by the InactivityTimeout
property. However, a client application normally only receives messages in response to
a request (in Chapter 16, “Using a Callback Contract to Publish and Subscribe to Events,”

Download from Wow! eBook <www.wowebook.com>

	 Chapter 10  Implementing Reliable Sessions	 383

you will see that it is also possible for a client application to receive messages at other
times). It is possible for a client application to become quiescent on the network but
remain active even if it is not sending messages to a service (it might be busy displaying
data, or gathering user input, for example).

Similarly, as mentioned earlier, a WCF service can timeout if it doesn’t receive any mes-
sages within the period specified by its own InactivityTimeout property. To prevent this
from happening unnecessarily, the WCF runtime on the client computer periodically
sends a “keep alive” message to the service if the client application has not sent any
messages recently. The point at which this happens is approximately half the value of
the InactivityTimeout period specified in the client application configuration file. This
“keep alive” message actually serves a dual purpose: it lets the service know the client
application is still running, and it probes to make sure that the service is still accessible.
The WCF runtime on the client computer expects the WCF runtime on the server com-
puter to reply with an acknowledgment message; if it doesn’t receive that acknowledg-
ment within the period specified by the InactivityTimeout property, the WCF runtime
on the client application assumes that the service has died and generates a “sequence
terminated” SOAP fault message that the client application should handle.

	 9.	 Save the configuration file, and then exit the Service Configuration Editor.

Examine the Trace Messages Generated by the Client Application

	 1.	 Start the solution without debugging. In the ShoppingCartClient console window that is
displaying the message “Press ENTER when the service has started,” press Enter.

The client application executes as before, displaying the shopping cart containing two
water bottles and a mountain seat assembly, followed by the “Goods purchased” mes-
sage. Press Enter to close the client application console window. In the host application
console window, press Enter to stop the service and close the application.

	 2.	 Start the Service Trace Viewer (in the Windows Start menu, click All Programs, click
Microsoft Visual Studio 2010, click Microsoft Windows SDK Tools, and then click Service
Trace Viewer).

	 3.	 In the Service Trace Viewer, open the app_messages.svclog file in the Microsoft Press
\WCF Step By Step\Chapter 10 folder.

	 4.	 In the left pane, click the Message tab, and then click the first message. In the lower-
right pane, click the Message tab. Examine the contents of this message; it should look
like the following text (although your MessageID and Identifier properties will be differ-
ent from those shown here):

<s:Envelope ...>

 <s:Header>

 <a:Action s:mustUnderstand="1">

 http://schemas.xmlsoap.org/ws/2005/02/rm/CreateSequence</a:Action>

Download from Wow! eBook <www.wowebook.com>

384	 Windows Communication Foundation 4 Step by Step

 <a:MessageID>urn:uuid:fe0e4bbe-4eeb-4e85-85f0-46a133195754</a:MessageID>

 <a:To s:mustUnderstand="1">net.tcp://localhost:8080/ShoppingCartService</a:To>

 </s:Header>

 <s:Body>

 <CreateSequence xmlns="http://schemas.xmlsoap.org/ws/2005/02/rm">

 <AcksTo>

 <a:Address>http://www.w3.org/2005/08/addressing/anonymous</a:Address>

 </AcksTo>

 <Offer>

 <Identifier>urn:uuid:e170f8ff-4715-4ace-bc81-76a2a6e63245</Identifier>

	 </Offer>

 </CreateSequence>

 </s:Body>

</s:Envelope>

The WS-ReliableMessaging protocol organizes messages in a conversation between a
client application and a service by associating them with a unique identifier known as
a sequence number. The first message in the protocol is this CreateSequence message,
sent by the WCF runtime on the client computer. This message initiates the reliable ses-
sion. All messages in the same reliable session must share the same set of identifiers. The
body of this message contains a unique identifier generated by the WCF runtime (high-
lighted in bold in the previous example) that the service should use when responding to
the client application.

	 5.	 In the left pane, click the second message, and then examine the contents of this mes-
sage in the lower-right pane. It should look like this:

<s:Envelope ...>

 <s:Header>

 <a:Action s:mustUnderstand="1">

 http://schemas.xmlsoap.org/ws/2005/02/rm/CreateSequenceResponse</a:Action>

 <a:RelatesTo>urn:uuid:fe0e4bbe-4eeb-4e85-85f0-46a133195754</a:RelatesTo>

 <a:To s:mustUnderstand="1">http://www.w3.org/2005/08/addressing/anonymous</a:To>

 </s:Header>

 <s:Body>

 <CreateSequenceResponse xmlns="http://schemas.xmlsoap.org/ws/2005/02/rm">

 <Identifier>urn:uuid:efae0f85-cd33-438e-a8f1-bc6e0818de1e</Identifier>

 <Accept>

 <AcksTo>

 <a:Address>net.tcp://localhost:8080/ShoppingCartService</a:Address>

 </AcksTo>

 </Accept>

 </CreateSequenceResponse>

 </s:Body>

</s:Envelope>

This is the CreateSequenceResponse message, sent back to the client by the WCF run-
time on the service computer. The RelatesTo header specifies the same message ID
generated by the WCF runtime on the client computer for the CreateSequence message
(so the WCF runtime for the client application knows to associate this response message
with the original CreateSequence message; it is possible for a client application to start
multiple reliable sessions simultaneously). Note that the body of this message contains

Download from Wow! eBook <www.wowebook.com>

	 Chapter 10  Implementing Reliable Sessions	 385

a new identifier (shown in bold in the previous example). The WCF runtime on the client
must provide this identifier when sending further messages to the service.

	 6.	 Examine the contents of the third message. It should look like this (some elements have
been removed for clarity):

<s:Envelope ...>

 <s:Header>

 <r:AckRequested>

 <r:Identifier>urn:uuid:efae0f85-cd33-438e-a8f1-bc6e0818de1e</r:Identifier>

 </r:AckRequested>

 <r:Sequence s:mustUnderstand=“1”>

 <r:Identifier>urn:uuid:efae0f85-cd33-438e-a8f1-bc6e0818de1e</r:Identifier>

 <r:MessageNumber>1</r:MessageNumber>

 </r:Sequence>

 ...

 </s:Header>

 <s:Body>

 <AddItemToCart xmlns="http://adventure-works.com/2010/06/04">

 <productNumber>WB-H098</productNumber>

 </AddItemToCart>

 </s:Body>

</s:Envelope>

This is the first AddItemToCart message sent by the client application. The key thing to
notice in this message is the <Sequence> block, shown in bold. The identifier in this
block is the same as the identifier returned in the CreateSequenceResponse message by
the service. All messages transmitted from the client application to the service partici-
pating in the reliable session must include this information in the SOAP header. They
should also include a message sequence number—in this case message “1”—which
enables the WCF runtime on the server computer to ensure that messages are passed
to the service in the correct order. You should also notice that the SOAP header includes
an <AckRequested> block. When the WCF runtime on the server computer receives this
message, it must send an acknowledgment message back to the client computer so that
the client knows it has been received.

	 7.	 Examine the contents of the fourth message. It should look like this:

<s:Envelope ...>

 <s:Header>

 <r:SequenceAcknowledgement>

 <r:Identifier>urn:uuid:efae0f85-cd33-438e-a8f1-bc6e0818de1e</r:Identifier>

 <r:AcknowledgementRange Lower="1" Upper="1"></r:AcknowledgementRange>
 <netrm:BufferRemaining xmlns:netrm=

 "http://schemas.microsoft.com/ws/2006/05/rm">8</netrm:BufferRemaining>

 </r:SequenceAcknowledgement>

 <a:Action s:mustUnderstand="1">http://schemas.xmlsoap.org/ws/2005/02/rm/

 SequenceAcknowledgement</a:Action>

 <a:To s:mustUnderstand="1">http://www.w3.org/2005/08/addressing/anonymous</a:To>

 </s:Header>

 <s:Body></s:Body>

</s:Envelope>

Download from Wow! eBook <www.wowebook.com>

386	 Windows Communication Foundation 4 Step by Step

This is the acknowledgment message sent from the WCF runtime on the server com-
puter back to the WCF runtime on the client computer. The data in the <Sequence
Acknowledgement> block indicates that the service has verified that it has received
the AddItemToCartMessage; it has acknowledged receipt of a message with the same
identifier and sequence number included in the AddItemToCart message. Note that
the AcknowledgementRange element indicates the sequence numbers of the messages
that the service has successfully received to date. Some of these messages might have
already been acknowledged, but the service includes them as a failsafe in case the pre-
vious acknowledgment messages were not received by the client (the protocol does
not go as far as sending an acknowledgment in response to acknowledgment mes-
sages). The client can discard acknowledgments for messages that have already been
acknowledged.

	 8.	 Look at the fifth message:

<s:Envelope ...>

 <s:Header>

 <r:AckRequested>

 <r:Identifier>urn:uuid:e170f8ff-4715-4ace-bc81-76a2a6e63245</r:Identifier>

 </r:AckRequested>

 <r:Sequence s:mustUnderstand=“1”>

 <r:Identifier>urn:uuid:e170f8ff-4715-4ace-bc81-76a2a6e63245</r:Identifier>

 <r:MessageNumber>1</r:MessageNumber>

 </r:Sequence>

 <a:Action s:mustUnderstand="1">

 http://adventure-works.com/2010/06/04/ShoppingCartService/AddItemToCartResponse

 </a:Action>

 ...

 </s:Header>

 <s:Body>

 <AddItemToCartResponse xmlns="http://adventure-works.com/2010/06/04">

 <AddItemToCartResult>true</AddItemToCartResult>

 </AddItemToCartResponse>

 </s:Body>

</s:Envelope>

This is the AddItemToCartResponse message, indicating that the service successfully
added the specified item to the shopping cart. Notice that this message requires the
client to acknowledge its receipt; that the identifier used in the <Sequence> block is
the identifier specified by the client at the start of the session; and that this is also mes-
sage “1” (in the opposite direction from the client message). If you examine the sixth
message, you will see that it is the acknowledgment for this AddItemToCartResponse
message from the client, sent back to the service.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 10  Implementing Reliable Sessions	 387

	 9.	 Examine messages 7 through 14. You can see that things settle down at this point,
and the conversation consists of request messages sent by the client application
and the response messages sent back from the service. These messages all contain a
<Sequence> block with the appropriate identifier. Each message also has a message
number, which is incremented for each new message in each direction (the next mes-
sage in the sequence sent from the client application to the service is message “2,” and
the response message sent by the service back to the client is also message “2”).

Note  If it helps, think of the request/response messages as a series of two synchronized
one-way conversations. Each message traveling in one direction forms part of a sequence,
and the messages in this sequence are numbered starting at 1. The messages traveling in
the opposite direction form part of a different sequence and are also numbered starting at
1. The message numbers do not tie messages together; response message 1 might or might
not be the response for request message 1.

As a further optimization mechanism, after the initial request/response messages, the
message acknowledgments are incorporated into the next request or response mes-
sages sent by the client application or service—in other words, the header in a message
being sent contains the acknowledgment for the previous message received.

Note  The <SequenceAcknowledgement> block in message four and messages eight through
fourteen also includes a BufferRemaining element. As already mentioned, to handle mes-
sages arriving out of order, the WCF runtime buffers them before handing them off to the
application. If a message with a high message number is received when the runtime was
expecting a lower message number, the higher-numbered message will be held in a buffer
until the lower-numbered message has been received and passed to the application.

The WCF runtime provides a finite number of buffers for a session. If a client application
sends a large volume of messages to a service and many arrive out of order, the WCF
runtime on the server computer may run out of buffers and start to drop messages (they
are resent when more space is available). Therefore, when acknowledging a message,
the WCF runtime also provides the number of free buffers it currently has in the Buffer
Remaining element. The WCF runtime on the client computer can examine this value and
suspend sending messages if this number (minus the number of messages the client has
sent but have not yet been acknowledged—these are still in transit) drops below a certain
threshold (currently 2 by default).

As the WCF runtime on the server receives the missing messages it can pass them to the
service and hopefully free up some of the buffers. Subsequent acknowledgment messages
from the service should indicate that more buffer space is available, and the WCF runtime
on the client computer can resume sending messages. This is a WCF-specific feature—if
an application built using another technology does not understand this element, it will be
ignored.

Download from Wow! eBook <www.wowebook.com>

388	 Windows Communication Foundation 4 Step by Step

	 10.	 Examine message 15. It should look like this:

<s:Envelope ...>

 <s:Header>

 <r:SequenceAcknowledgement>

 <r:Identifier>urn:uuid:e170f8ff-4715-4ace-bc81-76a2a6e63245</r:Identifier>

 <r:AcknowledgementRange Lower="1" Upper="5"></r:AcknowledgementRange>

 <netrm:BufferRemaining xmlns:netrm=

 "http://schemas.microsoft.com/ws/2006/05/rm">8</netrm:BufferRemaining>

 </r:SequenceAcknowledgement>

 <r:Sequence s:mustUnderstand="1">

 <r:Identifier>urn:uuid:efae0f85-cd33-438e-a8f1-bc6e0818de1e</r:Identifier>

 <r:MessageNumber>6</r:MessageNumber>

 <r:LastMessage></r:LastMessage>

 </r:Sequence>

 <a:Action s:mustUnderstand=“1”>

 http://schemas.xmlsoap.org/ws/2005/02/rm/LastMessage

 </a:Action>

 <a:To s:mustUnderstand="1">net.tcp://localhost:8080/ShoppingCartService</a:To>

 </s:Header>

 <s:Body></s:Body>

</s:Envelope>

This is a LastMessage message. It is sent by the WCF runtime on the client computer to
indicate that this is the final message in the sequence. This message is sent when the
client application starts to close the session. The WCF runtime on the server computer
acknowledges this message (see message 16) and then sends its own LastMessage mes-
sage to indicate that it has also finished (message 17). The WCF runtime on the client
computer sends an acknowledgment (message 19).

	 11.	 Examine message 18:

<s:Envelope ...>

 <s:Header>

 <a:Action s:mustUnderstand="1">http://schemas.xmlsoap.org/ws/2005/02/rm/

 TerminateSequence</a:Action>

 ...

 </s:Header>

 <s:Body>

 <TerminateSequence xmlns=“http://schemas.xmlsoap.org/ws/2005/02/rm”>

 <Identifier>urn:uuid:e170f8ff-4715-4ace-bc81-76a2a6e63245</Identifier>

 </TerminateSequence>

 </s:Body>

</s:Envelope>

This is a TerminateSequence message. The WCF runtime on the server computer sends
this message to indicate that it is not going to send any more messages using the
sequence specified by the identifier and that the WCF runtime on the client computer
can release any resources associated with this session. Notice that the server sends this
message without necessarily waiting for the acknowledgment of the LastMessage mes-
sage from the client (which, ironically, is why the messages appear to be out of order).

Download from Wow! eBook <www.wowebook.com>

	 Chapter 10  Implementing Reliable Sessions	 389

The WCF runtime on the client computer also sends a TerminateSequence message to
the server (message 20), identifying the sequence used by the client to send messages
to the server. At the end of this exchange, the session terminates.

	 12.	 Close the Microsoft Service Trace Viewer and delete the trace file.

These exercises should make two things apparent to you:

■■ It is easy to implement reliable messaging with WCF. You need only set a few binding
configuration properties. You don’t need to write any additional code; it is all transpar-
ent to your client applications and services.

■■ Reliable sessions can generate a significant amount of additional network traffic, both in
terms of the extra protocol messages and the increased size of each message. The more
messages a client application sends in a session, the smaller this overhead becomes,
proportionally. However, if you use short sessions (for example, comprising a single
request and response), each request sent by a client application establishes a new reli-
able session that is thrown away after a response has been received. This is expensive, so
in this situation you should consider very carefully whether you really need reliable mes-
saging or whether you should rework the client application to make more efficient use
of reliable sessions.

It was mentioned at the start of this chapter that reliable sessions have a dependency on reli-
able messaging. However, the converse is not true, and you can employ reliable messaging
without implementing sessions. What this means is that although reliable messaging works
best with the PerSession instance context mode, it also functions with the PerCall service
instance context mode. In the PerCall instance context mode, even though the WCF runtime
creates a new service instance for each request, it actually creates the sequence for the reliable
messaging conversation when the client application makes the first call to the service and
only terminates the sequence when the client closes the connection and the conversation ends.

You should also be aware that not all binding configurations support the WS-ReliableMessaging
protocol. The ones that do are netTcpBinding, wsDualHttpBinding (this binding always uses
reliable messaging; you cannot disable it), wsFederationHttpBinding, and wsHttpBinding. The
MSMQ bindings (msmqIntegrationBinding and netMsmqBinding) implement their own version
of reliable messaging that is based on message persistence and queuing technologies rather
than WS-ReliableMessaging. The common bindings that do not support reliable messaging
include basicHttpBinding, netNamedPipeBinding, and netPeerTcpBinding.

Note  You can also create custom bindings that support reliable sessions. You will see how to define
a custom binding later in this chapter, and explore that further in Chapter 11, “Programmatically
Controlling the Configuration and Communications.”

Download from Wow! eBook <www.wowebook.com>

390	 Windows Communication Foundation 4 Step by Step

The DeliveryRequirements Attribute
When you enabled reliable messaging for the ShoppingCartService service, you saw that
the ReliableSession Properties section in the Service Configuration Editor included a
property named Ordered, which was set to true. This property guaranteed that messages
will be processed by the service in the order in which they were sent by the client, and
the service host will buffer them if necessary if it receives any messages out of order. If
you set the Ordered property to false, the service will still implement reliable messaging,
but will no longer make the guarantee of ordered delivery (this is useful if the service is
very busy, but only has a finite amount of memory available for buffering messages).

If you absolutely insist that the service provides ordered delivery, you can apply the
DeliveryRequirements attribute either to the class that implements the service or to
the service contract, and set the RequireOrderedDelivery property to true, as shown in
the following code example:

[DeliveryRequirements(RequireOrderedDelivery=true)]

public class ShoppingCartServiceImpl : IShoppingCartService

{

 ...

}

When you specify this attribute, the service must be deployed with a binding configura-
tion that implements ordered delivery; otherwise, it will fail to start and the service host
will throw an InvalidOperationException exception.

Detecting and Handling Replay Attacks
In Chapter 4, “Protecting an Enterprise WCF Service,” you learned a little about replay attacks.
In a replay attack, a hacker intercepts and stores messages flowing over the network and then
sends them at some time in the future. At best, this can become a nuisance if, for example, a
hacker repeatedly replays the same intercepted purchase order sent by a genuine customer
to an online bookstore; the bookstore may receive hundreds of orders and send the books to
the customer who has not ordered them. At worst, it can lead to large-scale fraud; consider an
attacker intercepting a request to credit his bank account and then repeatedly replaying that
message to the bank’s servers.

Using reliable sessions can help to mitigate simple replay attacks, because each message must
provide a valid sequence identifier and a unique message number. When the session has com-
pleted, the sequence identifier becomes invalid, so any subsequent attempt to replay the mes-
sage should be rejected by the receiver. However, consider the following hypothetical scenario:
if a session is long-running, it might be possible for an attacker to edit the <Sequence> block

Download from Wow! eBook <www.wowebook.com>

	 Chapter 10  Implementing Reliable Sessions	 391

in an intercepted message, modify the message number, set it to some value higher than the
message that was received, and then forward this message to the service if the session is still
active. When the application hosting the service receives this message, if no message with this
number has yet been received, the host will buffer it and then pass it to the service when all
the intermediate messages have been received. When a genuine message from the client with
that message number is subsequently received, the genuine message will be rejected. How
can you handle this situation?

You can configure transport-level security to encrypt messages as they traverse the network
from machine to machine. Additionally, many implementations of transport-level security
include automatic replay detection of packets at the transport layer. But remember that trans-
port-level security operates on a point-to-point basis, and when a service receives the message,
it has unrestricted access to its contents. If the service is expected to forward the request on
to a service running elsewhere, it can modify the message before it does so. The usual way to
protect data, if you cannot trust any intermediate services, is to implement message-level secu-
rity. However, message-level security is predominantly concerned with protecting the body of
a message rather than the data in message headers, which is where the sequence identifiers
and message numbers are held.

More Info  Review Chapter 4, “Protecting an Enterprise WCF Service,” and Chapter 5, “Protecting
a WCF Service over the Internet,” for more information about implementing message-level security
with WCF.

So, to prevent a reply attack, the receiver requires a more secure mechanism than simple
sequence identifiers and message numbers that uniquely identify messages. Fortunately, WCF
provides just such a mechanism in the replay detection protocol.

Configuring Replay Detection with WCF
When you enable replay detection, the WCF runtime generates a random, unique, signed,
time-stamped identifier for each message. These identifiers are referred to as nonces. Upon
receiving a message, a service can use the signature to verify that the nonce has not been
corrupted and extract and examine the timestamp to ascertain that the message was sent
reasonably recently (the service can allow for a certain amount of clock-skew between com-
puters and should also recognize that it takes some time for data to physically traverse the
network from the client application). The service can then save the nonce in a cache. When
another message is received, the service can retrieve the nonce from the message header. If it
finds a matching nonce in its cache then the new message is a copy of an earlier message and
should be discarded. If it is not, the service can process the message and add the new nonce
to the cache.

Download from Wow! eBook <www.wowebook.com>

392	 Windows Communication Foundation 4 Step by Step

The WCF security channel implements replay detection by default, although the relevant
properties for configuring it are not immediately visible when using the standard WCF bind-
ings. However, it is quite simple to create a custom binding that makes them available. You
will adopt this approach in the following exercises.

Create a Custom Binding for the ShoppingCartService Service

	 1.	 In Visual Studio, edit the App.config file for the ShoppingCartHost project by using the
Service Configuration Editor.

	 2.	 In the Configuration pane, click the Bindings folder. In the right pane, click New Binding
Configuration. In the Create A New Binding dialog box, select customBinding, and
then click OK.

	 3.	 In the right pane, change the Name property of the binding configuration to
ShoppingCartServiceCustomBindingConfig.

If you recall from Chapter 2, “Hosting a WCF Service,” the WCF runtime creates a chan-
nel stack for sending and receiving messages. Incoming messages arrive at a particular
address (such as a port or a URL) using an appropriate transport (such as TCP or HTTP).
When you host a service, the WCF runtime “listens” for incoming request messages sent
by client applications to the specified address by using a transport channel. Incoming
messages pass through the transport channel to an encoding channel, which parses the
message. The WCF runtime can then invoke the relevant operation in the service using
the information in this parsed data. Outgoing response messages are encoded by the
encoding channel (a message can be encoded as text, or as binary data) before being
passed to the transport channel for transmission back to the client application.

A channel stack must always have at least these two channels: a transport channel and
an encoding channel. When you create a new custom binding, the Service Configuration
Editor automatically adds elements for using the HTTP transport and text encoding.
You have been using the TCP transport in previous exercises in this chapter, so you will
change the transport channel accordingly.

	 4.	 In the lower-right pane, select the httpTransport stack element, click Remove, and then
click the Add button. In the Adding Binding Element Extension Sections dialog box,
select tcpTransport then click Add.

A point worth emphasizing from Chapter 2 is that the order of the channels in the chan-
nel stack is important. The transport channel must always be the final item, and conven-
tionally, the encoding channel resides immediately above the transport channel. Verify
that the tcpTransport element is in position 2 in the list and that the textMessageEncoding
element is in position 1. If the positions differ, use the Up and Down buttons to swap
them.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 10  Implementing Reliable Sessions	 393

	 5.	 Click the Add button in the lower-right pane again. In the Adding Binding Element
Extension Sections dialog box, select the security binding extension element, and then
click Add. Use the Up and Down buttons to place the security element in position 1 at
the top of the stack, above the textMessageEncoding element.

	 6.	 In the Configuration pane, click the security node underneath the ShoppingCartService
CustomBindingConfig node. In the right pane, set the AuthenticationMode property to
SecureConversation. This mode implements the protocol defined by the WS-Secure
Conversation specification to establish a secure session between the service and client
applications (see the sidebar that follows this exercise for details).

	 7.	 In the right pane, click the Service tab. Verify that the DetectReplays property is set to
True.

	 8.	 Examine the ReplayCacheSize property.

When implementing replay detection, the WCF runtime on the server computer will
cache nonces in memory. The value of this property determines the maximum amount
of memory it will use, specified as a number of cached nonces. When this limit is
reached, the oldest nonce is removed from the cache before a new one is added. The
default value (900000) should be sufficient for most cases, but you might want to
consider reducing it if memory is at a premium. However, don’t make it so small that
nonces are discarded too quickly; doing so can render the service vulnerable to replay
attacks again.

	 9.	 Examine the ReplayWindow and MaxClockSkew properties.

The ReplayWindow property specifies the duration for which nonces are considered
valid (five minutes by default). If the timestamp in a received nonce is outside the time
window specified here, it is discarded as being too old. However, WCF recognizes that
the system clock on different computers might not be completely synchronized. To
compensate, you can use the MaxClockSkew property to specify the maximum clock
difference to allow (again, five minutes by default). It is also possible that the timestamp
for a nonce could appear to be a short time in the future if the clock on the server com-
puter is slower, so the MaxClockSkew property allows the service to accept nonces with
a future timestamp—provided they are within the specified range.

Note  You can use the security custom binding element to configure replay detection for
client applications as well, by using the properties in the Client tab.

	 10.	 In the Configuration pane, click the ShoppingCartServiceCustomBindingConfig node.

Download from Wow! eBook <www.wowebook.com>

394	 Windows Communication Foundation 4 Step by Step

The ShoppingCartService service uses transactions and reliable sessions, so you must add
channels that implement these features, as follows:

❏❏ In the lower-right pane, click Add. In the Adding Binding Element Extension Sections
dialog box, select the reliableSession binding extension element, and then click Add.

❏❏ Repeat this process and add the transactionFlow binding extension element to the
binding.

❏❏ Rearrange the channel stack so that the transactionFlow element is in position 1,
the reliableSession element is in position 2, the security element is in position 3,
the textMessageEncoding element is in position 4, and the tcpTransport element is
in position 5, as shown in the following image (this is the recommended order for
these channels):

	 11.	 In the Configuration pane, expand the ShoppingCartService.ShoppingCartServiceImpl
service in the Services folder, right-click the Endpoints folder, and then click New Service
Endpoint. In the right pane, set the properties of this endpoint using the values in this
table:

Property Value

Name ShoppingCartServiceCustomEndpoint

Address net.tcp://localhost:8090/ShoppingCartService

(Note: This address specifies port 8090, to avoid clashing with the
service listening on port 8080)

Binding customBinding

BindingConfiguration ShoppingCartServiceCustomBindingConfig

Contract ShoppingCartService.IShoppingCartService

	 12.	 Save the file, and then exit the Service Configuration Editor.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 10  Implementing Reliable Sessions	 395

The WS-SecureConversation Specification
The WS-SecureConversation specification is yet another specification developed by
members of OASIS. It allows two participants (a service and a client application) to
establish and share a security context for exchanging multiple messages (a conversation)
in a secure and optimal manner without the need to include comprehensive security
credential information in every message. Participants exchange and validate credentials
at the start of the session, and then negotiate security tokens derived from the autho-
rized credentials. Subsequent messages in the conversation contain these derived tokens
rather than a complete set of credentials as a means for the recipient to authenticate
the source. The process of validating these derived tokens is faster than fully authenti-
cating each message from the original set of credentials.

The WS-SecureConversation specification builds on other WS-* specifications, such as
WS-Security, so you can create a security context based on a variety of authentication
and encryption mechanisms, as described in Chapter 4.

For detailed information about the WS-SecureConversation specification, see the “Web
Services Security Specifications Index Page” page on the Microsoft Web site at http://
msdn.microsoft.com/en-us/library/ms951273.aspx.

You can now add a corresponding binding to the client application and then configure the
client to use this binding.

Create a Custom Binding for the ShoppingCartClient Application

	 1.	 In Visual Studio, edit the App.config file for the ShoppingCartClient project by using the
Service Configuration Editor.

	 2.	 In the Configuration pane, add a new customBinding binding configuration to the Bind-
ings folder and set the Name property to ShoppingCartClientCustomBindingConfig.

	 3.	 Remove the httpTransport element and replace it with a tcpTransport element.

	 4.	 Add a security element and set the AuthenticationMode property of this security ele-
ment to SecureConversation.

	 5.	 Add a reliableSession element and a transactionFlow element to the custom binding.

	 6.	 Rearrange the channel stack so that the transactionFlow element is in position 1, the
reliableSession element is in position 2, the security element is in position 3, the text
MessageEncoding element is in position 4, and the tcpTransport element is in position 5.

Download from Wow! eBook <www.wowebook.com>

396	 Windows Communication Foundation 4 Step by Step

	 7.	 In the Configuration pane, add a new endpoint to the Endpoints folder under the Client
folder. Set the properties for this endpoint using the following values:

Property Value

Name CustomBinding_IShoppingCartService

Address net.tcp://localhost:8090/ShoppingCartService

Binding customBinding

BindingConfiguration ShoppingCartClientCustomBindingConfig

Contract ShoppingCartClient.ShoppingCartService.ShoppingCartService

	 8.	 Save the file, and then exit the Service Configuration Editor.

	 9.	 In Visual Studio, open the Program.cs file for the ShoppingCartClient project in the
Code And Text Editor window. In the Main method, change the statement that creates
the proxy object to reference the CustomBinding_IShoppingCartService endpoint, as
shown in bold in the following:

static void Main(string[] args)

{

 ...

 try

 {

 // Connect to the ShoppingCartService service

 ShoppingCartServiceClient proxy = new

 ShoppingCartServiceClient("CustomBinding_IShoppingCartService");

 ...

 }

 ...

}

	 10.	 Start the solution without debugging. In the ShoppingCartClient console window that’s
displaying the message “Press ENTER when the service has started,” press Enter.

The client application executes exactly as before, except that this time it is using the
custom binding, with replay detection enabled, to communicate with the Shopping
CartService service.

	 11.	 Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

When you run the client application, you may observe that there is a small but noticeable
delay before it displays the results of the first response message received from the service. If
you examine the trace file for the service by using the Service Trace Viewer, you can see why
this is the case. The secure conversation protocol generates a significant number of messages
to establish the security context. In addition, the body of each request message sent by the

Download from Wow! eBook <www.wowebook.com>

	 Chapter 10  Implementing Reliable Sessions	 397

client application, and the corresponding response messages (the messages in the adventure-
works.com namespace) are signed, encrypted, and include nonce information. So, although
the secure conversation protocol provides a good degree of protection, it comes at a price. If
you are building client applications and services that communicate directly with each other,
point-to-point, then you may find that implementing transport-level security provides a more
efficient solution.

Summary
In this chapter, you configured a WCF service and client application to communicate by
using a reliable session. You have seen how WCF implements the protocol defined by the WS-
ReliableMessaging specification and how it uses sequences, message numbers, and acknowl-
edgment messages to verify that messages have been received and assembled in the correct
order. You have also seen how to create a custom binding that you can use to configure
replay detection.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

399

Chapter 11

Programmatically Controlling
the Configuration and
Communications

After completing this chapter, you will be able to:

■■ Describe the main elements of the WCF Service Model.

■■ Create bindings by using code.

■■ Implement a custom service behavior and add it to a service.

■■ Connect to a service from a client application by using the service contract.

■■ Send messages directly to a service without using a proxy object.

By now, you should have a good understanding of how to create WCF client applications and
services and how to configure them so that they can communicate with each other. A com-
pelling feature of WCF is the ability to perform many of these tasks by using configuration
files. Behind the scenes, the WCF runtime takes this configuration information and uses it to
build an infrastructure that can send and receive messages using specified protocols, encoding
them in the appropriate manner and directing them to the appropriate methods implement-
ing the operations in a service.

There will inevitably be occasions when you need to perform configuration tasks program-
matically, possibly because an application or service needs to adapt itself dynamically
according to its environment without intervention from an administrator. Alternatively, for
security reasons you may not want anyone to be able to modify the configuration for an
application. For example, you might not want an administrator to be able to enable or disable
metadata publishing for a service. Beyond that, it’s instructive to see the sorts of things the
WCF runtime does when it executes your client applications and services. So, in this chapter
you will look at how to create and use bindings in code and how to send and receive messages
programmatically.

The WCF Service Model
WCF provides a comprehensive infrastructure for sending and receiving messages by creat-
ing a number of objects that manage and control the communications. This infrastructure is
extensible, and you can augment it with your own functionality if you need to customize the

Download from Wow! eBook <www.wowebook.com>

400	 Windows Communication Foundation 4 Step by Step

way it works. For example, in Chapter 10, “Implementing Reliable Sessions,” you saw how to
compose the channels provided with WCF into a custom binding. If you have a very specific
requirement, or need to transmit messages using a protocol that has no corresponding chan-
nel in the .NET Framework class library, you can develop your own channel (or buy one from
a third party) and then easily integrate it into your configuration without needing to modify
the code for a service or client application. You can also customize other parts of the WCF
infrastructure, such as the way that WCF maps incoming messages to operations. You will see
some examples of this in Chapter 14, “Discovering Services and Routing Messages.”

More Info  A detailed discussion about creating a custom channel is beyond the scope of this
book. For information about creating custom channels, see the “Developing Channels” page on
the Microsoft Web site at http://msdn.microsoft.com/en-us/library/ms788753.aspx.

For more information about how to add your own functionality to the WCF infrastructure, consult
the topics in the “Extending WCF” section in the documentation provided with Visual Studio (also
available on the Microsoft Web site at http://msdn.microsoft.com/en-us/library/ms733848.aspx).

This section introduces you to some of the main components in the WCF infrastructure, some-
times referred to as the WCF Service Model.

Services and Channels
You can think of a binding as a description of the channels in a channel stack. When a host
application starts a service running, the WCF runtime uses the bindings defined for each end-
point to instantiate a ChannelListener object and a channel stack. A ChannelListener object
connects an endpoint to the transport channel for the channel stack. The WCF runtime creates
a ChannelListener object for each URI on which the service can accept messages. When a
request message arrives at a URI, the corresponding ChannelListener object receives the mes-
sage and passes it to the transport channel at the bottom of the corresponding channel stack.
To the transport channel, a message is nothing more than a stream of bytes; it makes no
attempt to understand the contents of the message. The transport channel passes the mes-
sage to the next channel in the stack, which by convention is an encoding channel.

The purpose of an encoding channel is to parse the incoming request message and convert it
into a format that the channels above it in the channel stack can understand—usually SOAP.
When sending an outgoing response message, the encoding channel converts a SOAP mes-
sage passed in from the channels above it in the stack into a specified format for transmission
by the transport channel. The .NET Framework 4.0 class library provides encoding channels
for converting between SOAP messages and plain text, binary data, and an optimized format
called the Message Transmission Optimization Mechanism, or MTOM. You will learn more
about MTOM in Chapter 13, “Implementing a WCF Service for Good Performance.” The trans-
port and encoding channels are mandatory parts of a binding. Above the encoding channel,

Download from Wow! eBook <www.wowebook.com>

	 Chapter 11  Programmatically Controlling the Configuration and Communications	 401

you can add channels handling reliability, security, transactions, and other non-functional
aspects of SOAP messaging.

Note  The binary encoding channel implements a WCF-specific encoding. You cannot use it to
communicate with non-WCF client applications and services, so you should only use it in situations
where interoperability is not an issue. If you need to transmit data in a binary format in an interop-
erable manner, you should use MTOM, which is an OASIS-approved specification.

Additionally, each transport channel will load a default encoding channel unless you specify one
in the channel stack. The HTTP and HTTPS transport channels load the text encoding channel,
but the TCP channel defaults to using the binary encoding channel.

When an incoming request message reaches the top of the channel stack, a Channel
Dispatcher object takes the message, examines it, and passes it to an EndpointDispatcher
object that invokes the appropriate method in the service, passing the data items in the mes-
sage as parameters to the method. WCF creates ChannelDispatcher and EndpointDispatcher
objects automatically when you use a ServiceHost object to run a service.

Note  It is possible to associate multiple endpoints with the same URI. When a WCF service receives
a message, the ChannelDispatcher object queries the EndpointDispatcher object for each endpoint
in turn to establish which one, if any, can process the message. You will learn more about this pro-
cess in Chapter 14.

When a method implementing an operation in a service completes, the data it returns passes
back through the channel stack to the transport channel where it is transmitted back to the
client application. The WCF runtime on the client builds a structure similar to that used by
the service, but somewhat simpler, because the client does not have to listen for requests or
manage multiple instances of the application the way a service does. The WCF client runtime
creates a ChannelFactory object and uses this object to construct a channel from the binding
definition. The proxy object in the client application is responsible for converting method calls
into outgoing request messages and passing them to the channel for transmission. Incoming
response messages received on the transport channel work their way back up through the
channel stack where the proxy object converts them into the format expected by the client
code and returns them as the results of the original method call.

Behaviors
You can customize the way that components in the WCF infrastructure operate by applying
behaviors. In a configuration file, a behavior contains one or more behavior elements. For
example, the .NET Framework 4.0 provides a number of built-in endpoint behavior elements

Download from Wow! eBook <www.wowebook.com>

402	 Windows Communication Foundation 4 Step by Step

that you can use to modify the way that an endpoint serializes data, how it batches opera-
tions together in a transaction, the specific credentials it uses when sending messages or
receiving messages, and so on.

Behaviors have scope; you can apply them to an entire service, a specific operation, a con-
tract, or an endpoint. An example of a behavior element that applies to an entire service is
serviceDebug. In a configuration file, you can define a service behavior and add the service
Debug behavior element to specify that the service should transmit complete error informa-
tion to the client application when an exception occurs.

Bear in mind that in a configuration file, behaviors can be named or anonymous. Anonymous
behaviors are applied automatically to a service or endpoint, whereas named behaviors are
applied only if they are referenced explicitly by a service or endpoint configuration.

You can also define your own custom behaviors and enable an administrator to reference
them from a configuration file by defining a corresponding behavior element extension class.
You will see an example of a custom service behavior and service behavior element extension
class later in this chapter.

Note  The terminology used by the WCF documentation and the distinction between a behavior
and a behavior element can be a little confusing. In the .NET Framework, a behavior is a class
that implements one of the behavior interfaces (IServiceBehavior, IOperationBehavior, IContract
Behavior, or IEndpointBehavior; these interfaces are described later in this chapter). To enable an
administrator to reference these behavior classes from a configuration file, you can create custom
behavior element extension classes.

In a configuration file, the term “behavior” means a collection of references to one or more
behavior classes, configured by using behavior element extension classes. For example, service
Debug is just a friendly name for the ServiceDebugElement behavior element extension class,
which configures the ServiceDebugBehavior behavior class. You will see later in this chapter how
you can create a behavior element extension class and provide a friendly name for it in a con-
figuration file.

You can also specify behaviors for services, endpoints, operations, and contracts declaratively
by using attributes, or imperatively by adding code that instantiates these items and sets their
properties.

Not all behaviors are configurable through all mechanisms. In particular, the configuration
file for a WCF service does not provide a simple means for an administrator to specify con-
tract and operation behaviors. Behaviors are typically the concern of the developers building
a service rather than an administrator configuring it, and the general rule is that you should

Download from Wow! eBook <www.wowebook.com>

	 Chapter 11  Programmatically Controlling the Configuration and Communications	 403

only be able to change behaviors that are critical to the way in which a service functions (such
as operation and contract behaviors) by applying an attribute or writing code. On the other
hand, service and endpoint behaviors are commonly a matter of administrative policy rather
than implementation strategy, so WCF provides a means for you to apply and configure these
behaviors through the configuration file.

Composing Channels into Bindings
The channels in a channel stack implement the various protocols and specifications required
by the service. The binding used by a client application should correspond to the binding
implemented by the service with which the client application communicates. If a channel is
omitted, substituted for a different channel, or placed in a different position in the channel
stack, it’s possible that either the client application or the service will not be able to interpret
messages correctly, and communications will fail.

In Chapter 2, “Hosting a WCF Service,” you were first introduced to the predefined bindings
in the .NET Framework 4.0, such as basicHttpBinding, ws2007HttpBinding, and netTcpBinding.
These predefined bindings combine channels in configurations that meet the requirements of
many common scenarios. The .NET Framework 4.0 contains classes that correspond to these
bindings in the System.ServiceModel namespace. These classes expose properties with which
you can configure the channels used by these bindings. You can also create your own custom
bindings by combining binding elements and setting the properties of each of these binding
elements to determine exactly which channels the WCF runtime uses.

You build a custom binding by adding binding elements to a CustomBinding object. The
predefined bindings restrict the channels in a binding to various meaningful combinations.
However, when you create a custom binding, you must ensure that you combine binding ele-
ments in a sensible manner. To some extent, the WCF runtime protects you and will throw an
exception if, for example, you try to add two encoding binding elements to a binding. However,
the WCF runtime is not able to perform complete sanity checking of your custom bindings. If
you get it wrong, the client application and service might not understand each other’s mes-
sages, which will consequently cause faults, timeouts, and exceptions.

The order of the binding elements in a custom binding is important. It has been mentioned
before that the transport channel must be at the bottom of the stack, followed by the encod-
ing channel. Microsoft recommends that you layer channels according to the function they
perform. Table 11-1 lists the layers and the channels appropriate to each layer. The class
names for the binding element classes associated with the corresponding channels provided
by the .NET Framework 4.0 in each layer are shown in italics.

Download from Wow! eBook <www.wowebook.com>

404	 Windows Communication Foundation 4 Step by Step

Table 11-1  Recommended Channel Organization

Layer Function Channel Binding Element Class

1 (top) Transaction Flow TransactionFlowBindingElement

2 Reliable Sessions ReliableSessionBindingElement

3 Security AsymmetricSecurityBindingElement, SymmetricSecurityBinding
Element, or TransportSecurityBindingElement, and others created
by factory methods in the SecurityBindingElement class.

4 Stream Upgrades SslStreamSecurityBindingElement or
WindowsStreamSecurityBindingElement

5 Encoding BinaryMessageEncodingBindingElement, MtomMessageEncoding
BindingElement, TextMessageEncodingBindingElement, or
WebMessageEncodingBindingElement

6 (bottom) Transport HttpTransportBindingElement, HttpsTransportBindingElement,
PeerTransportBindingElement, TcpTransportBindingElement,
NamedPipeTransportBindingElement, MsmqTransportBinding
Element, or MsmqIntegrationBindingElement

This table lists the most commonly-used binding elements. There are others, and you will see
some of them later. Most of these binding elements are self-explanatory, but some warrant a
little more explanation.

■■ The SecurityBindingElement class acts as a factory for security binding elements and
exposes methods that you can use to create channels that implement them. You will see
an example of this in the exercise that follows this section.

■■ The AsymmetricSecurityBindingElement and SymmetricSecurityBindingElement classes rep-
resent channels that implement message-level security. The TransportSecurityBindingElement
class represents a channel that implements transport-level security. (For more information
about message-level and transport level-security, refer back to Chapter 4.) However, you are
more likely to use channels for specific scenarios, such as CreateAnonymousForCertificate-
BindingElement, which creates a symmetric binding element that supports anonymous client
authentication and certificate-based server authentication. You can create these channels by
using the factory methods of the SecurityBindingElement class.

■■ Stream upgrades such as the SslStreamSecurityBindingElement and WindowsStream
SecurityBindingElement classes do not actually represent channels but rather objects
that can modify the way in which data is transmitted over the network. You can use
them in conjunction with a transport that supports a stream-oriented protocol, such
as TCP and named pipes. A stream upgrade operates on a stream of data rather than
individual WCF messages. For example, with the WindowsStreamSecurityBindingElement
class, you can specify that data should be encrypted and/or signed before being trans-
mitted. Another example (not currently implemented by the .NET Framework 4.0) would
be to use a streaming upgrade channel that compresses the data using a specified algo-
rithm before transmission.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 11  Programmatically Controlling the Configuration and Communications	 405

When you define a binding in a configuration file, you are not necessarily aware of which
binding elements you are using. For example, when you specify a <security> element, the
“mode” attribute determines whether the WCF runtime uses a message-level security bind-
ing element or a transport-level element. Setting other attributes in the <security> element
enables the WCF runtime to determine exactly which of the many possible security binding
elements it should employ when constructing the channel. When you create a binding pro-
grammatically, you need to be explicit.

That’s the theory. The exercises that follow show how to put some of what you have just read
into action. You will start by implementing a custom binding in code in the ShoppingCart
Service service.

Programmatically Create and Use a Custom Binding in the ShoppingCartService
Service

	 1.	 Using Visual Studio, open the solution file ShoppingCart.sln located in the Microsoft
Press\WCF Step By Step\Chapter 11\ShoppingCartService folder (within your Documents
folder).

This solution contains a slightly modified copy of the ShoppingCartService, and Shopping
CartClient projects from Chapter 10. The ShoppingCartHost project is significantly dif-
ferent though. The binding and service endpoint information in the configuration file
for the ShoppingCartService service has been removed, leaving only the connection string
for the AdventureWorks database. Additionally, the Main method in the Program.cs file in
the ShoppingCartHost project is currently empty.

	 2.	 In Solution Explorer, open the Program.cs file for the ShoppingCartHost project in the
Code And Text Editor window. Add the following using statement to the list at the top
of the file:

using System.ServiceModel.Channels;

The System.ServiceModel.Channels namespace contains the classes defining the various
channels and bindings provided by the WCF.

	 3.	 In the Main method of the Program class, add the following statement shown in bold:

static void Main(string[] args)

{

 CustomBinding customBinding = new CustomBinding();

}

This statement creates a new, empty custom binding object. You will add binding ele-
ments to the custom binding object in the next step.

Download from Wow! eBook <www.wowebook.com>

406	 Windows Communication Foundation 4 Step by Step

Note  If you want to use one of the standard bindings, you can create them in much the
same way. For example, to create a standard HTTP binding object for the ws2007Http
Binding binding configuration, you could use:

WS2007HttpBinding httpBinding = new WS2007HttpBinding();

	 4.	 The ShoppingCartService service implements transactions and requires reliable sessions.
Instantiate the binding elements that correspond to the channels that implement the
transaction and reliable messaging protocols, set their properties, and then add them to
the custom binding, as shown in bold in the following:

static void Main(string[] args)

{

 CustomBinding customBinding = new CustomBinding();

 TransactionFlowBindingElement txFlowBindElement =

 new TransactionFlowBindingElement();

 txFlowBindElement.TransactionProtocol = TransactionProtocol.OleTransactions;

 customBinding.Elements.Add(txFlowBindElement);

 ReliableSessionBindingElement rsBindElement = new ReliableSessionBindingElement();

 rsBindElement.FlowControlEnabled = true;

 rsBindElement.Ordered = true;

 customBinding.Elements.Add(rsBindElement);

}

The transaction flow binding element is configured to implement OLE transactions;
the alternative is to specify WSAtomicTransactionOctober2004 which implements the
WS-AtomicTransactions specification from October 2004, or WSAtomicTransaction11
which implements the more recent version of the specification. Refer back to Chapter 9,
“Supporting Transactions,” for further details.

The reliable sessions binding element enables flow control and ensures that the order of
messages is preserved, as described in Chapter 10, “Implementing Reliable Sessions”.

It is worth emphasizing again that the order in which you add the elements to the cus-
tom binding is important. Binding elements higher up the channel stack must be added
to the custom binding before those that should reside lower down in the stack.

	 5.	 The ShoppingCartService service also needs to implement secure conversations and
replay detection. Use the SecurityBindingElement class to create a SecureConversation-
BindingElement, as follows:

static void Main(string[] args)

{

 ...

Download from Wow! eBook <www.wowebook.com>

	 Chapter 11  Programmatically Controlling the Configuration and Communications	 407

 SecurityBindingElement secBindElement =
 SecurityBindingElement.CreateSecureConversationBindingElement(

 SecurityBindingElement.CreateSspiNegotiationBindingElement());

 secBindElement.LocalServiceSettings.DetectReplays = true;

 customBinding.Elements.Add(secBindElement);

}

The secure conversation protocol uses a handshaking mechanism between the client
application and the service to establish a security context token that both parties can
use to authenticate the messages that pass between them. This handshake also needs
to be protected, and the security binding element passed as a parameter to the Create
SecureConversationBindingElement method specifies how to guard the handshake mes-
sages that flow while negotiating the security context. The code in this exercise uses
SOAP SSPI negotiation to authenticate messages while performing handshaking (this is
the default mechanism).

After creating the security binding element, the code enables server-side replay detec-
tion before adding it to the custom binding.

	 6.	 Add binding elements that implement a text encoding channel and a TCP transport
channel, as shown in the following:

static void Main(string[] args)

{

 ...

 customBinding.Elements.Add(new TextMessageEncodingBindingElement());

 TcpTransportBindingElement tcpBindElement = new TcpTransportBindingElement();

 tcpBindElement.TransferMode = TransferMode.Buffered;

 customBinding.Elements.Add(tcpBindElement);

}

The reliable sessions channel requires the transport to buffer messages. The transport
channel must be the last item in the custom binding.

	 7.	 After the statements that create and configure the custom binding, add the following
statement to instantiate a ServiceHost object:

static void Main(string[] args)

{

 ...

 ServiceHost host = new ServiceHost(

 typeof(ShoppingCartService.ShoppingCartServiceImpl));

}

This should be a familiar statement to you, but you now appreciate what a ServiceHost
object does: it constructs a channel stack, it manages the lifetimes of various instances
of the service defined by the specified type, and it ensures that client requests are
dispatched to the correct service instance. It performs these tasks in conjunction with
ChannelListener, ChannelDispatcher, and EndpointDispatcher objects that it creates by
using the code you will add in the following steps.

Download from Wow! eBook <www.wowebook.com>

408	 Windows Communication Foundation 4 Step by Step

	 8.	 Previously, you specified the endpoint definition for the ShoppingCartService in the
application configuration file, and the ServiceHost constructor used this information to
construct an endpoint and a ChannelListener. You no longer have this information in the
application configuration file, so add the endpoint by using code, as shown below:

static void Main(string[] args)

{

 ...

 host.AddServiceEndpoint(typeof(ShoppingCartService.IShoppingCartService),

 customBinding, "net.tcp://localhost:8090/ShoppingCartService");

}

The parameters to the AddServiceEndpoint method are the service contract that the ser-
vice implements, the binding, and the URI for the listener.

	 9.	 You can now start the service running. Add the following statements to the Main
method:

static void Main(string[] args)

{

 ...

 host.Open();

 Console.WriteLine("Service running");

 Console.WriteLine("Press ENTER to stop the service");

 Console.ReadLine();

}

You have seen this code before, but now you should understand that the Open method
starts a ChannelListener object listening for client requests. When a request arrives,
the ChannelListener passes it to the channel. The ChannelDispatcher object retrieves
the message from the top of the channel and passes it through the EndpointDispatcher
object to an instance of the ShoppingCartService service.

	 10.	 Start the solution without debugging. In the ShoppingCartClient console window that’s
displaying the message “Press ENTER when the service has started,” press Enter.

The client application runs exactly as before; it creates a shopping cart, adds two water
bottles and a mountain seat assembly, and then purchases the goods.

	 11.	 Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

Inspecting Messages
An interesting feature of the WCF service model is the ability to intercept messages as they
are dispatched to a service method, and again as they leave the service method prior to tra-
versing the channel stack and being transmitted back to the client application. Using message
interception, you can examine messages as they are sent and received. You can also modify an
incoming message prior to it being processed by a service or before an outgoing message is

Download from Wow! eBook <www.wowebook.com>

	 Chapter 11  Programmatically Controlling the Configuration and Communications	 409

transmitted to a client. Message interception is therefore a very powerful technique, although
you must manage it carefully to avoid introducing security flaws and other loopholes into
your system.

You can intercept messages by creating a message inspector; you create a class that imple-
ments the IDispatchMessageInspector interface and insert it into the WCF infrastructure by
defining a behavior. The behavior that you create determines the scope of the message inter-
ception. If you specify message interception as a service behavior, all messages sent to the
service will be intercepted. You can also apply message interception by using operation, end-
point, or contract behaviors; in which case, interception applies only to the specified opera-
tion, endpoint, or contract.

You can implement message inspection in a client application or a service. In the exercise that
follows, you will see how to create and integrate a message inspector into the dispatch mech-
anism of the WCF runtime for the service. This message inspector will displays messages as
they are received by a service. To continue in the spirit of this chapter, you will perform these
tasks programmatically.

Create a Message Inspector for the ShoppingCartService Service

	 1.	 In Visual Studio, select the ShoppingCartService project in Solution Explorer. From the
Project menu, select Add Class and add a new class file called ShoppingCartInspector.cs
to the project.

	 2.	 In the ShoppingCartInspector.cs file, add the following using statements to the list at the
top:

using System.ServiceModel.Dispatcher;

using System.ServiceModel.Description;

	 3.	 Modify the definition of the ShoppingCartInspector class to make it public and imple-
ment the IDispatchMessageInspector interface, as follows:

public class ShoppingCartInspector : IDispatchMessageInspector

{

}

The IDispatchMessageInspector interface defines two methods (described in the next
step) with which you can view and modify messages flowing into and out of the service.

	 4.	 In the code view window, right-click IDispatchMessageInspector, point to Implement
Interface, and then click Implement Interface.

Visual Studio generates stubs for the two methods in the IDispatchMessageInspector
interface. These methods are called AfterReceiveRequest, which is invoked immediately
before the service method is called, and BeforeSendReply, which runs when the service
method has completed. Notice that the first parameter to both methods is a reference
to a Message object. This is the message that has just been received or is about to be

Download from Wow! eBook <www.wowebook.com>

410	 Windows Communication Foundation 4 Step by Step

sent. The important point to realize is that you can modify the contents of this message,
and any changes you make will be passed to the service method or returned to the
client application, depending on whether this is an inbound message (AfterReceive
Request) or an outbound message (BeforeSendReply). For this reason, you should be
especially careful that you don’t implement any code that inadvertently changes the
contents of messages.

	 5.	 Remove the throw statement in the AfterReceiveRequest method and replace it with
the code shown in bold in the following:

public object AfterReceiveRequest(ref System.ServiceModel.Channels.Message request,

 System.ServiceModel.IClientChannel channel,

 System.ServiceModel.InstanceContext instanceContext)

{

 Console.WriteLine("Message received: {0}\n{1}\n\n",

 request.Headers.Action, request.ToString());

 return null;

}

The first statement displays the action that identifies the message (this is the fully quali-
fied name of the message, including the namespace to which it belongs), followed by
the message itself.

It is sometimes useful to be able to correlate messages in the AfterReceiveRequest method
with the corresponding response sent by the BeforeSendReply method. If you examine
the BeforeSendReply method, you will see that it has a second parameter called correlation
State. If you need to correlate request and reply messages, you can create a unique
identifier in the AfterReceiveRequest method and return it. The WCF runtime will pass
this same identifier in as the correlationState parameter to the BeforeSendReplyMethod.
In this example, you are not correlating request and reply messages, so the AfterReceive
Request method simply returns null.

Caution  The Message object contains a SOAP message that comprises XML text. If you are
familiar with the types in the System.Xml namespace in the .NET Framework, you may be
tempted to use the generic GetBody<> method to parse the contents of the message and
retrieve the data in the <Body> element, such as in the following:

System.Xml.XmlElement data = request.GetBody<System.Xml.XmlElement>();

However, the GetBody<> method is destructive. You can use it only once on a message, so
doing this destroys the message, and the service method receives incorrect data. To examine
a message safely, use the CreateBufferedCopy method of the request message to create a
System.ServiceModel.Channels.MessageBuffer object containing a copy of the message. You
can then extract the copy of the message from this MessageBuffer object into a System.
ServiceModel.Channels.Message object by using the CreateMessage method, like this:

MessageBuffer requestBuffer = request.CreateBufferedCopy(10000);

Message requestCopy = requestBuffer.CreateMessage();

Download from Wow! eBook <www.wowebook.com>

	 Chapter 11  Programmatically Controlling the Configuration and Communications	 411

	 6.	 Replace the throw statement in the BeforeSendReply method by using the code shown
in bold in the following:

public void BeforeSendReply(ref System.ServiceModel.Channels.Message reply,

 object correlationState)

{
 Console.WriteLine("Reply sent: {0}\n{1}\n\n",

 reply.Headers.Action, reply.ToString());

}

This statement displays the action and the reply message on the console.

	 7.	 Rebuild the solution.

Creating a Custom Behavior
You will integrate the behavior implemented by the ShoppingCartInspector class into the
WCF runtime by using a service behavior. Sadly, there is no built-in “IntegrateShopping
CartInspector” service behavior in WCF. Fortunately, it is not difficult to write one yourself by
creating a class that implements the IServiceBehavior interface.

The IServiceBehavior interface defines three methods that a class must implement to be able
to act as a service behavior in the WCF infrastructure. These methods are:

■■ AddBindingParameters  Some behaviors can take additional data items as parameters
to the binding elements, and an administrator or developer can supply this information
in the BindingParameterCollection passed to this method. The WCF runtime invokes the
AddBindingParameters method once for each URI to which the service is listening.

■■ ApplyDispatcherBehavior  With this method, you can modify the behavior of Service
Host object hosting the service. The ServiceHost object is passed in as the second
parameter to this method. Use this method to perform tasks such as adding custom
error handlers or message inspector objects into the runtime.

■■ Validate  The WCF runtime invokes this method to verify that the service meets your
own custom requirements. For example, you can examine the service description passed
in as the first parameter, and if the contract for the service does not conform to expec-
tations (it doesn’t specify how to handle faults, for example), you can reject it and throw
an exception.

If you are implementing an operation behavior, an endpoint behavior, or a contract behavior,
you can implement the IOperationBehavior, IEndpointBehavior, or IContractBehavior interfaces
instead of IServiceBehavior. The principles behind these interfaces are very similar to the
IServiceBehavior; they expose the AddBindingParameters, ApplyDispatcherBehavior, and Validate
methods whose purpose is as described previously, although their parameters are different
because their scope is limited to an operation, endpoint, or contract rather than an entire
service. Additionally, these three interfaces provide a method called ApplyClientBehavior. This

Download from Wow! eBook <www.wowebook.com>

412	 Windows Communication Foundation 4 Step by Step

method takes a reference to the WCF client runtime in the form of a ClientRuntime object.
You can modify the properties of this object to configure the way in which the client runtime
operates, and you can insert a message inspector into the client runtime if you need to moni-
tor and manage the messages that a client sends and receives.

In the following exercise, you will implement the IServiceBehavior interface and create a
service behavior that you can use to add the message inspector to the ShoppingCartService
service.

Create a Service Behavior for the ShoppingCartService Service

	 1.	 Add the following public class to the ShoppingCartInspector.cs file, just below the
ShoppingCartInspector class:

public class ShoppingCartBehavior: IServiceBehavior

{

}

	 2.	 In the code view window, right-click IServiceBehavior, point to Implement Interface, and
then click Implement Interface.

Visual Studio adds the following three methods (described earlier) to the Shopping
CartBehavior class:

❏❏ AddBindingParameters  The ShoppingCartBehavior service behavior does not
require this facility, so simply remove the throw statement and leave the method
blank. Note that even if you do not require this method you must still implement it
(it is part of the IServiceBehavior interface), and the WCF runtime will call it when
it starts the service host running, so if you leave the throw statement in place the
service host will stop with a NotImplementedException exception.

❏❏ ApplyDispatcherBehavior  The ShoppingCartBehavior service behavior will use this
method to insert the message inspector into the processing path for each Endpoint
Dispatcher object used by the service.

❏❏ Validate  The ShoppingCartBehavior service behavior does not use this feature
either, so remove the throw statement and leave the method empty.

	 3.	 Comment out the throw statements in the AddBindingParameters and Validate methods.

	 4.	 Replace the throw statement in the ApplyDispatchBehavior method with the code shown
in bold in the following:

public void ApplyDispatchBehavior(ServiceDescription serviceDescription,

 System.ServiceModel.ServiceHostBase serviceHostBase)

{

 foreach (ChannelDispatcher chanDispatcher in serviceHostBase.ChannelDispatchers)

 {

 foreach (EndpointDispatcher epDispatcher in chanDispatcher.Endpoints)

Download from Wow! eBook <www.wowebook.com>

	 Chapter 11  Programmatically Controlling the Configuration and Communications	 413

 {

 epDispatcher.DispatchRuntime.MessageInspectors.Add

 (new ShoppingCartInspector());

 }

 }

}

This block of code iterates through each EndpointDispatcher object for each Channel
Dispatcher object created by the ServiceHost object and adds a ShoppingCartInspector
object into the MessageInspectors collection of each endpoint. Subsequently, when-
ever an EndpointDispatcher object dispatches a service method or whenever a service
method returns to the EndpointDispatcher object, the message will pass through the
ShoppingCartInspector object.

The final step is to apply the ShoppingCartBehavior to the ShoppingCartService when it
runs.

	 5.	 Open the Program.cs file for the ShoppingCartHost project in the Code And Text Editor.
In the Main method insert the code (shown in bold in the following) between the state-
ment that adds the service endpoint to the service and the statement that opens the
service:

static void Main(string[] args)

{

 ...

 host.AddServiceEndpoint(typeof(ShoppingCartService.IShoppingCartService),

 customBinding, "net.tcp://localhost:8090/ShoppingCartService");

 host.Description.Behaviors.Add(new ShoppingCartService.ShoppingCartBehavior());

 host.Open();

 ...

}

Note  The Description property of a ServiceHost object provides programmatic access to
some of the metadata of the hosted service. The Behaviors collection is the set of service
behaviors applied to the service. You can add or remove behaviors in code but only before
you call the Open method of the ServiceHost object. Once the service has started, you can-
not change its behaviors without first stopping it and then restarting it.

You can query and modify the endpoint behaviors of a service by using the Endpoints col-
lection of the Description property. You have seen that a service can expose more than one
endpoint, and you can apply different behaviors to each endpoint. The code fragment below
configures the behavior for the first endpoint for a service and applies the MyEndpoint
Behavior behavior:

host.Description.Endpoints[0].Behaviors.Add(new MyEndpointBehavior());

	 6.	 Start the solution without debugging. In the ShoppingCartClient console window, press
Enter.

Download from Wow! eBook <www.wowebook.com>

414	 Windows Communication Foundation 4 Step by Step

The client application runs as before (albeit a little more slowly). However, the console
window running the service host now displays the SOAP messages being sent and
received, as shown in the image below (this is the same data that you can capture when
you configure message logging for a service):

	 7.	 Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

Defining a Behavior Extension Element
In the previous exercise, you hard-coded the ShoppingCartBehavior behavior into the service
host application by explicitly adding it to the Behaviors collection in the Description property
of the ServiceHost object. However, this behavior is an example of non-critical functionality
that would be best left to an administrator to selectively enable or disable by using a configu-
ration file.

To support configuring a behavior in a configuration file, you must provide a behavior exten-
sion element. A behavior extension element is a class that the WCF runtime uses to configure
a behavior when it starts a service running and reads the configuration file. The behavior
extension element enables the WCF runtime to locate the type that implements the behavior,
instantiate it, and set its properties (if it has any).

The simplest way to implement a behavior extension element is to extend the Behavior
ExtensionElement class located in the System.ServiceModel.Configuration namespace. This is an
abstract class that provides most of the functionality required, although you can override it if
necessary. The only elements that you must provide are a read-only property called Behavior
Type that returns the type of the behavior, and a protected method called CreateBehavior that
instantiates the behavior.

In the following exercises, you will create a behavior extension element called ShoppingCart
BehaviorExtensionElement, and then update the configuration file for the ShoppingCartService
service to reference this behavior extension element.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 11  Programmatically Controlling the Configuration and Communications	 415

Create a Behavior Extension Element for the ShoppingCartBehavior Behavior

	 1.	 In Visual Studio, add a reference to the System.Configuration assembly to the Shopping
CartService project.

	 2.	 Return to the ShoppingCartInspector.cs file in the Code And Text Editor window and add
the following using statement to the list at the top of the file:

using System.ServiceModel.Configuration;

	 3.	 At the end of the file, after the ShoppingCartBehavior class, add another public class
called ShoppingCartBehaviorExtensionElement that inherits from the BehaviorExtension
Element class.

public class ShoppingCartBehaviorExtensionElement: BehaviorExtensionElement

{

}

	 4.	 In the ShoppingCartBehaviorExtensionElement class, override the public BehaviorType
property and add a get accessor that returns the type of the ShoppingCartBehavior class,
as shown in bold in the following:

public class ShoppingCartBehaviorExtensionElement: BehaviorExtensionElement

{

 public override Type BehaviorType

 {

 get

 {

 return typeof(ShoppingCartBehavior);

 }

 }

}

	 5.	 In the ShoppingCartBehaviorExtensionElement class, after the BehaviorType property,
override the protected CreateBehavior method. This method creates an instance of the
behavior and returns it as an object:

public class ShoppingCartBehaviorExtensionElement: BehaviorExtensionElement

{

 ...

 protected override object CreateBehavior()

 {

 return new ShoppingCartBehavior();

 }

}

	 6.	 Rebuild the solution.

The next step is to remove the statement from the ShoppingCartHost application that hard-
codes the reference to the ShoppingCartBehavior behavior and add this behavior to the con-
figuration file instead. You will create an anonymous service behavior in the configuration file
so that it will be automatically picked up and referenced by the service host.

Download from Wow! eBook <www.wowebook.com>

416	 Windows Communication Foundation 4 Step by Step

Configure the ShoppingCartService Service to Use the ShoppingCartBehavior
Behavior

	 1. 	Open the Program.cs file for the ShoppingCartHost project in the Code And Text Editor
window.

	 2.	 In the Main method, locate the statement that adds the ShoppingCartBehavior behavior
to the list of behaviors for the service host and comment this statement out, as shown in
bold in the following:

static void Main(string[] args)

{

 ...

 host.AddServiceEndpoint(typeof(ShoppingCartService.IShoppingCartService),

 customBinding, "net.tcp://localhost:8090/ShoppingCartService");

 // host.Description.Behaviors.Add(new ShoppingCartService.ShoppingCartBehavior());

 host.Open();

 ...

}

	 3.	 Open the App.config file for the ShoppingCartHost project by using the Service
Configuration Editor.

	 4.	 In the Configuration pane, expand the Advanced folder, expand the Extensions folder,
and then click Behavior Element Extensions.

The list of extension binding elements provided with WCF appears in the Behavior
Element Extensions pane. This list displays the friendly name of each extension, and
the type that implements each behavior extension element. Some of these items, such
as serviceDebug, should be familiar to you, others less so. The important point to real-
ize is that all the behaviors provided with WCF are simply examples of Behavior classes
that you can replace with your own types, or augment if you wish to implement a new
behavior.

	 5.	 Click the New button at the bottom of the Behavior Element Extensions pane. In the
Extension Configuration Element Editor dialog box, type messageInspector for the Name
property.

Click the Type property, and then click the ellipsis (…) button that appears. In the Behavior
Extension Type Browser dialog box, browse to the ShoppingCartService\ShoppingCart
Service\bin\Debug folder (within the Chapter 11 folder), click ShoppingCartService.dll,
and then click Open. The ShoppingCartService.ShoppingCartBehaviorExtensionElement
type that you created in the previous exercise should be listed:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 11  Programmatically Controlling the Configuration and Communications	 417

Hint  If the ShoppingCartService.ShoppingCartBehaviorExtensionElement does not appear,
make sure that you successfully built the solution at the end of the previous exercise.

	 6.	 Click the ShoppingCartService.ShoppingCartBehaviorExtensionElement type, and then
click Open again. The full name of the type should appear in the Extension Configura-
tion Element Editor dialog box.

	 7. 	 In the Extension Configuration Element Editor dialog box, click OK. The messageInspector
behavior extension element should be listed in the Behavior Element Extensions pane:

	 8.	 In the Service Configuration Editor, in the Configuration pane, click the Service Behav-
iors folder within the Advanced folder. In the Service Behaviors pane, click New Service
Behavior Configuration.

Download from Wow! eBook <www.wowebook.com>

418	 Windows Communication Foundation 4 Step by Step

	 9.	 In the right pane, clear the Name property of the behavior (it must be anonymous to be
used automatically by the service host). In the lower part of the pane, click the Add but-
ton. In the Adding Behavior Element Extension Sections dialog box, click the message
Inspector element, and then click Add.

	 10.	 Save the configuration file, and then close the Service Configuration Editor.

	 11.	 In Visual Studio, open the App.config file for the ShoppingCartHost project in the Code
And Text Editor window. The file should now look like this:

<?xml version="1.0"?>

<configuration>

 <connectionStrings>

 <add name="AdventureWorksEntities" ... />

 </connectionStrings>

 <system.serviceModel>

 <behaviors>

 <serviceBehaviors>

 <behavior name="">

 <messageInspector />

 </behavior>

 </serviceBehaviors>

 </behaviors>

 <extensions>

 <behaviorExtensions>

 <add name="messageInspector"

type="ShoppingCartService.ShoppingCartBehaviorExtensionElement, ShoppingCartService,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />

 </behaviorExtensions>

 </extensions>

 </system.serviceModel>

</configuration>

The <extensions> element specifies the details of the behavior element extension and
gives this extension the name messageInspector. The <serviceBehaviors> section defines
an anonymous behavior that references the messageInspector behavior element exten-
sion to apply the ShoppingCartBehavior behavior class to the service.

Note  The messageInspector element in the <serviceBehaviors> section might be displayed
with a warning stating that this element is invalid. You can ignore this warning.

	 12.	 Start the solution without debugging. In the ShoppingCartClient console window, press
Enter.

The client application and service run as before, and the ShoppingCartHost console
window displays the messages output by the ShoppingCartInspector object.

	 13. 	Press Enter to close the client application console window. In the host application con-
sole window, press Enter to stop the service.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 11  Programmatically Controlling the Configuration and Communications	 419

You can easily verify that the behavior has been picked up from the configuration file and
not as the result of code in the host application by setting the Name property of the service
behavior to a value other than the empty string. A named behavior will only be used if it is
explicitly referenced from a service definition. There are no service definitions in the App.config
file because the service is configured by using code in the ShoppingCartHost project; conse-
quently, the behavior will not be applied and the messages from the ShoppingCartInspector
object will not appear in the ShoppingCartHost console window.

Controlling Client Communications
You have now seen how to configure the channel stack for a service and how to create a
behavior that can modify the way in which the WCF runtime processes messages. In this sec-
tion, you will examine how to programmatically connect a client application to a service, send
messages, and process responses.

Connecting to a Service Programmatically
When a client application runs and connects to a service, the WCF runtime creates an infra-
structure that is a simplified mirror of that created for the service. When you use a proxy
object to connect to a service, behind the scenes the WCF runtime creates a binding object
using the binding elements specified in the configuration file and an endpoint based on the
selected endpoint definition. It then uses these items to construct a ChannelFactory object.
The WCF runtime uses the ChannelFactory object to instantiate the channel stack and con-
nect it to the URI specified by the endpoint. When the client application invokes operations
through the proxy object, the WCF runtime routes these requests through the channel stack
and transmits them to the service. When a response message arrives from the service, it
passes back up through the channel stack to the WCF runtime, and the proxy object then
passes it back to the client application code.

You can create a client proxy class for a service by using the svcutil utility or Add Service
Reference Wizard to query the metadata for the service and generate an assembly that you
can add to the client project (you have performed this task at regular intervals during the
exercises in this book). For security reasons, the administrator managing the host computer
running a WCF service can elect to disable service metadata publishing. However, the WCF
service developer can distribute an assembly containing the service contract, and you can use
this to create the channel stack dynamically. This approach can also have some performance
benefits. For instance, you might find that the proxy types generated by using the svcutil util-
ity and Add Service Reference Wizard are not necessarily optimal; they are robust because
they cannot make any assumptions about the technology used to implement the service, but
this robustness adds bulk which can impact performance. If you know that the service was

Download from Wow! eBook <www.wowebook.com>

420	 Windows Communication Foundation 4 Step by Step

generated using WCF, you can construct a ChannelFactory object for the client directly from
an assembly containing the service contract and eliminate the need to create a proxy. This is
the approach that you will follow in the next set of exercises.

Connect to the ProductsService Service by Using a ChannelFactory Object

	 1.	 In Visual Studio, close the ShoppingCartService solution and then open the Products
Service solution in the Microsoft Press\WCF Step By Step\Chapter 11\ProductsService
folder.

This solution contains a copy of the ProductsService service and ProductsServiceHost
application from Chapter 6, “Maintaining Service Contracts and Data Contracts,” and a
version of the ProductsClient application from which most of the code in the Program.cs
file has been removed. The application configuration file and the file containing the
proxy class definition have also been removed from the client application.

The ProductsServiceHost application exposes the ProductsService service over the HTTP
protocol, at the address http://localhost:8010/ProductsService/Service.svc. The host is
configured to implement message-level security to encrypt and sign messages by using
basic 128-bit encryption.

Note  If you have not already done so in Chapter 4, open a Visual Studio Command Prompt
window as administrator and type the following command to add an HTTP reservation for
port 8010 (replace UserName with the name of your Windows account).

netsh http add urlacl url=http://+:8010/ user=UserName

	 2.	 In Solution Explorer, add a link to the IProductService.cs file in the ProductsServiceLibray
project to the ProductsClient project as follows:

	 a.	 Right-click the ProductsClient project, point to Add, and then click Existing Item.

	 b.	 In the Add Existing Item – ProductsClient dialog box, browse to the Products
Service\ProductsServiceLibrary folder and select the IProductsService.cs file.

	 c.	 Click the drop-down arrow on the Add button, and then click Add As Link.

This technique enables you to reference the same source file from more than one proj-
ect rather than creating a copy and ending up with possible versioning issues. You can
edit the source file in any of the projects that reference the file.

The IProductsService.cs file contains the definition of the service contract for the Products
Service service. If you don’t wish to share the source code for a service contract, you can
compile it into a separate assembly and distribute this assembly to developers building
client applications.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 11  Programmatically Controlling the Configuration and Communications	 421

	 3.	 In Solution Explorer, open the Program.cs file in the ProductsClient project. This file con-
tains the basic framework for the client application in the Main method, but the code
that connects to the service and invokes operations is currently missing.

Add the following using statement to the list at the top of the file:

using System.ServiceModel.Security;

	 4.	 In the Main method, in the try block, add the following statements, as shown in bold:

static void Main(string[] args)

{

 ...

 try

 {

 WS2007HttpBinding httpBinding = new WS2007HttpBinding(SecurityMode.Message);

 WSHttpSecurity httpSec = httpBinding.Security;

 httpSec.Message.AlgorithmSuite = SecurityAlgorithmSuite.Basic128;

 httpSec.Message.ClientCredentialType = MessageCredentialType.Windows;

 }

 ...

}

The WS2007HttpBinding class implements the standard WS2007HttpBinding binding.
The ProductsServiceHost exposes an HTTP endpoint with the URI, http://localhost:8010/
ProductsService/Service.svc. As mentioned earlier, if you examine the application con-
figuration file for the ProductsServiceHost project, you will see that the binding configu-
ration for the service endpoint uses message-level security, with 128-bit encryption of
messages and Windows authentication. The code you have just added sets the corre-
sponding security properties for the WS2007HttpBinding object in the client application.

	 5.	 Add the following statement (shown in bold) to the try block in the Main method:

static void Main(string[] args)

{

 ...

 try

 {

 ...

 EndpointAddress address = new EndpointAddress(

 "http://localhost:8010/ProductsService/Service.svc");

 }

 ...

}

The EndpointAddress object encapsulates the address that the client application uses to
communicate with the service.

Download from Wow! eBook <www.wowebook.com>

422	 Windows Communication Foundation 4 Step by Step

	 6.	 Add the following code (shown in bold) to the try block:

static void Main(string[] args)

{

 ...

 try

 {

 ...

 Products.IProductsServiceV2 channel =
 ChannelFactory<Products.IProductsServiceV2>.CreateChannel(

 httpBinding, address);

 }

 ...

}

The generic ChannelFactory class creates a channel by calling the static CreateChannel
method. The new channel uses the binding specified in the first parameter and connects
to the address provided in the second parameter. The value returned is a reference to
the channel just created. A channel has a type based on the service contract, and this
type determines the methods exposed by the channel to the client application. In this
case, the channel is assigned to a variable of type Products.IProductsServiceV2. Remem-
ber that IProductsServiceV2 is the interface implemented by the service contract in the
ProductsServiceContract.cs file. You can create channels based on any interface that is
annotated with the ServiceContract attribute.

	 7.	 You can now invoke methods through the channel variable. In the try block, add the
following statements that call the ListMatchingProducts operation to retrieve a list of
bicycle frames and display the results:

static void Main(string[] args)

{

 ...

 try

 {

 ...

 Console.WriteLine("Test 1: List all bicycle frames");

 List<string> productNumbers = channel.ListMatchingProducts("Frame");

 foreach (string productNumber in productNumbers)

 {

 Console.WriteLine("Number: {0}", productNumber);

 }

 Console.WriteLine();

 }

 ...

}

There is one very subtle difference between this code and the corresponding code
you used in Chapter 6: the value returned by the ListMatchingProducts method is now
passed back as a List<string> object rather than the array of strings returned when
using the generated proxy (remember that the Add Service Reference Wizard enables
you to specify how collections should be handled and converted by the proxy when
they are returned to the client application).

Download from Wow! eBook <www.wowebook.com>

	 Chapter 11  Programmatically Controlling the Configuration and Communications	 423

	 8.	 Close the connection to the service and set the channel variable to null to release any
associated resources at the end of the try block, as follows:

static void Main(string[] args)

{

 ...

 try

 {

 ...

 channel = null;

 }

 ...

}

The completed Main method should look like this (comments have been added to help
clarify the code):

static void Main(string[] args)

{

 Console.WriteLine("Press ENTER when the service has started");

 Console.ReadLine();

 try

 {

 // Create the HTTP binding and configure security

 WS2007HttpBinding httpBinding = new WS2007HttpBinding(SecurityMode.Message);

 WSHttpSecurity httpSec = httpBinding.Security;

 httpSec.Message.AlgorithmSuite = SecurityAlgorithmSuite.Basic128;

 httpSec.Message.ClientCredentialType = MessageCredentialType.Windows;

 // Create an endpoint to connect to the service

 EndpointAddress address = new EndpointAddress(

 "http://localhost:8010/ProductsService/Service.svc");

 // Build the channel stack for communicating with the service

 Products.IProductsServiceV2 channel =

 ChannelFactory<Products.IProductsServiceV2>.CreateChannel(

 httpBinding, address);

 // Obtain a list of bicycle frames

 Console.WriteLine("Test 1: List all bicycle frames");

 List<string> productNumbers = channel.ListMatchingProducts("Frame");

 foreach (string productNumber in productNumbers)

 {

 Console.WriteLine("Number: {0}", productNumber);

 }

 Console.WriteLine();

 // Close the connection to the service

 channel = null;

 }

Download from Wow! eBook <www.wowebook.com>

424	 Windows Communication Foundation 4 Step by Step

 catch (Exception e)

 {

 Console.WriteLine("Exception: {0}", e.Message);

 }

 Console.WriteLine("Press ENTER to finish");

 Console.ReadLine();

}

	 10.	 Build the solution and then exit Visual Studio.

Before you run the client application, you must make one configuration change to the secu-
rity of your computer: you need to add your user account to the WarehouseStaff group. This
is because the ProductsService service expects the user requesting the ListMatchingProducts
operation to be a member of this group.

Configure Security and Test the Client Application

	 1.	 Open the Windows Start menu, right-click Computer, and then select Manage. Enter the
administrator password if you are prompted.

	 2.	 In the Computer Management console, under the System Tools node, expand the Local
Users And Groups node, and then click the Users folder.

	 3.	 In the right pane, right-click the user name for your account, and then click Properties.

	 4.	 In the Properties dialog box, click the Member Of tab, and then click Add.

	 5.	 In the Select Groups dialog box, type WarehouseStaff in the text box, and then click
OK.

	 6.	 In the Properties dialog box, click OK.

	 7.	 Close the Computer Management console.

	 8.	 Log off Windows and then log back on again.

This step is necessary for Windows to recognize your new membership of the
WarehouseStaff group.

	 9.	 Start Visual Studio then open the ProductsService solution again.

	 10.	 Start the solution without debugging. In the Products Service Host window, click Start.
In the client console window, press Enter.

The client application connects to the service, requests a list of bicycle frames, and dis-
plays the results, as shown in the following image:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 11  Programmatically Controlling the Configuration and Communications	 425

	 11.	 Press Enter in the client console window to close the client application. In the Products
Service Host window, click Stop, and then close the form. Note that the Products Service
Host window takes a little while to respond to the Stop button. This is because it must
wait to ensure that the client application has disconnected before closing the connec-
tion and tidying up the various network resources. The client application only discon-
nects when the .NET Framework garbage collector frees the resources associated with
the channel variable in the client application sometime after it has been set to null.

Using the ClientBase Abstract Class
In earlier chapters, you used the ClientCredentials property of the proxy object to specify
the credentials to send to the service. The Products.IProductsServiceV2 interface does not
include this functionality. If you need to provide credentials other than your current Win-
dows identity, you must define a class that extends the System.ServiceModel.ClientBase
generic abstract class and use this class to connect to the service. The ClientBase class
incorporates the client-side ChannelFactory infrastructure through a series of construc-
tors. You can expose whichever of the base class constructors are appropriate for your
situation. The class should also provide an implementation of the interface that defines
service contract. You use the Channel property of the base class to route method calls
through the channel to the service in each method implementing the service interface.
The code below shows an example, creating a ClientBase class based on the Products.
IProductsServiceV2 service contract and implementing the methods of the Products.
IProductsServiceV2 interface. This example also implements one of the 12 available Client
Base constructors.

Note  You can find copy of this code in the ProductsService solution in the ProductsService
WithManualProxy folder, which is located within the Chapter 11 folder.

Download from Wow! eBook <www.wowebook.com>

426	 Windows Communication Foundation 4 Step by Step

class ProductsServiceProxy : ClientBase<Products.IProductsServiceV2>,

 Products.IProductsServiceV2

{

 public ProductsServiceProxy(Binding binding, EndpointAddress address) :

 base(binding, address)

 {

 }

 public List<string> ListMatchingProducts(string match)

 {

 return base.Channel.ListMatchingProducts(match);

 }

 public Products.ProductData GetProduct(string productNumber)

 {

 return base.Channel.GetProduct(productNumber);

 }

 public int CurrentStockLevel(string productNumber)

 {

 return base.Channel.CurrentStockLevel(productNumber);

 }

 public bool ChangeStockLevel(string productNumber, short newStockLevel,

 string shelf, int bin)

 {

 return base.Channel.ChangeStockLevel(productNumber, newStockLevel, shelf,

 bin);

 }

}

You can instantiate this class and call its methods as your proxy object. The ClientBase
class provides the ClientCredentials property that you can populate to specify the cre-
dentials to transmit to the service by using the following familiar code:

ProductsServiceProxy channel = new ProductsServiceProxy(httpBinding, address);

channel .ClientCredentials.Windows.ClientCredential.UserName = "Fred";

channel .ClientCredentials.Windows.ClientCredential.Password = "Pa$$w0rd";

channel .ClientCredentials.Windows.ClientCredential.Domain = "LON-DEV-01";

If you examine the code for any client proxy class generated by using the svcutil utility,
you will see that it follows this approach.

The ClientBase class has one further advantage; it provides a Close method that explicitly
terminates the communication channel and frees any associated resources in the client
application immediately rather than waiting for the .NET Framework garbage collector
to perform these tasks.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 11  Programmatically Controlling the Configuration and Communications	 427

Sending Messages Programmatically
A major objective of WCF is to provide a platform for interoperability. You can build WCF
client applications that communicate with services created by using other, non-WCF technol-
ogies, such as Java. In this situation, if the administrator of the computer hosting the service
disables service metadata publishing, the service developer is unlikely to be able to provide
you with C# code or a .NET Framework assembly containing the service contract. However, if
you have documentation describing the SOAP messages that the service can accept and the
responses the service emits, you can still access the service from a WCF client application; you
can send messages directly through the channel. This is a very low-level, but extremely flex-
ible approach that also gives a valuable insight into how the WCF runtime on the client con-
verts method calls for a channel into SOAP messages. This is the subject of the final exercise in
this chapter.

Send a Message and Process the Response in the Client Application

	 1.	 In Visual Studio, close the ProductsService solution. Open the SimpleProducts
Service solution in the Microsoft Press\WCF Step By Step\Chapter 11\Simple
ProductsService folder within your Documents folder.

This solution contains a simplified version of the ProductsService service called Simple
ProductsService. The settings in the App.config file cause the host application, Products
ServiceHost, to publish the service with an HTTP endpoint using the BasicHttpBinding
binding at the URI http://localhost:8010/SimpleProductsService/Service.svc.

	 2.	 Open the ISimpleProductsService.cs file in the ProductsServiceLibrary project. Locate the
ISimpleProductsService interface defining the service contract. It looks like this:

[ServiceContract(Namespace="http://adventure-works.com/2010/06/29",

 Name="SimpleProductsService")]

public interface ISimpleProductsService

{

 [OperationContract(Name = "ListProducts")]

 List<string> ListProducts();

}

The service contract defines a single operation: ListProducts (this is the same as the cor-
responding operation in the original ProductsService service). Note the namespace and
name of the service contract. WCF uses the service contract namespace and name in
conjunction with the name of the operations to define the SOAP messages, or actions,
that the service publishes. In this case, the service will accept and process SOAP mes-
sages using the action http://adventure-works.com/2010/06/29/SimpleProductsService/
ListProducts. Also, notice that the return type is List<string>, so the service will return a
SOAP message containing a serialized list of strings.

Download from Wow! eBook <www.wowebook.com>

428	 Windows Communication Foundation 4 Step by Step

Note  If you don’t want to base the name of an action on the name and namespace prop-
erties of the service contract, you can provide your own name by specifying the Action and
ReplyAction properties for the OperationContract attribute. You will learn more about the
Action and ReplyAction properties in Chapter 14.

	 3.	 Open the Program.cs file for the ProductsClient project in the Code And Text Editor
window. The Main method in this project currently creates a default BasicHttpBinding
object and an EndpointAddress object. The URI in this endpoint is http://localhost:8010/
SimpleProductsService/Service.svc; this is the address that the SimpleProductsService is
configured to listen on.

Add the following using statement to the list at the top of the file:

using System.ServiceModel.Channels;

	 4.	 In the try block in the Main method, add the following statements (shown in bold)
immediately after the code that creates the EndpointAddress object:

static void Main(string[] args)

{

 ...

 try

 {

 ...

 EndpointAddress address = new EndpointAddress(

 "http://localhost:8010/SimpleProductsService/Service.svc");

 IChannelFactory<IRequestChannel> factory =

 httpBinding.BuildChannelFactory<IRequestChannel>();

 factory.Open();

 }

 ...

}

The first statement creates a client-side ChannelFactory object that the client application
can use for building a channel that can send and receive messages by using the speci-
fied binding. The Open method instantiates the channel factory ready for constructing
the channel stack.

A channel implements interfaces that specify the messaging pattern that it supports.
A channel can be an input channel; an output channel; an input and output channel
(a duplex channel); a special form of output channel known as a request channel; or
an equivalent input channel known as a reply channel. These interfaces are collectively
referred to as channel shapes. The shapes available to a transport channel depend on
several factors, including the type of the transport channel and the current value of its
properties. For example, a TCP transport channel cannot act as a reply channel if it uses
the buffered transfer mode; it can only operate as a bi-directional duplex channel in this

Download from Wow! eBook <www.wowebook.com>

	 Chapter 11  Programmatically Controlling the Configuration and Communications	 429

case. However, the HTTP protocol operates using a send/receive pattern, and by default,
the HTTP transport channel conforms to the request channel shape in a client applica-
tion and the reply channel shape in a service.

The next step is to create the client-side channel stack by using the channel factory and
connect to the service listening at the address specified earlier.

	 5.	 Add the following statements to the try block to perform this task:

static void Main(string[] args)

{

 ...

 try

 {

 ...

 IRequestChannel channel = factory.CreateChannel(address);

 channel.Open();

 }

 ...

}

	 6.	 You can now send messages and receive replies through the channel stack. You create a
message by using the static CreateMessage method of the Message class. When creating
a message, you must specify the message version and a string specifying the requested
action.

Add the following statement to the try block:

static void Main(string[] args)

{

 ...

 try

 {

 ...

 Message request = Message.CreateMessage(MessageVersion.Soap11,

 "http://adventure-works.com/2010/06/29/SimpleProductsService/ListProducts");

 }

 ...

}

The SOAP messaging specification has undergone several changes since it was first
released, and the various bindings in WCF support different versions of the specification.
The BasicHttpBinding binding is intended to be compatible with SOAP 1.1 messaging.
The constant MessageVersion.Soap11 specified as the first parameter to CreateMessage
indicates that the message should be formatted according to this specification. If you
are using the WS2007HttpBinding binding, you can send messages by using the SOAP
1.2 format.

As discussed earlier, the action string combines the namespace and name of the service
with the name of the operation. This is the value passed as the second parameter to
CreateMessage.

Download from Wow! eBook <www.wowebook.com>

430	 Windows Communication Foundation 4 Step by Step

The CreateMessage method is overloaded. Other overloads enable you to specify the
data for the message body if the operation expects parameters and to generate SOAP
fault messages (useful if you are creating a service using this low-level mechanism).

To actually send a message by using the request/response pattern, you use the Request
method of the channel.

	 7.	 Add the following statements to the try block:

static void Main(string[] args)

{

 ...

 try

 {

 ...

 Message reply = channel.Request(request);

 Console.WriteLine(reply);

 }

 ...

}

The Request method blocks until a response is received from the service. The incoming
response message is passed back as the return value from the Request method. After the
application has received the response, the client simply displays it to the console and
does not make any attempt to parse the contents.

Note  You can use the generic GetBody<> method of the reply message to parse a SOAP
message, as described earlier in this chapter.

At this point, you can send further requests to the service, but this simple client applica-
tion will simply disconnect and finish.

	 8.	 Add these statements at the end of the try block.

static void Main(string[] args)

{

 ...

 try

 {

 ...

 request.Close();

 reply.Close();

 channel.Close();

 factory.Close();

 }

 ...

}

Messages, channels, and channel factories all consume resources, so you should close
them when you have finished using them.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 11  Programmatically Controlling the Configuration and Communications	 431

	 9.	 Build and start the solution without debugging. In the Products Service Host window,
click Start. In the client application console window, press Enter.

The client application sends the ListMatchingProducts request to the service, which
responds with a message containing a list of products. The client application displays
the SOAP message containing this list, which has the following format:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">

 <s:Header />

 <s:Body>

 <ListProductsResponse xmlns="http://adventure-works.com/2010/06/29">

 <ListProductsResult

xmlns:a="http://schemas.microsoft.com/2003/10/Serialization/Arrays"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <a:string>AR-5381</a:string>

 <a:string>BA-8327</a:string>

 ...

 <a:string>VE-C304-S</a:string>

 <a:string>WB-H098</a:string>

 </ListProductsResult>

 </ListProductsResponse>

 </s:Body>

</s:Envelope>

	 10.	 Press Enter to close the client application console window. In the Products Service Host
window, click Stop, and then close the window.

Summary
In this chapter, you have examined some of the internal mechanisms that the WCF runtime
uses to send and receive messages. You have seen how to create bindings in code and how to
use a ServiceHost object to create a channel for listening for requests. You have explored how
you can employ a message inspector to examine the messages flowing from the channel stack
into a service and how to create a service behavior for modifying the way in which the WCF
runtime manages a service. You have also examined ways of sending messages from a client
to a service when you don’t have access to a proxy class generated by using the svcutil utility,
or when you wish to avoid the overhead sometimes associated with the proxy—by creating
your own “lean and mean” channel stack using the ChannelFactory class or taking advantage
of the low-level messaging interface.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

433

Chapter 12

Implementing One-Way and
Asynchronous Operations

After completing this chapter, you will be able to:

■■ Explain the behavior of one-way operations, and how service behavior and binding proper-
ties impact such operations.

■■ Implement one-way operations in a WCF service and invoke them from a WCF client
application.

■■ Implement asynchronous operations in a WCF service and invoke operations asynchronously
in a WCF client application.

■■ Explain the difference between invoking an operation asynchronously and implementing an
operation that supports asynchronous execution.

■■ Use a message queue to send requests to a service asynchronously.

WCF client applications and services frequently follow the request/response messaging pat-
tern for performing operations; the client application issues a request and then waits patiently
while the message crosses the network, the service receives and processes the message, the
service generates a reply, and the reply wends its way back across the network to the client
application. If the client application does not require the service to send a response, then
waiting for one is a waste of time and can impact the responsiveness of the client application.
In this situation, you might find that a one-way operation can improve performance of the
client application.

If the client application does require a response but can safely perform other tasks while wait-
ing for this response, then you should implement asynchronous method invocation. Using
this technique, the client application can send a request and then continue execution. When a
reply message arrives from the service, a separate thread in the client application handles the
response.

One-way operations and asynchronous operations both require the client application and the
service to be running at the same time. If this is not the case, then you should consider using
message queues as the transport medium between the client application and the service. A
message queue can provide durable storage for messages. However, you must design client
applications and services carefully if you are planning on using message queues because the
request/response messaging pattern is not appropriate in this case.

Download from Wow! eBook <www.wowebook.com>

434	 Windows Communication Foundation 4 Step by Step

Chapter 8, “Implementing Services by Using Workflows,” provided a brief discussion on imple-
menting common messaging patterns—including one-way and asynchronous operations—by
using workflows. In this chapter, you will look in detail at options for implementing these styles
of operations in a procedural service and how you can maximize the scope for parallelism in
your applications.

Note  It is also possible for a client to provide a callback method for a service. The service can
send a message that invokes this method. WCF client applications and services can use this mech-
anism to implement events, enabling the service to notify a client application of some significant
occurrence. You will examine this feature in more detail in Chapter 16, “Using a Callback Contract
to Publish and Subscribe to Events.”

Implementing One-Way Operations
When a client application invokes a one-way operation, it can continue running without wait-
ing for the service to complete the operation. You indicate that an operation is one way by
specifying that behavior in the operation contract. The simplest way to achieve this is to set
the IsOneWay property to true in the OperationContract attribute when defining the opera-
tion. You will see an example of this in the exercises in this section.

The Effects of a One-Way Operation
Defining an operation as one way has several implications, the most important of which is
that such an operation cannot pass any data back to the client application; it must return a
void and cannot have parameters marked as out or ref. When a one-way operation starts run-
ning in the service, the client application has no further contact with it and will not even be
aware of whether the operation was successful or not. If the operation raises an exception that
would normally generate a SOAP fault message, this SOAP fault message is simply discarded
and never sent to the client.

Note  If you invoke a one-way operation by using the Request method of an IRequestChannel
object as described in Chapter 11, “Programmatically Controlling the Configuration and Commu-
nications,” the value of the response message returned will be null.

Invoking a one-way operation is not simply a matter of generating a message and throwing
it at an endpoint where, hopefully, the service is listening. Although a client application does
not know when a one-way operation has completed (successfully or not), it is still important
for the client application to know that the service has received the message. If the service
is not listening on the specified endpoint, the client will be alerted with an exception. Addi-
tionally, if the service is very busy, it might not be able to accept the message immediately.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 12  Implementing One-Way and Asynchronous Operations	 435

Some transports implement a buffering mechanism for requests and will not accept further
messages if there are too many outstanding requests. For example, the TcpTransport channel
has a configurable property called ListenBacklog that specifies the maximum number of con-
nection requests that can be pending. When pending requests reach this number, subsequent
requests will be blocked until the number of pending requests drops; in this situation, the
client application will wait until the request is accepted. If you want to be absolutely certain
that the service has received the message and that the transport has not just buffered it, you
can invoke the one-way operation in a reliable session. The service will send back an acknowl-
edgment to the client when it starts processing the message, as described in Chapter 10,
“Implementing Reliable Sessions.” Reliable messaging has some other beneficial side effects
on one-way operations, as you will see in the exercises in this chapter.

One-Way Operations and Transactions
You may recall from Chapter 9, “Supporting Transactions,” that a client application can initi-
ate a transaction and flow it into operations performed by a service. The transaction protocol
enables a service to indicate that an operation has failed, causing the transaction to abort.
This requires that the service is able to transmit information about the outcome of the opera-
tion back to the client. However, when you implement a one-way operation, there is no
channel available for a service to send this data back. You should bear this in mind when you
design a service and mark all one-way operations in a service contract with the Transaction
Flow(TransactionFlowOption.NotAllowed) attribute—refer back to Chapter 9 for more details.
When you start a service, the WCF runtime performs a sanity check and throws an Invalid
OperationException exception if any one-way operations in the service mandate or allow
transactions.

One-Way Operations and Timeouts
There are several possible failure points when sending messages over a network. If a client
application does not receive a response to a request within a specified period of time, the
WCF runtime on the client computer assumes that something has gone wrong and throws
a System.TimeoutException to the client application. The duration of this timeout period is
configurable as the SendTimeout property of the client binding and has a default value of one
minute. If a client application invokes a one-way operation, the service needs only to accept
the message within this timeout period; it does not need to complete message processing
within the timeout duration.

In WCF, many bindings implement a buffering model for requests. If you recall from Chapter 7,
“Maintaining State and Sequencing Operations,” services that implement sessions are single
threaded by default. When a client application sends a request to a service that implements
sessions, the request is directed to a session that is specific to the client connection. If the

Download from Wow! eBook <www.wowebook.com>

436	 Windows Communication Foundation 4 Step by Step

application sends a second request over the same connection, it will be sent to the same ses-
sion. If the instance running this session is still busy processing the first request, the second
request will be buffered pending receipt. Bindings have a ReceiveTimeout property, which is
used by the WCF runtime managing the service to manage and control buffered requests.
If a service instance takes longer than the amount of time specified by the ReceiveTimeout
value to actually receive a request because it is busy handling an earlier one, the WCF runtime
aborts the request and throws a Timeout exception back to the client. The default value for
the ReceiveTimeout property is 10 minutes. This is a long time for a client application to wait
for a request to be rejected, and you should consider reducing this value unless you genuinely
have operations that could run for this duration.

Implementing a One-Way Operation
In the following exercises, you will implement a one-way operation and investigate what hap-
pens when you invoke it from a client application. The Web service that you will create will
provide administrative functions for the AdventureWorks organization.

The first operation you will implement provides an administrator with a mechanism to request
a report for the current day’s sales. This report could take several minutes to run, so you don’t
want to hold up the administrator while this is happening. Therefore, you will implement this
feature as a one-way operation.

Create the AdventureWorks Administrative Operations Service

	 1.	 Start Visual Studio and create a new Web site by using the WCF Service template. In the
New Web Site dialog box, specify the following properties for the project to create and
host the Web site by using the ASP.NET Development Web Server:

Property Value

Web location File System

Folder Microsoft Press\WCF Step By Step\Chapter 12\AdventureWorksAdmin within
your Documents folder (create the folder, if prompted by Visual Studio)

	 2.	 In Solution Explorer, select the C:\...\AdventureWorksAdmin\ project. In the Properties
window, set the Use Dynamic Ports property to False and set the Port Number to 9090
(you may need to wait for a few seconds before you can change the port number).

By default, the ASP.NET Development Web Server picks an unused port when it starts
running; however, for this exercise, it is useful to know in advance exactly which port
the service will use. Disabling the Dynamic Ports property lets you specify a fixed port.

	 3.	 In Solution Explorer, expand the App_Code folder and open the IService.cs file in the
Code And Text Editor window.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 12  Implementing One-Way and Asynchronous Operations	 437

	 4.	 In the IService.cs file, remove everything below the using statements (leave the using
statements intact).

	 5.	 Add a new service interface called IAdventureWorksAdmin to the file and mark it as a
service contract. In the ServiceContract attribute, set the Namespace property to http://
adventure-works.com/2010/06/30 (assume that it is June 30, 2010 and that you use
the recommended approach of incorporating the creation date into namespaces), and
set the Name property to AdministrativeService, as shown here:

[ServiceContract(Namespace="http://adventure-works.com/2010/06/30",

 Name="AdministrativeService")]

public interface IAdventureWorksAdmin

{

}

	 6.	 Add an operation called GenerateDailySalesReport (shown in bold in the following
code), to the service contract. Mark it as a one-way operation by setting the IsOneWay
property of the OperationContract attribute to true:

[ServiceContract(Namespace="http://adventure-works.com/2010/06/30",

 Name="AdministrativeService")]

public interface IAdventureWorksAdmin

{

 [OperationContract(IsOneWay = true)]

 void GenerateDailySalesReport(string id);

}

Notice that this method returns a void. All one-way methods must be void methods.
One-way methods can take parameters, as long as they are not marked with ref or
out modifiers. You’ll use the string parameter passed to the GenerateDailySalesReport
method to identify an invocation of the operation.

	 7.	 In Solution Explorer, right-click the C:\...\AdventureWorksAdmin\ project, and then click
Add Reference. In the Add Reference dialog box, add a reference to the Presentation
Framework assembly, and then click OK.

You will display a message box in the service, and the MessageBox class is defined in this
assembly.

	 8.	 Open the Service.cs file in the App_Code folder, remove everything underneath the
using statements, and add a public class called AdventureWorksAdmin to the file. This
class should implement the IAdventureWorksAdmin interface and provide the Generate
DailySalesReport method, as follows:

public class AdventureWorksAdmin : IAdventureWorksAdmin

{

 public void GenerateDailySalesReport(string id)

 {

 // Simulate generating the report

 // by sleeping for 1 minute and 10 seconds

 System.Threading.Thread.Sleep(70000);

Download from Wow! eBook <www.wowebook.com>

438	 Windows Communication Foundation 4 Step by Step

 string msg = String.Format("Report {0} generated", id);

 System.Windows.MessageBox.Show(msg);

 }

}

This version of the WCF service simulates the process of generating the report by sleep-
ing for 70 seconds (you will understand why the duration is just over 1 minute in the
next exercise). After the report has been generated, the method displays a message box.

Important  The message box displayed by this method is solely for example purposes—it
allows you to observe when the method completes. You should never incorporate interac-
tive message boxes like this into a production service. If you need to output messages for
testing or debugging purposes, you should generally use the System.Diagnostics.Debug.
WriteLine method and send messages to a trace listener.

	 9.	 Open the Service.svc file in the Code And Text Editor window. Modify this file to refer to
the AdventureWorksAdmin class, as shown in bold in the following:

<%@ServiceHost Language=C# Debug="true" Service="AdventureWorksAdmin"

 CodeBehind="~/App_Code/Service.cs" %>

	 10.	 In Solution Explorer, edit the Web.config file by using the Service Configuration Editor.

	 11.	 In the Configuration pane, click the Services folder. In the Services pane, click Create A
New Service.

	 12.	 Proceed through the New Service Element Wizard, using the information in the follow-
ing table to define the service. (When the warning messages concerning the service
type and contract appear, click Yes to proceed.)

Page Prompt Value

What is the service type for your
service?

Service type AdventureWorksAdmin

What service contract are you
using?

Contract IAdventureWorksAdmin

What communications mode is
your service using?

HTTP

What method of interoperability do
you want to use?

Advanced Web Service interoperability
(Simplex communication)

What is the address of your
endpoint?

Address http://localhost:9090/AdventureWorks
Admin/Service.svc

	 13.	 In the Configuration pane, click the Bindings folder. In the Bindings pane, click New
Binding Configuration.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 12  Implementing One-Way and Asynchronous Operations	 439

	 14.	 In the Create A New Binding dialog box, select ws2007HttpBinding, and then click OK.

	 15.	 In the right pane, in the Name property, type AdventureWorksAdminWS2007
HttpBindingConfig.

	 16.	 It should never take more than five minutes to generate the daily report, so in the General
section displaying the properties of the new binding, set the ReceiveTimeout property to
00:05:00.

	 17.	 In the Configuration pane, expand the Endpoints folder under the AdventureWorks
Admin service, and then click the (Empty Name) endpoint.

	 18.	 In the Service Endpoint pane, set the BindingConfiguration property to Adventure
WorksAdminWS2007HttpBindingConfig.

	 19.	 In the Configuration pane, expand the Advanced folder, expand the ServiceBehaviors
folder, expand the (Empty Name) behavior, and then click the serviceDebug behavior
element. In the ServiceDebug pane, set the IncludeExceptionDetailInFaults property to
True.

	 20.	 In the Configuration pane, click the serviceMetadata behavior element under the (Empty
Name) behavior. In the ServiceMetadata pane, verify that the HttpGetEnabled property
is set to True (set it to True if it is currently False).

	 21.	 Save the configuration file, and then exit the Service Configuration Editor.

	 22.	 Open the Web.config file in the Code And Text Editor window.

	 23.	 In the <serviceHostingEnvironment> element, set the multipleSiteBindingsEnabled prop-
erty to false, as shown in bold in the following.

<?xml version="1.0"?>

<configuration>

 ...

	 <system.serviceModel>

 ...

 <serviceHostingEnvironment multipleSiteBindingsEnabled="false">

	 </system.serviceModel>

 ...

</configuration>

	 24.	 Save the Web.config file.

	 25.	 In Solution Explorer, right-click Service.svc, and then click View In Browser.

The ASP.NET Development Server will start (if it is not already running) and display an
icon in the lower-right corner of the Windows taskbar. Internet Explorer will run, navi-
gate to the site http://localhost:9090/AdventureWorksAdmin/Service.svc, and display the
page that describes how to generate the WSDL description for the service and how to
use the service in a client application, as shown in the image that follows.

Download from Wow! eBook <www.wowebook.com>

440	 Windows Communication Foundation 4 Step by Step

Tip  If Internet Explorer displays a blank page, manually enter the address http://
localhost:9090/AdventureWorksAdmin/Service.svc in the address bar, and then press
Enter to display the page for the service.

	 26.	 Close Internet Explorer then return to Visual Studio.

	 27.	 In Solution Explorer, right-click the C:\...\AdventureWorksAdmin\ project, and then click
Start Options. From the Start Options page, select the option “Don’t Open A Page. Wait
For A Request From An External Application,” and then click OK.

When you start this project in subsequent exercises, you need the service to start run-
ning, but you don’t want Internet Explorer to open.

Create a WCF Client Application to Test the AdventureWorks Administrative
Operations Service

	 1.	 In Visual Studio, add a new project to the AdventureWorksAdmin solution by using the
Console Application template (use the Console Application template, and not the Work-
flow Console Application template). Specify the following properties for the project:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 12  Implementing One-Way and Asynchronous Operations	 441

Property Value

Name AdventureWorksAdminTestClient

Location Microsoft Press\WCF Step By Step\Chapter 12 (within your
Documents folder)

	 2.	 In Solution Explorer, right-click the AdventureWorksAdminTestClient project, and then
click Add Service Reference. In the Add Service Reference dialog box click Discover, type
AdventureWorksAdmin in the Namespace text box, and then click OK.

This action creates a proxy that the client application can use to connect to the
AdventureWorksAdmin service.

	 3.	 Open the app.config file in the Code And Text Editor and examine its contents. Note
that Visual Studio has added and configured a client endpoint for communicating with
the AdventureWorksAdmin service called WS2007HttpBinding_AdministrativeService,
after the value of the Name attribute in the service contract when you created the
service.

	 4.	 In Solution Explorer, in the AdventureWorksAdminTestClient project, open the file
Program.cs in the Code And Text Editor window. Add the following using statement to
the list at the start of the file:

using AdventureWorksAdminTestClient.AdventureWorksAdmin;

The proxy class generated in the earlier step is in this namespace.

	 5.	 Add the following code (shown in bold) to the Main method:

static void Main(string[] args)

{

 try

 {

 AdministrativeServiceClient proxy = new AdministrativeServiceClient(

 "WS2007HttpBinding_AdministrativeService");

 Console.WriteLine("Requesting first report at {0}", DateTime.Now);

 proxy.GenerateDailySalesReport("First Report");

 Console.WriteLine("First report request completed at {0}", DateTime.Now);

 Console.WriteLine("Requesting second report at {0}", DateTime.Now);

 proxy.GenerateDailySalesReport("Second Report");

 Console.WriteLine("Second report request completed at {0}", DateTime.Now);

 proxy.Close();

 }

 catch (Exception e)

 {

 Console.WriteLine("Exception: {0}", e.Message);

 }

 Console.WriteLine("Press ENTER to finish");

 Console.ReadLine();

}

Download from Wow! eBook <www.wowebook.com>

442	 Windows Communication Foundation 4 Step by Step

This code creates a proxy object and then invokes the GenerateDailySalesReport opera-
tion twice in quick succession, displaying the date and time before and after each
request is sent.

	 6.	 In Solution Explorer, right-click the AdventureWorksAdmin solution, and then click Set
Startup Projects. In the Property Pages dialog box, select the Multiple Startup Projects
option. Set the action for both projects to Start, and then click OK.

	 7.	 Start the solution without debugging.

The request for the first report completes quickly (it might take a few seconds, depend-
ing on whether the WCF service is still running or Visual Studio needs to start it, but
it will require less time than the 70 seconds that the operation runs for). However, the
second request causes the client application to stop. If you wait for one minute, the cli-
ent application eventually times out with an error (the default value of the SendTimeout
property of the binding is 1 minute):

You should also notice that the AdventureWorksAdmin service eventually (after 70 sec-
onds) completes the first request successfully and displays a message box:

Click OK to close the message box. If you wait for a couple more seconds, the message
box for the second request appears as well. This shows that the request was actually
received successfully by the AdventureWorksAdmin service, although something appears
to have gone awry with the client application.

Click OK to close the second message box and then press Enter to close the client appli-
cation console window.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 12  Implementing One-Way and Asynchronous Operations	 443

So, what went wrong? The problem lies partly in the fact that the service uses sessions and
partly in the concurrency mode of the service. Remember from the earlier discussion in the
section, “One-Way Operations and Timeouts” on page 435, that sessions are single threaded
by default, and a service instance will not accept a new request if it is still processing an earlier
one. If you disable sessions (by using a binding that does not support them or by setting the
SessionMode property of the ServiceContract attribute of the IAdventureWorksAdmin interface
to SessionMode.NotAllowed), then the concurrent calls to the service are not blocked; instead,
each call is sent to a different instance of the service.

Note  The blocking problem is exacerbated because the AdventureWorksAdmin service uses the
HTTP transport, which does not support request queuing like the TCP transport does. If you had
used a TCP endpoint instead, the client would be able to continue as soon as the second request
was queued by the transport channel rather than waiting for the request to be accepted by the
service; however, the second request would still not be processed until the first had completed.

In the next exercise you will see how to address this situation.

Resolve the Blocking Problem with the One-Way Request

	 1.	 In Solution Explorer, edit the Service.cs file in the App_Code folder in the C:\...\Adventure
WorksAdmin\ project. Add the ServiceBehavior attribute to the AdventureWorksAdmin
class, as shown in bold on the following:

[ServiceBehavior(ConcurrencyMode=ConcurrencyMode.Multiple)]

public class AdventureWorksAdmin : IAdventureWorksAdmin

{

 ...

}

As described in Chapter 7, you can use the ConcurrencyMode property of the Service
Behavior attribute to change the threading model used by the session. Selecting the
value ConcurrencyMode.Multiple allows the service to process multiple concurrent
requests in the same session, although you must ensure that the code you write in
each method is thread-safe (as it is in this example).

	 2.	 Start the solution without debugging.

This time, both requests are submitted successfully (the client application displays the
message “Second Report Request Completed At …”), but the client application now
stops and times out at the end of the Main method (see the image that follows).

Download from Wow! eBook <www.wowebook.com>

444	 Windows Communication Foundation 4 Step by Step

Press Enter to close the client console window, and then press OK when the two mes-
sage boxes displayed by the service appear.

This time, the blockage is caused by a combination of the security implemented by the
service and the call to the Close method of the proxy. Remember that the ws2007Http
Binding binding uses sessions and message-level security by default. When terminating
a session, the client application and service exchange messages to ensure that the ses-
sion terminates in a secure and controlled manner. The client application will not finish
until this message exchange completes, and the service does not send its final message
until all operations have completed—consequently, a timeout occurs.

Two of the possible solutions are to disable security (absolutely not recommended) or to
switch to transport-level security (which requires installing a certificate and configuring
HTTPS). However, there is a third option available if you want to employ message-level
security: you can configure reliable sessions.

	 3.	 In the C:\...\AdventureWorksAdmin\ project, edit the Web.config file by using the Service
Configuration Editor.

In the Configuration pane, expand the Bindings folder and select the AdventureWorks
AdminWS2007HttpBindingConfig binding configuration. In the right pane, set the
Enabled property in the ReliableSession Properties section to True.

Save the file, and then close the Service Configuration Editor.

	 5.	 Follow the same procedure to edit the app.config file of the client application and
enable reliable sessions in the WS2007HttpBinding_AdministrativeService binding
configuration.

	 6.	 Start the solution without debugging.

The client should successfully send both requests and quickly close the session without
timing out. After 70 seconds, the first message box should appear from the service; the
second will be displayed shortly after.

In Chapter 10, you investigated the acknowledgment messages sent by the reliable sessions
protocol implemented by WCF. The purpose of this protocol is to assure both parties (the

Download from Wow! eBook <www.wowebook.com>

	 Chapter 12  Implementing One-Way and Asynchronous Operations	 445

client and the service) that the messages they have sent have been received. When the client
application closes its session, it does not need to wait for the service to actually complete its
processing as long as the service has acknowledged all messages sent by the client applica-
tion; the Close method can complete before the service actually terminates the session.

Tip  If you need to implement one-way operations but cannot guarantee the thread-safe status
of the corresponding methods, you should not set the ConcurrencyMode attribute of the service to
ConcurrencyMode.Multiple. Just enable reliable sessions.

When you enable reliable sessions, the client will not wait for a single-threaded service to accept
each message before continuing; instead, the client will be able to carry on as soon as the service
has acknowledged the message. Message acknowledgments are generated by the WCF runtime
hosting the service before the message is dispatched to the service instance; they are not blocked
by a single-threaded service instance.

If you are curious, try disabling multiple-threading for the AdventureWorksAdmin service, but
keep reliable sessions enabled and then run the solution. The client application will run without
blocking. However, you should observe the difference in the behavior of the service. Previously,
both calls to the GenerateDailySalesReport method executed concurrently, and the second mes-
sage box appeared a couple of seconds after the first. If you use reliable messaging rather than
multiple threads, the method calls run sequentially, and the second message box will appear at
least 70 seconds after the first.

Recommendations for Using One-Way Operations
You have seen that one-way operations are a very useful mechanism for improving the
responsiveness of a client application by allowing it to continue executing without waiting for
the service to complete processing operation requests. However, to maximize the concurrency
between a client application and a service, you should bear in mind the following points,
summarizing what you have seen in the exercises:

■■ Services that don’t use sessions provide the greatest degree of parallelism by default.
If a service requires or allows sessions, then depending on how the transport used by
the binding buffers messages, the service can block one-way requests if it is already
busy processing a message in the same session. This is true even if the service uses the
PerCall service instance context mode; it is the fact that the service uses sessions that
causes the service to block requests.

■■ Services that use sessions can set the concurrency mode to enable multi-threading,
but you must ensure that the operations in the service are thread-safe. Enabling multi-
threading allows the service to execute requests in the same session simultaneously.

■■ Using reliable sessions enables a client application to close a connection to a service
before the service has completed processing of all outstanding requests.

Download from Wow! eBook <www.wowebook.com>

446	 Windows Communication Foundation 4 Step by Step

As a word of caution, malicious users have been known to exploit one-way operations to per-
form Denial of Service attacks; they bombard a service with a large number of requests, hop-
ing to cause it to grind to a halt as it attempts to process all the messages. If you implement a
multi-threaded service that supports asynchronous operations, you must take steps to ensure
that an attacker cannot send an inordinate number of requests in a short period of time and
cause your system to collapse under the strain.

Invoking and Implementing Operations Asynchronously
A one-way operation is useful for “fire and forget” scenarios, in which the client application
does not expect the service to pass back any information. However, many operations do not
fit into this scheme—they do return data to the client application. To cater to these situations,
WCF supports asynchronous operations and the IAsyncResult design pattern. You can imple-
ment the IAsyncResult design pattern in two ways using WCF: in the client application invok-
ing the operation, and in the WCF service implementing the operation.

More Info  The IAsyncResult design pattern is commonly used throughout the .NET Framework
and is not specific to WCF. For details, see the topic, “Asynchronous Programming Design Patterns,”
available in the documentation provided with Visual Studio (also available on the Microsoft Web
site at http://msdn.microsoft.com/en-us/library/ms228969.aspx).

Invoking an Operation Asynchronously in a Client Application
Using WCF, you can generate a version of the proxy class that a client application can use to
invoke operations asynchronously by using the /async flag with the svcutil utility when you
create the proxy class. You can also generate an asynchronous proxy by using the Add Service
Reference Wizard in Visual Studio. To do that, click the Advanced button and then select the
Generate Asynchronous Operations check box in the Service Reference Settings dialog box.

An asynchronous proxy provides begin and end pairs of methods for each operation. The
client application can invoke the begin method to initiate the operation. The begin method
returns after sending the request, but a new thread created by the .NET Framework runtime
in the client waits for the response. When you invoke the begin method, you also provide the
name of a callback method. When the service finishes the operation and returns the results
to the client proxy, the callback method executes on this new thread. You use the callback
method to retrieve the results from the service. You should also call the end method for the
operation to indicate that you have processed the response.

It is important to understand that you do not need to modify the service in any way to sup-
port this form of asynchronous programming. Indeed, the service itself does not necessarily
need to be a WCF service; it could be a service implemented by using other technologies. The

Download from Wow! eBook <www.wowebook.com>

	 Chapter 12  Implementing One-Way and Asynchronous Operations	 447

code that makes the operation appear asynchronous to the client application is encapsulated
inside the proxy generated on the client side and the .NET Framework runtime. All the thread-
ing issues are handled by code running in the WCF runtime on the client. As far as the service
is concerned, the operation is being invoked in the exact same, synchronous manner that you
have seen in all the preceding chapters in this book.

Implementing an Operation Asynchronously in a WCF Service
As mentioned earlier, with WCF, you can also implement an operation that can execute
asynchronously. In this case, the service provides its own pair of begin and end methods that
constitute the operation. The code in the client application invokes the operation through the
proxy object using the ordinary operation name (not the begin method). The WCF runtime
transparently routes the operation to the begin method, so the client application is not neces-
sarily aware that the service implements the operation as an asynchronous method.

As a variation, the developer of the service can add logic to the begin method to choose
whether the operation should run synchronously or asynchronously. For example, if the cur-
rent workload of the service is light, it might make sense to perform the operation synchro-
nously to allow it to complete as soon as possible. As the workload increases, the service
might choose to implement the operation asynchronously. Implementing operations in this
manner in a service can improve the scalability and responsiveness of a service without the
need to modify client applications. You should use this implementation for any operation that
returns data to a client application after performing a lengthy piece of processing.

Important  You should understand the important distinction between asynchronous operation
invocation in the client application and asynchronous operation implementation in the service.
Asynchronous invocation in the client application enables the client to initiate the operation and
then continue its own processing while waiting for a response. Asynchronous implementation in
the service enables the service to offload the processing to another thread or sleep while waiting
for some background process to complete. A client application invoking an operation implemented
asynchronously by the service still waits for the operation to complete before continuing.

You can specify that an operation supports asynchronous processing by setting the Async
Pattern property to true in the OperationContract attribute when defining the operation,
and providing a pair of methods that follow a prescribed naming convention and signature
and that implement the IAsyncResult design pattern.

In the next set of exercises, you will add another operation called CalculateTotalValueOfStock
to the AdventureWorksAdmin service. The purpose of this operation is to determine the total
value of every item currently held in the AdventureWorks warehouse. This operation could
take a significant time to run, so you will implement it as an asynchronous method.

Download from Wow! eBook <www.wowebook.com>

448	 Windows Communication Foundation 4 Step by Step

Add an Asynchronous Operation to the AdventureWorks Administrative Service

	 1.	 In Visual Studio, open the IService.cs file in the App_Code folder for the C:\...\Adventure-
WorksAdmin\ project in the Code And Text Editor window. Add the following operation
(shown in bold) to the IAdventureWorksAdmin service contract:

[ServiceContract(Namespace="http://adventure-works.com/2010/06/30",

 Name="AdministrativeService")]

public interface IAdventureWorksAdmin

{

 [OperationContract(IsOneWay = true)]

 void GenerateDailySalesReport(string id);

 [OperationContract(AsyncPattern = true)]

 IAsyncResult BeginCalculateTotalValueOfStock(string id, AsyncCallback cb,

 object s);

 int EndCalculateTotalValueOfStock(IAsyncResult r);

}

This operation consists of two methods: BeginCalculateTotalValueOfStock and End
CalculateTotalValueOfStock. Together, they constitute a single asynchronous operation
called CalculateTotalValueOfStock. It is important that you name both methods in the
operation following this convention in order for them to be recognized correctly when
you build the client proxy. You can specify whatever parameters the operation requires
in the begin method (in this case, the client application will pass in a string parameter
to identify each invocation of the operation), but the final two parameters must be an
AsyncCallback object that will reference a callback method in the client application and
an object holding state information provided by the client application. The return type
must be IAsyncResult. The end method must take a single parameter of type IAsync
Result, but the return type should be the type appropriate for the operation. In this case,
the CalculateTotalValueOfStock operation returns an int containing the calculated value.

The other key part of this operation is the AsyncPattern property of the Operation
Contract attribute. You apply the OperationContract attribute only to the begin method.
When you generate the metadata for this service (when building the client proxy, for
example), this property causes the begin and end methods to be recognized as the
implementation of a single asynchronous operation.

	 2.	 In Solution Explorer, right-click the App_Code folder in the C:\...\AdventureWorksAdmin\
project, and then click Add Existing Item. Add the file AsyncResult.cs, located in the
Microsoft Press\WCF Step By Step\Chapter 12 folder.

	 3.	 Open the AsyncResult.cs file and examine its contents. It contains a single generic class
called AsyncResult that implements the IAsyncResult interface. Detailed discussion of this
class and the IAsyncResult interface is beyond the scope of this book, but the purpose
of the AsyncResult class is to provide synchronization methods and state information
required by other classes that implement asynchronous methods. For this exercise, the
important members of the AsyncResult class are:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 12  Implementing One-Way and Asynchronous Operations	 449

❏❏ Data  This property provides access to the data returned by the asynchronous
operation. In this example, the CalculateTotalValueOfStock operation will populate
this property and return the AsyncResult object to the client application when it
executes the end method.

❏❏ AsyncResult  This is the constructor. It takes two parameters which it stores in
private fields. The service will use the synchronous parameter to indicate whether
it really is invoking the operation synchronously, and the stateData parameter will
be a reference to the object passed in as the final parameter to the begin method
(it is important to save this object because it must be returned to the client appli-
cation to enable it to complete processing).

	 4.	 Open the Service.cs file in the App_Code folder the for the C:\...\AdventureWorksAdmin\
project in the Code And Text Editor window. Add the following delegate to the start of
the AdventureWorksAdmin class:

public class AdventureWorksAdmin : IAdventureWorksAdmin

{

 private delegate void AsyncSleepCaller(int millisecondsTimeout);

 ...

}

You will use this delegate in the methods that you will add in the next steps.

	 5.	 Add the following method to the AdventureWorksAdmin class:

public class AdventureWorksAdmin : IAdventureWorksAdmin

{

 ...

 // CalculateTotalValueOfStock operation

 // Service can elect to perform the operation

 // synchronously or asynchronously

 public IAsyncResult BeginCalculateTotalValueOfStock(string id,

 AsyncCallback callback, object state)

 {

 AsyncResult<int> calcTotalValueResult;

 // Generate a random number.

 // The value generated determines the "complexity" of the operation

 Random generator = new Random();

 // If the random number is even, then the operation is simple

 // so perform it synchronously

 if ((generator.Next() % 2) == 0)

 {

 calcTotalValueResult = new AsyncResult<int>(true, state);

 System.Threading.Thread.Sleep(20000);

 System.Windows.MessageBox.Show("Synchronous sleep completed");

 calcTotalValueResult.Data = 5555555;

 calcTotalValueResult.Complete();

 }

 // Otherwise, the operation is complex so perform it asynchronously

 else

Download from Wow! eBook <www.wowebook.com>

450	 Windows Communication Foundation 4 Step by Step

 {

 // Perform the operation asynchronously

 calcTotalValueResult = new AsyncResult<int>(false, state);

 AsyncSleepCaller asyncSleep = new AsyncSleepCaller(

 System.Threading.Thread.Sleep);

 IAsyncResult result = asyncSleep.BeginInvoke(30000,

 new AsyncCallback(EndAsyncSleep), calcTotalValueResult);

 }

 callback(calcTotalValueResult);

 System.Windows.MessageBox.Show(

 "BeginCalculateTotalValueOfStock completed for " + id);

 return calcTotalValueResult;

 }

 ...

}

Note  You can find this code in the file BeginCalculateTotalValueOfStock.txt, which is
located in the Chapter 12 folder.

Again, the exact details of how this method works are beyond the scope of this book
(strictly speaking, it has nothing to do with WCF). But to summarize, the method gener-
ates a random number, and if this number is even, it performs the operation synchro-
nously (simulating a lightly-loaded server in the scenario outlined earlier), otherwise it
performs it asynchronously (simulating a busier server). In the synchronous case, the
code creates a new AsyncResult object, sleeps for 20 seconds to simulate the time taken
to perform the calculation, and then populates the AsyncResult object with the result—
5555555. In the asynchronous case, the code also creates an AsyncResult object, but
spawns a thread that sleeps for 30 seconds in the background. It does not populate the
AsyncResult object because this happens in the background when the sleeping thread
wakes up later. In both cases, the code invokes the callback method in the client applica-
tion, passing the AsyncResult object as its parameter. The client application will retrieve
the results of the calculation from this object. The same AsyncResult object is also
returned as the result of this method (this is a requirement of the IAsyncResult design
pattern).

The method also displays message boxes that help you to trace the execution of the
method and establish whether the operation is running synchronously or
asynchronously.

	 6.	 Add the end method shown below to the AdventureWorksAdmin class:

public class AdventureWorksAdmin : IAdventureWorksAdmin

{

 ...

 public int EndCalculateTotalValueOfStock(IAsyncResult r)

Download from Wow! eBook <www.wowebook.com>

	 Chapter 12  Implementing One-Way and Asynchronous Operations	 451

 {

 // Wait until the AsyncResult object indicates the

 // operation is complete

 AsyncResult<int> result = r as AsyncResult<int>;

 if (!result.CompletedSynchronously)

 {

 System.Threading.WaitHandle waitHandle = result.AsyncWaitHandle;

 waitHandle.WaitOne();

 }

 // Return the calculated value in the Data field

 return result.Data;

 }

 ...

}

Note  You can find this code in the file EndCalculateTotalValueOfStock.txt, which is located
in the Chapter 12 folder.

This method is invoked when the begin method completes. The purpose of this method
is to retrieve the result of the calculation from the Data property in the AsyncResult
object passed in as the parameter. If the operation is being performed asynchronously,
it might not have completed yet. (Applications invoking the begin method for an asyn-
chronous operation can call the end method at any time after the begin finishes, so the
end method should ensure that the operation has completed before returning.) In this
case, the method waits until the AsyncResult object indicates that the operation has fin-
ished before extracting the data and returning.

	 7.	 Add the following private method to the AdventureWorksAdmin class:

public class AdventureWorksAdmin : IAdventureWorksAdmin

{

 ...

 private void EndAsyncSleep(IAsyncResult ar)

 {

 // This delegate indicates that the "complex" calculation

 // has finished

 AsyncResult<int> calcTotalValueResult = (AsyncResult<int>)ar.AsyncState;

 calcTotalValueResult.Data = 9999999;

 calcTotalValueResult.Complete();

 System.Windows.MessageBox.Show("Asynchronous sleep completed");

 }

 ...

}

Note  You can find this code in the file EndAsyncSleep.txt, which is located in the Chapter 12
folder.

Download from Wow! eBook <www.wowebook.com>

452	 Windows Communication Foundation 4 Step by Step

If the begin method decides to perform its task asynchronously, it simulates performing
the calculation by creating a new thread and sleeping for 30 seconds. The EndAsyncSleep
method is registered as a callback when the background sleep starts. When the 30 sec-
onds have expired, the operating system reawakens the thread and invokes this method.
This method populates the Data field of the AsyncResult object, and then indicates that
the operation is now complete. This releases the main thread in the service, which was
waiting in the end method and allows it to return the data to the client application.

Notice that the values returned are different depending on whether the service per-
forms the operation synchronously (5555555) or asynchronously (9999999).

	 8.	 Rebuild the solution.

Invoke the CalculateTotalValueOfStock Operation in the WCF Client Application

	 1.	 In the AdventureWorksAdminTestClient project, expand the Service References folder,
right-click the AdventureWorksAdmin service reference, and then click Update Service
Reference.

This action generates a new version of the client proxy, including the CalculateTotal
ValueOfStock operation.

	 2.	 In the Solution Explorer, ensure that the Show All Files check box is selected.

	 3.	 Expand the AdventureWorksAdmin service reference, expand the Reference.svcmap
folder, and open the Reference.cs file in the Code And Text Editor window. Examine the
definition of the service contract in the AdministrativeService interface. Notice that the
new operation is called CalculateTotalValueOfStock and that there is no sign of the begin
and end methods that implement this operation; the fact that the operation is imple-
mented asynchronously is totally transparent to the client application.

	 4.	 Edit the Program.cs file. Remove the statements in the try block that invoke the Generate
DailySalesReport operation and the Console.WriteLine statements. Replace them with
the following code shown in bold:

static void Main(string[] args)

{

 try

 {

 AdministrativeServiceClient proxy = new AdministrativeServiceClient(

 "WS2007HttpBinding_AdministrativeService");

 int totalValue = proxy.CalculateTotalValueOfStock("First Calculation");

 Console.WriteLine("Total value of stock is {0}", totalValue);

 totalValue = proxy.CalculateTotalValueOfStock("Second Calculation");

 Console.WriteLine("Total value of stock is {0}", totalValue);

 totalValue = proxy.CalculateTotalValueOfStock("Third Calculation");

Download from Wow! eBook <www.wowebook.com>

	 Chapter 12  Implementing One-Way and Asynchronous Operations	 453

 Console.WriteLine("Total value of stock is {0}", totalValue);

 proxy.Close();

 }

 ...

}

These statements simply invoke the CalculateTotalValueOfStock method three times and
display the results. Hopefully, the service will execute at least one of these calls in a dif-
ferent manner from the other two (either synchronously or asynchronously).

	 5.	 Start the solution without debugging.

What happens next depends on the value of the random number generated by the
service to determine whether it should perform the operation synchronously or asyn-
chronously. If you are unlucky, you must wait for 20 seconds before you see the first
message box appear.

This is because the random number generator in the BeginCalculateTotalValueOfStock
method produced an even number and is executing the method synchronously. This
should be followed by the following message box:

You will see the result (5555555) displayed in the client application console window as
soon as you click OK in the message box.

If you only see the second message box, the BeginCalculateTotalValueOfStock has
decided to execute the method asynchronously. You will then need to wait for up to
30 seconds after closing the message box, until you see the following one appear.

Download from Wow! eBook <www.wowebook.com>

454	 Windows Communication Foundation 4 Step by Step

The value 9999999 should also appear in the client application console window. This
process will be repeated for each of the three calls that the client application makes to
the CalculateTotalValueOfStock operation.

	 6.	 Press Enter to close the client application console window.

This is all very well, but so far, you have gone to a lot of trouble to allow the service to deter-
mine the best strategy for running a potentially lengthy or expensive operation. Worse, as
far as the client application is concerned, everything is still synchronous; each call to the
CalculateTotalValueOfStock operation was blocked until it completed. Fortunately, you can
also enable asynchronous operations on the client by regenerating the proxy with the /async
flag, as mentioned earlier. That is what you will do in the next exercise.

Invoke the CalculateTotalValueOfStock Operation Asynchronously

	 1.	 In the AdventureWorksAdminTestClient project, expand the Service References folder,
right-click the AdventureWorksAdmin service reference, and then click Configure Service
Reference. In the Service Reference Settings dialog box, select the Generate Asynchro-
nous Operations check box, and then click OK.

This action generates another version of the proxy that enables the client application to
invoke operations in the services asynchronously.

	 2.	 Examine the Reference.cs file under the Reference.svcmap folder in the AdventureWorks
Admin service reference folder.

Tip  If you still have this file open in the Code And Text Editor window from earlier exer-
cises, close the file and reopen it to refresh the display.

You should see that the client proxy now contains begin and end methods for both of
the operations in the service contract, so you can call them asynchronously (the syn-
chronous versions of each method are still present). These changes are implemented
only in the client proxy; the service is not actually aware of them.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 12  Implementing One-Way and Asynchronous Operations	 455

	 3.	 Edit the Program.cs file in the AdventureWorksAdminTestClient project. Remove the
statements that invoke the CalculateTotalValueOfStock operation, the Console.WriteLine
statements, and the statement that closes the proxy. Replace them with the following
code shown in bold:

static void Main(string[] args)

{

 try

 {

 AdministrativeServiceClient proxy = new AdministrativeServiceClient(

 "WS2007HttpBinding_AdministrativeService");

 proxy.BeginCalculateTotalValueOfStock("First Calculation",

 CalculateTotalValueCallback, proxy);

 proxy.BeginCalculateTotalValueOfStock("Second Calculation",

 CalculateTotalValueCallback, proxy);

 proxy.BeginCalculateTotalValueOfStock("Third Calculation",

 CalculateTotalValueCallback, proxy);

 }

 ...

}

This code invokes the client-side asynchronous version of the CalculateTotalValueOf
Stock method three times. The results will be handled by a method called Calculate
TotalValueCallback, which you will add next. A reference to the proxy is passed in as the
state parameter.

It is important that you remove the proxy.Close statement. If you close the proxy at this
point, the WCF runtime will destroy the channel stack on the client side before the asyn-
chronous calls have completed, and the client application will be unable to obtain the
responses from the service.

	 4.	 Add the following method immediately after the end of the Main method in the
Program class:

static void CalculateTotalValueCallback(IAsyncResult asyncResult)

{

 int total = ((AdministrativeServiceClient)asyncResult.AsyncState).

 EndCalculateTotalValueOfStock(asyncResult);

 Console.WriteLine("Total value of stock is {0}", total);

}

This is the callback method. When the CalculateTotalValueOfStock operation completes,
the proxy will run this method. It retrieves the object passed back from the service (this
is the state object, which is a reference to the proxy passed in by the client application
as the third parameter in the BeginCalculateTotalValueOfStock method) and uses this
object to invoke the EndCalculateTotalValueOfStock method. The value returned by the
end method is the calculated total value of the stock from the service.

Download from Wow! eBook <www.wowebook.com>

456	 Windows Communication Foundation 4 Step by Step

	 5.	 Start the solution without debugging.

The client application starts and immediately displays the message “Press ENTER to
finish.” This is because the calls to the BeginCalculateTotalValueOfStock method are no
longer blocking the client application.

Do not press Enter just yet; allow the application to continue running. After 20 or 30
seconds, you should see the message boxes that appeared in the previous exercise,
indicating whether the service is executing each request synchronously or asynchro-
nously. The results of the calculations should appear in the client console window as
the operations complete.

	 6.	 After all three results have been displayed, press Enter to close the client application
console window.

From these exercises, you should now understand the difference between invoking an opera-
tion asynchronously in a client application and implementing an operation that supports
asynchronous processing in the service. A developer can decide whether to implement an
operation as a pair of methods implementing the IAsyncResult design pattern independently
from any client applications. These methods appear as a single operation to the client appli-
cation, and the implementation is totally transparent.

Similarly, when creating a WCF client application, developers wishing to invoke operations
asynchronously need only generate an asynchronous proxy (either by using the Add Service
Reference Wizard, or by specifying the /async flag with the svcutil utility). Whether the client
application invokes an operation synchronously is transparent to the service.

Finally, you should also realize that although a client application can invoke an operation
asynchronously, the service may choose to implement the operation synchronously, and vice
versa. The result is complete flexibility on the part of both client applications and services.

There is one further point worth making. You can define both synchronous and asynchronous
versions of the same operation in a service contract, as shown in the following:

[ServiceContract(...)]

public interface IAdventureWorksAdmin

{

 ...

 // Synchronous operation

 [OperationContract]

 int CalculateTotalValueOfStock(string id);

 // Asynchronous version

 [OperationContract(AsyncPattern = true)]

 IAsyncResult BeginCalculateTotalValueOfStock(string id, AsyncCallback cb, object s);

 int EndCalculateTotalValueOfStock(IAsyncResult r);

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 12  Implementing One-Way and Asynchronous Operations	 457

However, if you do this, both operations appear in the WSDL description of the service as the
same action (CalculateTotalValueOfStock). In this case, WCF will not throw an exception but
will always use the synchronous version of the operation in preference to the asynchronous
version (WCF assumes that the synchronous version achieves faster throughput). So, don’t
define synchronous and asynchronous versions of the same operation in the same service
contract.

Using Message Queues
Message queues are the ultimate in asynchronous technology. Message queues can provide
a durable, reliable, transacted transport for messages. Furthermore, a client application send-
ing messages and a service receiving them do not need to be running at the same time. You
pay a price for this flexibility though: message queues are inherently a one-way transport, so
implementing applications and services that send requests and expect to receive responses
requires much careful design. Message queues are also slower than other transports, primar-
ily because of their support for reliability and durability; the Windows operating system stores
messages in files on disk. While this means that messages held in a message queue can sur-
vive machine shutdown and power failure, that robustness comes at the cost of the additional
I/O involved in creating and transmitting the messages.

Note  You can specify that messages are not durable if performance is more important than reli-
ability. So-called volatile messages are cached in memory rather than disk and consequently do
not survive machine restarts or crashes.

If you have already built message queuing applications using Microsoft Message Queue
Server (MSMQ), you will appreciate that although the programming model is straightforward,
it is fundamentally different than the programming practices you adopt when building a more
traditional client/server application. However, one of the goals of WCF is to provide a consis-
tent model for sending and receiving, irrespective of the underlying transport, so using mes-
sage queues with WCF is very similar to using most other transports. However, it is somewhat
different from the message queuing techniques you might have used in the past.

In the final set of exercises in this chapter, you will see just how easy it is to use message
queues as a transport for asynchronous one-way operations.

Download from Wow! eBook <www.wowebook.com>

458	 Windows Communication Foundation 4 Step by Step

Implement a WCF Service that Uses Message Queuing

	 1.	 Using Visual Studio, open the solution file AdventureWorksAdmin.sln located in the
Microsoft Press\WCF Step By Step\Chapter 12\MSMQ folder within your Documents
folder.

This solution contains two projects: AdventureWorksAdminHost, which is a self-hosted
version of the AdventureWorksAdmin WCF service, and AdventureWorksAdminTest
Client, which is a client application for testing the service.

Note  Don’t try to build this solution yet; it is not complete.

	 2.	 In Solution Explorer, open the IService.cs file for the AdventureWorksAdminHost project
in the Code And Text Editor window.

This is the code that defines the service contract in the IAdventureWorksAdmin interface.
It should look familiar because it is very similar to the service you created in the first set
of exercises in this chapter. The service contains a single operation: GenerateDailySales
Report. Notice that the operation contract still specifies that this is a one-way operation.
This is important because all operations in a service accessed through a message queue
must be one-way operations.

	 3.	 Open the Service.cs file in the Code And Text Editor window.

This file contains the AdventureWorksAdmin class that implements the IAdventureWorks
Admin interface. Notice that the GenerateDailySalesReport method now only waits for
10 seconds (assume that you are running on a faster machine than before, so the pro-
cessing takes less time).

	 4.	 Open the HostController.xaml file in the Design View window. This is a version of the
window that you previously used to host the ProductsService service.

	 5.	 Examine the code behind this window in the HostController.xaml.cs file. The logic in this
form is the same as before. The only difference is that this form now hosts the Adventure
WorksAdmin service.

	 6.	 Edit the app.config file for the AdventureWorksAdminHost project by using the Service
Configuration Editor. The application configuration file does not currently contain any
information about the service.

	 7.	 In the Configuration pane, right-click Services, and then click New Service.

A new, empty service definition is added to the configuration file that you can configure
manually. This approach is an alternative to using the Create A New Service Wizard.

	 8.	 In the right pane, in the Name property, type AdventureWorksAdmin (this is the name
of the class implementing the service).

Download from Wow! eBook <www.wowebook.com>

	 Chapter 12  Implementing One-Way and Asynchronous Operations	 459

	 9.	 In the Configuration pane, right-click the Endpoints folder under the AdventureWorks-
Admin service, and then click New Service Endpoint.

	 10.	 In the right pane, set the properties of the endpoint by using the values in the following
table. Leave any other properties at their default values.

Property Value

Name AdventureWorksAdminMsmqBinding

Address net.msmq://localhost/private/AdventureWorksAdmin

Binding netMsmqBinding

Contract IAdventureWorksAdmin

The format for a message queuing URI consists of the scheme “net.msmq” followed by
the name of the queue. MSMQ identifies queues using a syntax very similar to HTTP
URLs, although the semantics are somewhat different. The “private” part of the URI
indicates that this is a private message queue, meaning that it can be accessed only
from applications running on the local computer. If you are using a computer that is a
member of a Windows domain, you can also create public message queues that can be
accessed by code running on other computers. The actual name of the message queue
is “AdventureWorksAdmin.”

More Info  For a detailed description of message queues, see the topic “Using Messag-
ing Components” in the documentation provided with Visual Studio (also available on the
Microsoft Web site at http://msdn.microsoft.com/en-us/library/fzc40kc8.aspx).

	 11.	 In the Configuration pane, right-click the Bindings folder, and then click New Binding
Configuration. In the Create A New Binding dialog box, click the netMsmqBinding bind-
ing type, and then click OK.

	 12.	 In the right pane, set the Name property of this binding configuration to
AdventureWorksAdminMsmqBindingConfig.

You can set binding properties that control many aspects of the way the message queue
works. For example, the Durable property determines whether messages should be
capable of surviving process failure or machine shutdown and restart; setting this prop-
erty to False makes messages volatile. The ExactlyOnce property is the MSMQ analog
of reliable messaging; setting this property to True guarantees that messages will be
received once and once only, and messages will not be lost or inadvertently retrieved
more than once by concurrent instances of the service from the message queue. Setting
this property to True requires the message queue to be transactional (you can specify
whether a queue is transactional when you create it, by using the Computer Manage-
ment Console).

Download from Wow! eBook <www.wowebook.com>

460	 Windows Communication Foundation 4 Step by Step

	 13.	 Click the Security tab. Modify the security settings of the binding configuration, and set
the Mode property to None.

Message queues support message-level security and transport-level security, although
the implementation of transport-level security is peculiar to MSMQ and does not
require you to configure SSL. If you implement message-level security, you can specify
the client credential type. You should note that the authentication mechanism imple-
mented by MSMQ message-level security requires that the message queue server must
be configured to provide a certificate for the message queue used by the binding.

Important  For simplicity, this example uses a local, unprotected private message queue
that is accessible only on the host computer. In a production environment, you will most
likely use public queues, which should be protected by using transport-level or message-
level security.

	 14.	 In the Configuration pane, click the AdventureWorksAdminMsmqEndpoint endpoint
definition in the Endpoints folder under the AdventureWorksAdmin service. In the right
pane, set the BindingConfiguration property to AdventureWorksAdminMsmqBinding
Config.

	 15.	 Save the configuration file then exit the Service Configuration Editor.

	 16.	 In Visual Studio, build the AdventureWorksAdminHost project. Do not try to build the
entire solution, because the client application is not yet complete; that is your next task.

Send Messages to a Message Queue from a WCF Client Application

	 1.	 Open a Visual Studio Command Prompt window and move to the Microsoft Press\WCF
Step By Step\Chapter 12\MSMQ\AdventureWorksAdminHost\bin\Debug folder. Type
the following commands to generate the client proxy from the service contract com-
piled into the AdventureWorksAdminHost.exe assembly:

svcutil AdventureWorksAdminHost.exe

svcutil /namespace:*,AdventureWorksAdminTestClient.AdventureWorksAdmin

 adventure-works.com.2010.07.01.wsdl *.xsd /out:AdventureWorksAdminProxy.cs

The code for the proxy is generated in the AdventureWorksAdminProxy.cs file. Note that
you cannot easily use the Add Service Reference Wizard in Visual Studio to add a refer-
ence to a WCF service that uses the MSMQ transport.

	 2.	 Return to Visual Studio and add the AdventureWorksAdminProxy.cs file that you just
created to the AdventureWorksAdminTestClient project.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 12  Implementing One-Way and Asynchronous Operations	 461

	 3.	 Open the Program.cs file for the AdventureWorksAdminTestClient project in the Code
And Text Editor window. Again, this code should look very familiar because it is almost
identical to the client application you developed in the first set of exercises in this chap-
ter for testing one-way operations. There is an additional prompt—“Press ENTER to send
messages”—in the try block, and you must specify a binding to use when instantiating
the proxy. Before you do this, you must define the binding you are going to use and
add it to the application configuration file.

	 4.	 Edit the app.config file for the AdventureWorksAdminTestClient project by using the
Service Configuration Editor.

	 5.	 In the Configuration pane, expand the Client folder, right-click the Endpoints folder, and
then click New Client Endpoint. As before, you will enter the details of the client end-
point manually rather than by using the New Client Element Wizard.

	 6.	 In the Client Endpoint pane, set the properties of the endpoint using the values shown
in the following table. Leave any other properties with their default values.

Property Value

Name MsmqBinding_AdventureWorksAdmin

Address net.msmq://localhost/private/AdventureWorksAdmin

Binding netMsmqBinding

Contract AdventureWorksAdminTestClient.AdventureWorksAdmin.AdministrativeService

	 7.	 Add a binding configuration based on the netMsmqBinding type. Set the Name prop-
erty of this binding configuration to AdventureWorksAdminMsmqBindingConfig.
Change the security settings of the binding configuration and set the Mode property
to None.

	 8.	 Return to the MsmqBinding_AdventureWorksAdmin endpoint definition and set the
BindingConfiguration property to AdventureWorksAdminMsmqBindingConfig.

	 9.	 Save the configuration file and exit the Service Configuration Editor.

	 10.	 In the Program.cs file for the AdventureWorksAdminTestClient project, modify the state-
ment that creates the proxy object and replace the text “INSERT ENDPOINT HERE” with
the name of the MSMQ endpoint, as shown in bold in the following:

AdministrativeServiceClient proxy =

 new AdministrativeServiceClient("MsmqBinding_AdventureWorksAdmin");

This completes the code for the service and the client application. You can now create the
message queue and then test the service.

Download from Wow! eBook <www.wowebook.com>

462	 Windows Communication Foundation 4 Step by Step

Create the AdventureWorksAdmin Queue and Test the Service

	 1.	 On the Windows Start menu, right-click Computer, and then click Manage to open the
Computer Management console.

	 2.	 In the Computer Management console, expand the Services And Applications node in
the left pane, expand the Message Queuing node, right-click the Private Queues folder,
point to New, and then click Private Queue.

	 3.	 In the New Private Queue dialog box, type AdventureWorksAdmin in the Queue name
text box, select the Transactional option, and then click OK.

Note  If you don’t want the overhead of transactional message queues, you must set the
ExactlyOnce property of the binding configuration for the netMsmqBinding binding to
False.

	 4.	 Leave the Computer Management console open and return to Visual Studio.

	 5.	 Start the solution without debugging.

In the client console window, press Enter to send the two GenerateDailySalesReport
messages—but don’t start the service running yet. Notice that the client successfully
sends the messages, even though the service is not running. Press Enter to close the
client console window.

	 6.	 Return to the Computer Management console. Expand the AdventureWorksAdmin
queue in the Private Queues folder under Message Queuing, and then click the Queue
Messages folder. Two messages should be displayed in the right pane:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 12  Implementing One-Way and Asynchronous Operations	 463

Tip  If no messages appear, click Refresh on the Action menu to update the display.

If you double-click a message, you can display its properties, including the text in the
body of the message.

	 7.	 In the AdventureWorks Admin Host window, click Start.

The service starts, retrieves each message from the queue in turn, and processes them
(remember that each message takes at least 10 seconds to process, and the host appli-
cation will be unresponsive while the messages are being processed because it is not
multi-threaded, for simplicity). The operation displays a message box after processing
each message.

Stop the service and close the AdventureWorks Admin Host window after the second
message box has displayed.

	 8.	 Return to the Computer Management console that’s displaying the messages in the
message queue. From the Action menu, select Refresh to update the display. Both mes-
sages should disappear because they have now been removed from the message queue
by the WCF service.

	 9.	 Close the Computer Management console.

MSMQ provides an easy-to-use mechanism for implementing asynchronous operations. How-
ever, the netMsmqBinding binding restricts you to implementing one-way operations. If a ser-
vice needs to send a response, it can do so asynchronously by sending a message to a queue
to which the client application can connect. This involves implementing a different message
for each client (for privacy) and correlating messages so the client application knows which
response corresponds to which request.

More Info  For more information and an example of using message queues to implement
asynchronous request/response messaging, see the topic “Two-Way Communication” in the
documentation provided with Visual Studio (also available on the Microsoft Web site at http://
msdn.microsoft.com/en-us/library/ms752264.aspx).

Download from Wow! eBook <www.wowebook.com>

464	 Windows Communication Foundation 4 Step by Step

Summary
In this chapter, you have seen three ways to send and process messages to improve the respon-
siveness of WCF client applications and services and exploit multiple threads in a service to
improve throughput. You should use one-way messaging for long-running operations that do
not return any data. For operations that do pass information back to the client application,
you can generate an asynchronous client proxy and invoke these operations asynchronously.
A service can also choose to implement a long-running operation asynchronously—independent
from the way in which the client application actually invokes the operation—by setting the
AsyncPattern property of the operation contract to true, and then implementing the IAsync
Result design pattern. If client applications and services execute at different times, you can
implement message queuing and the MSMQ transport.

Download from Wow! eBook <www.wowebook.com>

465

Chapter 13

Implementing a WCF Service for
Good Performance

After completing this chapter, you will be able to:

■■ Manage service scalability by using throttling to control use of resources.

■■ Use the Message Transmission Optimization Mechanism to transmit messages containing
binary data in a standardized, efficient manner.

■■ Explain how to enable streaming for a binding and design operations that support
streaming.

Good performance is a key factor in most applications and services. You can help to ensure
that a WCF service maintains throughput, remains responsive, and is scalable by thoughtful
design and by selecting the appropriate features that meet this design. The examples that
you have seen so far include careful use of transactions, session state, reliable messaging, and
asynchronous operations.

There are other aspects that can impact performance, such as security. As discussed in earlier
chapters, implementing message-level security and secure conversations results in a complex
exchange of messages to negotiate the protocol to use and the exchange of identity infor-
mation. Messages themselves are also bigger because of the additional security information
included in the message headers—they take longer to traverse the network and require more
memory to process. Encryption and decryption are also very resource-intensive tasks. How-
ever, all these are necessary parts of a secure system, so most people are willing to trade some
performance for assurance that their data and identity information remain private. (If decryp-
tion were quick and easy to perform it would also be fairly useless; the more resources it takes
to decrypt a message, the better protected the message is.)

An important aspect of maintaining performance is ensuring that a service does not exhaust
the resources available on the host computer, causing the system to slow down and possibly
stop altogether. WCF provides service throttling to help control resource utilization. Using
this feature can greatly aid the scalability of your service. Load-balancing is another tech-
nique that you can employ to distribute requests across multiple servers and maintain even
throughput; Chapter 14, “Discovering Services and Routing Messages,” describes a simple
implementation of load balancing by building a specialized WCF service. You can also build
a load-balancing infrastructure based on Microsoft Windows Network Load Balancing and
Windows Server AppFabric, although the details of this technology are beyond the scope of
this book.

Download from Wow! eBook <www.wowebook.com>

466	 Windows Communication Foundation 4 Step by Step

Using the appropriate encoding mechanism when transmitting data can also have a signifi-
cant effect on performance. As you have seen, WCF supports both text and binary encoding
of messages. Binary encoding is often more compact and incurs less network overhead, but
the format is proprietary and cannot easily be used with applications and services running
on non-Microsoft platforms. However, WCF also supports Message Transmission Optimization

Mechanism (MTOM), which provides a standardized, interoperable, and efficient format for
transmitting large blocks of binary data.

MTOM is useful if you know how much data the service is going to transmit. Some services
emit long data blocks of indeterminate size. This type of data is best transmitted as a stream,
and WCF also provides support for outputting streams from a service.

In this chapter, you will examine how to use service throttling to assist in maintaining scalabil-
ity, how to encode data by using MTOM to reduce the overhead of transmitting large binary
data objects, and how to enable streaming to make best use of network bandwidth.

Using Service Throttling to Control Resource Use
You can use service throttling to prevent over-consumption of resources in a WCF service.
You might recall from Chapter 11, “Programmatically Controlling the Configuration and
Communications,” that when a message received by a service host reaches the top of the
channel stack, it passes to a ChannelDispatcher object, which in turn passes it to the appro-
priate EndpointDispatcher object, which invokes the corresponding method in the appro-
priate service instance. However, before forwarding the request to the EndpointDispatcher
object, the ChannelDispatcher object can examine the current load on the service and elect
to delay the request if it would cause the service to exceed the permissible load. In that case,
the request is blocked and held in an internal queue until the load on the service eases. The
ChannelDispatcher object has a property called ServiceThrottle that you can use to help con-
trol how the ChannelDispatcher decides whether to block and queue requests or let them
execute. The ServiceThrottle property is an instance of the ServiceThrottle class, which itself
exposes three more integer properties:

■■ MaxConcurrentInstances  This property specifies the maximum number of concurrent
service instances that the service host will permit.

■■ MaxConcurrentCalls  This property specifies the maximum number of concurrent mes-
sages that the service host will process. If a client application makes a large number of
concurrent calls, either as the result of invoking one-way operations or by using client-
side multi-threading, it can quickly monopolize a service. In this scenario, you might
want to limit each client to a single thread in the service by setting the ConcurrencyMode
property of the service to ConcurrencyMode.Single. The client application can continue
running asynchronously and should remain responsive to the user, but requests submit-
ted by the client application will be processed in a serial manner by the service.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 13  Implementing a WCF Service for Good Performance	 467

■■ MaxConcurrentSessions  This property specifies the maximum number of concurrent
sessions that the service host will permit. Client applications are responsible for estab-
lishing and terminating sessions and can make several calls to the service during a ses-
sion. Clients that create long-running sessions can cause other clients to be blocked, so
keep sessions as brief as possible and avoid performing tasks such as waiting for user
input.

Configuring Service Throttling
By default, the ServiceThrottle property of the ChannelDispatcher object is set to null and the
WCF runtime uses its own default values for the maximum number of concurrent instances,
calls, and sessions (these default values are described later). To control scalability, you should
arrange for the WCF runtime to create a ServiceThrottle object and explicitly set these proper-
ties to values suitable for your environment, taking into account the expected number of con-
current client applications and the work that they are likely to perform. You can perform this
task in code by creating a ServiceThrottlingBehavior object, setting its properties (the Service
ThrottlingBehavior class provides the same properties as the ServiceThrottle class), and adding
it to the collection of behaviors attached to the ServiceHost object, as described in Chapter
11. You must do this before opening the ServiceHost object. The following code shows an
example:

// Required for the ServiceThrottlingBehavior class

using System.ServiceModel.Description;

...

ServiceHost host = new ServiceHost(...);

ServiceThrottlingBehavior throttleBehavior = new ServiceThrottlingBehavior();

throttleBehavior.MaxConcurrentCalls = 40;

throttleBehavior.MaxConcurrentInstances = 20;

throttleBehavior.MaxConcurrentSessions = 20;

host.Description.Behaviors.Add(throttleBehavior);

host.Open();

...

However, be warned that the values of the properties in a ServiceThrottle object can have
a drastic effect on the response time and throughput of a WCF service. You should actively
monitor the performance of the WCF service and be prepared to change those settings if the
computer hosting the service is struggling. Additionally, clients blocked by limits that are set
too low can result in an excessive number of time-outs or other errors that will occur in the
client application or the channel stack, so be prepared to catch and handle them.

Because you might need to change the ServiceThrottle property values, a more flexible way to
create a ServiceThrottle object and set its properties is to add a service behavior that contains
the <serviceThrottling> element to the service configuration file. This is the approach that you
will adopt in the following exercise. You will also modify the service host to display the current
throttle settings.

Download from Wow! eBook <www.wowebook.com>

468	 Windows Communication Foundation 4 Step by Step

Apply Throttling to the ShoppingCartService Service

	 1.	 Using Visual Studio, open the solution file ShoppingCart.sln located in the Microsoft
Press\WCF Step By Step\Chapter 13\Throttling folder (within your Documents folder).

This solution contains a simplified non-transactional version of the ShoppingCartService
service that does not actually update the database. It also contains an extended version
of the client application that opens multiple concurrent sessions to the service.

Note  The rationale behind not updating the database or using transactions is to allow you
to concentrate on the throttling semantics of a service and not worry about any potential
locking and concurrency issues in the database. In the real world, you would have to take all
these factors into account.

	 2.	 Open the IShoppingCartService.cs file for the ShoppingCartService project in the Code
And Text Editor window. Notice that the service specifies that sessions are required in
the ServiceContract attribute of the IShoppingCartService interface. Open the Shopping
CartServics.cs file and observe that the ServiceBehavior attribute of the ShoppingCart
ServiceImpl class specifies the PerSession instance context mode.

	 3.	 Examine the AddItemToCart method in this class. This method starts with a WriteLine
statement that displays the method name. A corresponding WriteLine statement has
been added at each point at which the method can terminate. You will use these state-
ments to trace the progress of each instance of the service as it runs. Also notice that
the method contains the statement System.Threading.Thread.Sleep(10000) immediately
after the first WriteLine statement. Although this method still queries the database, it
no longer performs updates for reasons described in the previous note. This statement
slows the method down by waiting for 10 seconds, simulating the time taken to perform
the database update (assume the database update operation is very time consuming).
The purpose of all this is to make it a little easier to observe the effects of the service
throttling parameters. The other public methods, RemoveItemFromCart, GetShopping-
Cart, and Checkout, have been amended in the same way for this example.

	 4.	 Open the Program.cs file in the ShoppingCartClient project and locate the doClientWork
method. This method contains code that creates a new instance of the proxy object and
then invokes the various operations in the ShoppingCartService service, in much the
same way as you have seen in earlier chapters. The method contains WriteLine state-
ments that display its progress in the console window. The output includes a number
that identifies the client (this number is passed in as the parameter to the doClientWork
method). The client connects to the service using a standard TCP binding.

	 5.	 Examine the Main method. This method employs the Parallel.For construct to asynchro-
nously call the doClientWork method 10 times, passing in a value that identifies each
iteration as the client number parameter. Each call creates a new parallel task. This simu-
lates 10 different but identifiable clients connecting to the service at the same time.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 13  Implementing a WCF Service for Good Performance	 469

	 6.	 Open the Program.cs file in the ShoppingCartHost project. This is the application that
hosts the service. Add the following using statement to the top of the file:

using System.ServiceModel.Dispatcher;

This namespace contains the ServiceThrottle and ChannelDispatcher classes.

	 7.	 Add the following code (shown in bold) to the Main method, immediately after the
statement that opens the ServiceHost object:

static void Main(string[] args)

{

 ...

 host.Open();

 ChannelDispatcher dispatcher = (ChannelDispatcher)host.ChannelDispatchers[0];

 ServiceThrottle throttle = dispatcher.ServiceThrottle;

 if (throttle == null)

 Console.WriteLine("Service is using default throttling behavior");

 else

 Console.WriteLine("Instances: {0}\nCalls: {1}\nSessions: {2}",

 throttle.MaxConcurrentInstances, throttle.MaxConcurrentCalls,

 throttle.MaxConcurrentSessions);

 Console.WriteLine("Service running");

 ...

}

This code retrieves a reference to the ChannelDispatcher object used by the service (in
this example, the service has only a single binding, so the WCF runtime creates only
a single ChannelDispatcher when the host starts the service running). The code then
examines the ServiceThrottle property of this ChannelDispatcher object. If it is null,
then the administrator or developer has not specified any customized throttling set-
tings, so the service uses the default values. If the ServiceThrottle property is not null,
then the service is using a customized throttling behavior, and it displays the values pro-
vided by the administrator or developer.

	 8.	 Start the solution without debugging. In the service console window, notice that the
service is using the default throttling behavior.

Press Enter in the client application console window that’s displaying the message “Press
ENTER when the service has started.”

The client console window displays messages in the form “Client n: 1st AddItemToCart,”
where n is the number that identifies the client instance. Note that the Parallel.For con-
struct does not guarantee the order in which the clients start, so do not be surprised if,
for example, messages from Client 5 appear before those of Client 0 in the client appli-
cation console window.

Download from Wow! eBook <www.wowebook.com>

470	 Windows Communication Foundation 4 Step by Step

In the service host console window, you should see the message “AddItemToCart opera-
tion started” appear as each client sends an AddItemToCart request, as shown in the fol-
lowing image (the client application console window is the upper image, and the service
host is the lower one):

This indicates that the service is handling multiple clients simultaneously. As each method
completes, the service displays “AddItemToCart operation completed” messages and the
clients invoke further operations. At this point, the output might become a little more
chaotic, but the important point is that in this “unthrottled” state, the service has not
prevented any of the 10 clients from invoking operations at the same time (the default
value for the maximum number of concurrent calls is greater than 10).

When the message “Tests complete: Press ENTER to finish” appears in the client appli-
cation console window, press Enter. In the service host console window press Enter to
terminate the service host.

The behavior you’ve just seen used the default settings. Next, you’ll customize them.

	 9.	 In Visual Studio, edit the App.config file for the ShoppingCartHost project by using the
Service Configuration Editor.

	 10.	 In the Configuration pane, expand the Advanced folder, and then click the Service
Behaviors folder. In the right pane, click the New Service Behavior Configuration link.

In the right pane, change the Name property of the new behavior to ThrottleBehavior.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 13  Implementing a WCF Service for Good Performance	 471

	 12.	 In the lower part of the right pane, click Add then add a serviceThrottling element to the
behavior.

	 13.	 In the Configuration pane, click the serviceThrottling behavior element under the Throttle
Behavior behavior node.

The properties for this element appear: MaxConcurrentCalls, MaxConcurrentInstances,
and MaxConcurrentSessions. Each property displays a default value:

	 14.	 Change the value of the MaxConcurrentCalls property to 3.

	 15.	 In the Configuration pane, click the ShoppingCartService.ShoppingCartServiceImpl
service in the Services folder. In the right pane, set the BehaviorConfiguration property
to ThrottleBehavior.

	 16.	 Save the configuration file but leave the Service Configuration Editor open.

	 17.	 In Visual Studio, start the solution without debugging. In the service host console win-
dow, you should see that the service is now using the throttling behavior you have just
defined.

Download from Wow! eBook <www.wowebook.com>

472	 Windows Communication Foundation 4 Step by Step

You may be a little surprised at the values shown in the service host console window
(and the values that you see might be different from those shown, for reasons that I
am about to describe). In the Service Configuration Editor, the values generated for the
properties of the serviceThrottling element are not necessarily the actual values used by
the service host unless you modify them. In WCF 4.0, the default values are determined
based on the available resources of the host computer. For example on a machine
with a single-core processor, the default value for the maximum number of concurrent
instances is 116, the default value for the maximum number of concurrent calls is 16,
and the default value for the maximum number of concurrent sessions is 100 (the values
you saw displayed in the Service Configuration Editor).

On a dual-core machine, you will find that the defaults are doubled—even though the
default values displayed for the serviceThrottling behavior element are still those shown
in the image in step 13. Additionally, there is a relationship between the default values
such that MaxConcurrentInstances = MaxConcurrentCalls + MaxConcurrentSessions.
This means that if you change the MaxConcurrentCalls property but leave the others
unchanged, the WCF runtime will generate values for them. I built and tested the ser-
vice on a computer with a dual-core processor. This is why the maximum number of
sessions displayed by the service host console window is 200 rather than 100, and the
maximum number of instances is 203 (203 = 3 + 200).

Of course, if you specify your own values for MaxConcurrentInstances and MaxConcurrent
Sessions, then WCF will use those rather than calculate them.

	 18.	 Press Enter in the client application console window.

In the client console window, all 10 clients output the message “Client n: 1st AddItemTo
Cart,” but the service host console shows something different than before; initially only
three “AddItemToCart operation started” messages appear. This is because the service
now supports only three concurrent operation calls. The ChannelDispatcher queues
each subsequent request. As each call finishes, displaying the “AddItemToCart operation
completed” message, the ChannelDispatcher releases the next request from its queue,
and you see the message “AddItemToCart operation started” appear for the next client.
Thereafter, each time an operation completes, the ChannelDispatcher releases the next
request. You should see more or less (it probably won’t be exact) alternating “com-
pleted” and “started” messages until all the clients have finished their work, because
the time required by the service to process each request is at least 10 seconds, which is
longer than the time each client takes to send the next request after the previous one
completes.

Note  The ChannelDispatcher releases requests from its queue on a first-come, first-served
basis. Currently, WCF does not allow you to specify that the requests for one client should
have a higher priority than another.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 13  Implementing a WCF Service for Good Performance	 473

When the client application has finished, press Enter to close the client application con-
sole window, and then press Enter to close the service host console window.

	 19.	 Return to the Service Configuration Editor and click the serviceThrottling service behavior
element in the Configuration pane. In the right pane, increase the MaxConcurrentCalls
property to 16 (the default value) and set the MaxConcurrentSessions property to 3.
Save the configuration file then close the Service Configuration Editor.

	 20.	 In Visual Studio, start the solution without debugging. In the service host console
window, you should see that the service is using the updated throttling behavior
(MaxConcurrentInstances should now be calculated as 19 on a dual-core machine).

Press Enter in the client application console window.

Again, in the client console window, all 10 clients output the message “Client n: 1st
AddItemToCart,” and the service console window shows 3 calls to the AddItemToCart
operation starting and completing. However, when these calls complete, if you observe
the messages in the client console window, you will see that only the first clients invoke
the AddItemToCart operation the second time; the other clients are held pending by the
ChannelDispatcher because it has reached the maximum allowed number of concurrent
sessions. The first 3 clients complete their cycle of work, calling AddItemToCart a third
time, followed by the GetShoppingCart operation and the Checkout operation. Only
when Checkout completes and a client closes its session before terminating is the next
client allowed to continue. You should see messages occurring in batches of 3 in the
client console window (3 “2nd AddItemToCart” messages, 3 “3rd AddItemToCart” mes-
sages, and so on), as each set of 3 sessions executes.

Some of the later sessions will report the exception “The operation did not complete
within the allotted time-out of 00:01:00. ….” This occurs because the time between when
they submitted their initial AddItemToCart request and when the service allowed that
request to be handled exceeded the time-out limit specified for the client binding.

Note  Although the ChannelDispatcher queues the initial requests that create each session
in the order in which they are received, once a session starts running, there is no guarantee
that the session will be serviced before or after any other running session. For example,
when sessions for clients 3, 4, and 5 are running, you might see messages indicating that
operations for client 4 execute before those of client 3; this is due to the scheduling algo-
rithm in the operating system which decides when to execute each thread in the client and
in the service.

When the tests have completed, press Enter to close the client application console win-
dow, and then press Enter to close the service console window.

Download from Wow! eBook <www.wowebook.com>

474	 Windows Communication Foundation 4 Step by Step

This exercise showed the effects of using service throttling to control the maximum number of
concurrent calls and sessions that a service will permit. Unfortunately, this won’t tell you the
values you should use for your own services. You need to test your services against a realistic
workload and observe whether client applications are blocked for extended periods. Remem-
ber that the purpose of service throttling is to prevent a service from being inundated with a
flood of requests that it does not have the resources to cope with. You should set the service
throttling properties to ensure that when a client request is accepted and execution actually
starts, the computer hosting the service has sufficient resources available to be able to com-
plete the operation before the client times out; otherwise, you would further hinder overall
performance. Note that in a transactional environment, aborted client requests generate even
more work for the service, because when a timeout occurs, it has to roll back all the transac-
tional work it has already performed.

WCF and Service Instance Pooling
The WCF runtime creates service instances to handle client requests. If the service is
using the PerSession instance context mode, the instance can last for several operations.
If the service is using the PerCall instance context mode, each operation call results in a
new service instance, which is discarded and destroyed when the operation ends. Creat-
ing and destroying instances are expensive, potentially time-consuming tasks. Service
instance pooling would be very useful in this scenario.

When using instance pooling, the WCF runtime would create a pool of service instance
objects when the service starts. When using the PerCall instance context mode, as client
applications invoke operations, the WCF runtime would retrieve a pre-created service
instance from the pool and then return it to the pool when the operation completes.
When using the PerSession instance context mode, the same semantics apply, but the
WCF runtime would obtain a service instance from the pool at the start of the session
and return it at the end of the session. For security purposes, any data held by the ser-
vice instance (fields in the class defining the service implementation) would be cleared
as the instance was returned to the pool.

As you might have gathered from the tone of the previous paragraph, WCF does not
provide service instance pooling directly, but it is possible to extend WCF by defining
your own custom behavior that implements pooling. WCF supplies the IInstanceProvider
interface in the System.ServiceModel.Dispatcher namespace that you can use to define
your own service instance dispatch mechanism. This is a useful technique, but the details
are beyond the scope of this book, (although Chapter 11 provides an example of how
to implement a service behavior). For more information, see the topic “Pooling” in the
Visual Studio documentation. This topic is also available on the Microsoft Web site at
http://msdn.microsoft.com/en-gb/library/ms751482.aspx.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 13  Implementing a WCF Service for Good Performance	 475

Specifying Memory Requirements
Applying a throttling behavior lets you limit the number of sessions and connections made to
a service in an attempt to maintain throughput. However, services are simply applications that
run on a computer, and if a service performs resource-intensive operations it may be better to
ensure that sufficient resources are available before it starts running.

One common resource that frequently runs short is memory. For this reason, the WCF run-
time enables you to specify the minimum amount of memory that should be available before
activating a service. You can indicate this value as the minFreeMemoryPercentageToActivate
Service attribute of the <serviceHostingEnvironment> element in the service configuration file.
The default value is 5, but the following example sets it to 10.

<configuration>

 <system.ServiceModel>

 <serviceHostingEnvironment minFreeMemoryPercentageToActivateService="10" />

 ...

 </system.ServiceModel>

</configuration>

In this case, if less than 10% of total memory is available when the WCF runtime attempts to
activate a service, it will fail with a ServiceActivationException exception.

You can also configure this parameter using the Service Configuration Editor. In the Configu-
ration pane, expand the Advanced folder, and then click Hosting Environment. In the Hosting
Environment pane, specify the minimum amount of memory required in the Memory Gates
box, as shown in Figure 13-1.

Figure 13-1  Setting the minimum amount of memory required to activate a service.

Download from Wow! eBook <www.wowebook.com>

476	 Windows Communication Foundation 4 Step by Step

Transmitting Data by Using MTOM
MTOM is an optimization mechanism for sending and receiving SOAP messages that contain
binary data. A SOAP message usually consists of a message header that provides addressing,
routing, and security information, and a message body, which provides the data, or payload,
of the message. The body is XML that contains the data for a request being transmitted to
a service or the information being returned to a client application in response to a request.
The actual structure of the information in the message body is specified by the WSDL descrip-
tion of the operation, which is in turn derived from the operation contract you specify in your
services. For example, the ProductsService service that you created in Chapter 1, “Introducing
Windows Communication Foundation,” defined the ChangeStockLevel operation in the IProducts
Service service contract as follows:

[ServiceContract]

public interface IProductsService

{

 ...

 [OperationContract]

 bool ChangeStockLevel(string productNumber, int newStockLevel,

 string shelf, int bin);

}

When a client application invokes the ChangeStockLevel operation, the WCF runtime con-
structs a message that looks like this:

<s:Envelope xmlns:a="http://www.w3.org/2005/08/addressing" xmlns:s="http://www.

w3.org/2003/05/soap-envelope">

 <s:Header>

 ...

 </s:Header>

 <s:Body>

 <ChangeStockLevel xmlns="http://tempuri.org/">

 <productNumber>WB-H098</productNumber>

 <newStockLevel>25000</newStockLevel>

 <shelf>N/A</shelf>

 <bin>40101</bin>

 </ChangeStockLevel>

 </s:Body>

</s:Envelope>

You can see that the message body contains the parameters for the operation, encoded as
an XML infoset. This scheme works well for parameters that have easily definable representa-
tions. However, remember that the XML message is transmitted as a series of text characters
when it traverses the network, and non-text data, such as the <newStockLevel> and the <bin>
elements in the example above, must be converted to and from a text representation as the
message is sent and received. This conversion incurs an overhead at two levels:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 13  Implementing a WCF Service for Good Performance	 477

	 1.	 It takes time, memory, and computational power to convert from the binary representa-
tion of an integer (in the case of the <newStockLevel> and the <bin> elements) to text
and back again.

	 2.	 The text representation of the data as it crosses the network might be less compact than
the original binary representation; the bigger the value of the data, the more characters
are required for the text representation.

In this example, this overhead is minimal. However, how would you handle lengthy binary
data, such as an image? One possible solution is to convert the binary data into a text rep-
resentation containing the corresponding series of “0” and “1” characters. But consider the
overhead of this approach. Converting a megabyte of binary data into a string a million char-
acters long requires a significant amount of memory and time. What actually happens in this
case is that WCF converts the binary data to a Base64 encoded string rather than a string of
“0” and “1” characters. The result is a more compact text representation of the data. However,
on average, the Base64 encoding mechanism results in a string that is approximately 140% of
the length of the original data. Additionally, this data must be converted back into its original
binary format by the recipient of the data. Clearly, it makes sense to find an alternative repre-
sentation when transmitting messages that include large amounts of binary data.

MTOM is a specification that provides just such an alternative representation. When you use
MTOM to transmit a message that includes binary data, that data is not encoded as text, but
is transmitted unchanged as an attachment to the message that follows the format of the
well-known Multipurpose Internet Mail Extension (MIME) specification. Any text information
in the original message is encoded as an XML infoset as before, but binary information is rep-
resented as a reference to the MIME attachment, as depicted in Figure 13-2.

Image (Binary Data)

Unencoded Binary Data

SOAP Message
(XML Infoset)

MIME Multipart Message

Serialized XML Data

<envelope>
 <header>
 …
 </header>
 <body>
 <BodyContent>
 …
 Image placeholder
 …
 </BodyContent>
 </body>
</envelope>

Figure 13-2  Encoding a message containing binary data.

Download from Wow! eBook <www.wowebook.com>

478	 Windows Communication Foundation 4 Step by Step

Note  MTOM supercedes previously proposed standards that you might have heard of, such as
the Direct Internet Message Encapsulation protocol (DIME) and the WS-Attachments specification.
Don’t confuse DIME with MIME.

As always, security is an important consideration. When signing MTOM messages, WCF com-
putes a signature that includes the data in any MIME attachments. If any part of the message,
including the MIME attachments, is changed between sending and receiving the message, the
signature will be invalid. For more details about signing messages, refer back to Chapter 4,
“Protecting an Enterprise WCF Service.”

In WCF, MTOM is handled by a specific encoding channel. If you are using any of the stan-
dard HTTP bindings (basicHttpBinding, wsDualHttpBinding, wsFederationHttpBinding, or
ws2007HttpBinding), you can change the MessageEncoding property of the binding con-
figuration to MTOM to specify the MTOM encoding channel. Other transports, such as TCP,
MSMQ, and Named Pipes, use their own proprietary binary encodings by default. The corre-
sponding standard bindings do not have a MessageEncoding property, so if, for example, you
want to transmit MTOM messages over TCP, you must create your own custom binding.

Sending Large Binary Data Objects to a Client Application
Consider this scenario: AdventureWorks wants to extend the functionality provided by the
ShoppingCartService WCF service so that users can view photographs of the company’s prod-
ucts. The database contains images of the products stored as binary data. The developers
have built a prototype service called ShoppingCartPhotoService that provides an operation
called GetPhoto, which retrieves the image data from the database and returns it to the client
application. In the following exercises, you will examine this solution, and then see how to
configure the service to take advantage of MTOM messaging.

Examine the ShoppingCartPhotoService Service

	 1.	 Using Visual Studio, open the solution file MTOMService.sln located in the Microsoft
Press\WCF Step By Step\Chapter 13\MTOM folder.

This solution contains a prototype WCF service called ShoppingCartPhotoService that
implements the GetPhoto operation. The ShoppingCartPhotoService service is hosted by
using the ASP.NET Development Web Server. The solution also contains a simple WPF
client application that displays data in a WPF window.

	 2.	 Open the IShoppingCartPhotoService.cs file in the App_Code folder in the C:\...\
MTOMService\ project.

Examine the IShoppingCartPhotoService interface defining the service contract. This
interface contains the GetPhoto operation, which enables a client application to request
a product photograph by passing the product number as a parameter. The service

Download from Wow! eBook <www.wowebook.com>

	 Chapter 13  Implementing a WCF Service for Good Performance	 479

retrieves the photograph and returns it to the client application in the photo param-
eter, which is marked as out. This parameter is of type byte[] because the photographic
images are held as raw binary data in the database. The return value is a Boolean that
indicates whether the operation was successful or not.

	 3.	 If you have time, look at the implementation of the GetPhoto method in the Shopping
CartPhotoServiceImpl class in the ShoppingCartPhotoService.cs file. There is nothing
WCF-specific about this method; all it does is to perform a LINQ query over the Products
PhotoModel entity model (also defined in the App_Code folder) to retrieve the photo-
graph for the specified product from the ProductPhoto table in the database. The data
is returned from the query as a ProductPhoto object (this type was generated by the
Entity Framework). Note that for clarity, this method does not perform any validation
checking.

The photograph is held in a varbinary column called LargePhoto in the database.
The Entity Framework retrieves this varbinary data into a byte array (also called Large-
Photo) in the ProductPhoto object returned by the LINQ query. This value of this field
is assigned to the photo output parameter. The method returns true if it successfully
located and retrieved the photo, or false if an exception occurs.

	 4.	 Open the ClientWindow.xaml file in the ShoppingCartGUIClient application. This XAML
file defines a WPF window containing an image control that occupies the main part of
the form, together with a label, a text box, and a button. A user types a product number
into the text box and clicks the Get Photo button.

	 5.	 Open the ClientWindow.xaml.cs code file behind this window (expand the Client
Window.xaml node in Solution Explorer to display the file). The getPhoto_Click method
in this file runs when the user clicks the Get Photo button.

The code in this method creates an instance of the client proxy, reads the product number
typed in by the user, creates a new byte array, and then invokes the GetPhoto opera-
tion, passing in the byte array and the product number as parameters. If the operation
returns true, the method uses the byte array containing the data for the photograph and
uses it to populate a BitmapImage object, which it then displays in the image control on
the WPF form.

	 6.	 Start the solution without debugging. The ShoppingCartPhotoService starts the ASP.NET
Development Web Server and begins to listen on port 9080.

Note  If an Internet Explorer window appears displaying the files in the MTOMService
service, just close it and continue on.

When the Shopping Cart Client window appears, type WB-H098 in the product number
text box, and then click Get Photo. An image showing a pair of water bottles appears in
the image control on the form, as shown in the image that follows.

Download from Wow! eBook <www.wowebook.com>

480	 Windows Communication Foundation 4 Step by Step

Type PU-M044 in the product number text box, and then click Get Photo. This time the
image displays a picture of a mountain bike pump.

	 7.	 Close the Shopping Cart Client window and return to Visual Studio.

	 8.	 In Solution Explorer, edit the web.config file for the C:\...\MTOMService\ project by using
the Service Configuration Editor.

	 9.	 In the Configuration pane, click the Diagnostics folder. In the Diagnostics pane, click
Enable Message Logging.

	 10.	 In the Configuration pane, expand the Diagnostics folder, and then click the Message
Logging node. In the Message Logging pane, set the LogEntireMessage property to
True.

	 11.	 In the Configuration pane, expand the Listeners folder, and then click the ServiceModel
MessageLoggingListener node. In the right pane, set the InitData property to web_
messages.svclog in the Microsoft Press\WCF Step By Step\Chapter 13 folder within
your Documents folder.

	 12.	 In the Configuration pane, expand the Sources folder under Diagnostics, and then click
the System.ServiceModelMessageLogging node. In the right pane, set the Trace Level
property to Verbose.

	 13.	 In the Configuration pane, click the Diagnostics node again. In the Diagnostics pane,
click Enable Tracing. With this option, you can capture additional information about
the activities in the WCF runtime that generate the messages being sent and received.

	 14. 	 In the Configuration pane, click the ServiceModelTraceListener node in the Listeners
folder. In the right pane, set the InitData property to web_tracelog.svclog in the
Microsoft Press\WCF Step By Step\Chapter 13 folder within your Documents folder.

	 15.	 In the Configuration pane, click the System.ServiceModel node in the Sources folder. In
the right pane, set the Trace Level property to Verbose.

	 16.	 Save the configuration file but leave the Service Configuration Editor open.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 13  Implementing a WCF Service for Good Performance	 481

	 17.	 In Visual Studio, start the solution again without debugging.

Using the Shopping Cart Client window, retrieve and display the photographs for
products WB-H098 and PU-M044, and then close the Shopping Cart Client window.
Stop the ASP.NET Web Development Server by right-clicking the ASP.NET Development
Server icon in the Windows taskbar, and then clicking Stop.

	 18.	 Start the Service Trace Viewer (on the Windows Start menu, click All Programs, click
Microsoft Visual Studio 2010, click Microsoft Windows SDK Tools, and then click Service
Trace Viewer). In the Service Trace Viewer, open the file web_messages.svclog in the
Microsoft Press\WCF Step By Step\Chapter 13 folder within your Documents folder.

	 19.	 In the left pane, click the Message tab. You should see four messages listed: one for
each request and response (the ShoppingCartPhotoService service is configured to use
the BasicHttpBinding binding, so there are no extraneous messages exchanging security
credentials or establishing reliable messaging sessions, and so on).

	 20.	 Click the first message. In the lower-right pane, click the Message tab, and then scroll
down to display the body of the message. You should see that this is the message
requesting the photograph for product WB-H098.

	 21.	 In the left pane, click the second message. In the lower-right pane, examine the message
body. This is the response containing the photographic data in the <photo> element.
You can see that this data consists of a long string of characters containing the Base64
encoding of the binary data. Examine the remaining messages; the third message is the
request for the photograph of product PU-M044, and the fourth is the response con-
taining the Base64 encoded image data.

	 22.	 Open the web-tracelog.svclog file, and then click the Activity tab in the left pane. This
file contains a log of the work performed by the WCF runtime, and the Activity pane
displays a list of all the tasks the WCF runtime on the service performed.

	 23.	 Locate and click the first item named “Process action ‘http://adventure-works.com/
2010/07/01/ShoppingCartPhotoService/GetPhoto.’” The upper-right pane displays the
tasks performed by this activity, including receiving the message over the channel,
opening an instance of the service, executing the operation, creating a response mes-
sage, sending the response message, and finally, closing the service instance.

	 24.	 In the upper-right pane, scroll down and click the task, “A Message Was Written.” The
lower-right pane displays information about the message. In the Message Properties
And Headers section, note that the Encoder property is text/xml; charset=utf-8. This
indicates that the message was encoded as text when it was transmitted, as shown in
the image that follows.

Download from Wow! eBook <www.wowebook.com>

482	 Windows Communication Foundation 4 Step by Step

	 25.	 On the File menu, click Close All but leave the Service Trace Viewer running.

This exercise has shown you that, by default, the ShoppingCartPhotoService service sends all
messages—including those containing potentially large amounts of binary data—by encoding
them and transmitting them as text. For messages such as these binary images, it would be
more efficient if the ShoppingCartPhotoService messages containing the photographic images
were encoded using MTOM.

In the next exercise, you will see how to modify the binding configuration of the Shopping
CartPhotoService service to encode binary data by using MTOM over HTTP when transmitting
the photographic data from the service to the client application.

Configure the ShoppingCartPhotoService Service to Transmit MTOM-Encoded
Messages

	 1.	 Return to the Service Configuration Editor that is currently displaying the contents of
the web.config file for the ShoppingCartPhotoService service.

	 2.	 In the left pane, click the Bindings folder. In the Bindings pane, click New Binding
Configuration. Add a new binding configuration for the basicHttpBinding binding.
Name the binding ShoppingCartPhotoServiceBasicHttpBindingConfig and change
the MessageEncoding property from Text to Mtom.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 13  Implementing a WCF Service for Good Performance	 483

	 3.	 In the Configuration pane, expand the ShoppingCartPhotoService.ShoppingCartPhoto
ServiceImpl node in the Services folder, expand the Endpoints folder, and then click the
(Empty Name) endpoint. In the Service Endpoint pane, set the BindingConfiguration
property of the endpoint to ShoppingCartPhotoServiceBasicHttpBindingConfig.

	 4.	 Save the configuration file, and then close the Service Configuration Editor.

	 5.	 In Visual Studio, open the app.config file for the ShoppingCartGUIClient project by
using the Service Configuration Editor.

	 6.	 In the Configuration pane, expand the Bindings folder, and then click the BasicHttp
Binding_ShoppingCartPhotoService binding configuration. This is the binding configura-
tion referenced by the client endpoint; it was generated automatically by the Add Service
Reference Wizard when the client application was being developed.

	 7.	 In the right pane, set the MessageEncoding property of the binding configuration to
Mtom, to match that of the service.

	 8.	 Save the configuration file but leave the Service Configuration Editor open.

	 9.	 Using Windows Explorer, delete the files web_messages.svclog and web_tracelog.svc in
the Microsoft Press\WCF Step By Step\Chapter 13\ folder.

	 10.	 In Visual Studio, start the solution without debugging. Fetch and display the photo-
graphs for products WB-H098 and PU-M044. Close the Shopping Cart Client window,
and then stop the ASP.NET Web Development Server.

	 11.	 In the Service Trace Viewer, open the web_tracelog.svclog file. In the Activity pane,
locate and click the first item named “Process Action ‘http://adventure-works.com/
2010/07/01/ShoppingCartPhotoService/GetPhoto.’” In the upper-right pane, locate and
click the task, “A Message Was Written.” In the lower-right pane, examine the Encoder
property in the Message Properties And Headers section. This time the Encoder property
is set to multipart/related; type=’application/xop+xml.’ This indicates that the service
transmitted the data as a MIME multipart message by using MTOM encoding as shown
in the image that follows.

Download from Wow! eBook <www.wowebook.com>

484	 Windows Communication Foundation 4 Step by Step

	 12.	 Close the Service Trace Viewer.

Note  If you examine the SOAP messages in the web_messages.svclog file, you might
be surprised—and possibly even a bit disappointed—to see that the <photo> parameter
returned in the GetPhotoResponse message still appears to be encoded as a Base64 string
embedded in the message. Do not be fooled. MTOM is actually transparent to WCF SOAP
message logging in much the same way that it is transparent to your own applications, and
so it is not aware that the <photo> parameter is being transmitted as an attachment. If you
really want to see the SOAP message in its raw format with the attachment, you must use a
network analyzer, such as Microsoft Network Monitor.

Controlling the Size of Messages
You have seen that configuring a binding to use the MTOM encoding is a straightforward
task. Using MTOM does not affect the functionality of your applications, and you don’t need
to make any special coding changes to use it. However, you need to be aware that you have
been using MTOM in an idealized environment. Services that can send and receive messages
containing large amounts of binary data can be prone to Denial of Service attacks; if a service
is configured to use MTOM, then an attacker might try to send some incredibly large mes-
sages to try to overwhelm the service. Similarly, a rogue service might reply to client requests
with very large response messages in an attempt to disrupt a user’s computer. Therefore, the
WCF runtime enables you to place some limitations on the size of messages that client appli-
cations and services can receive.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 13  Implementing a WCF Service for Good Performance	 485

In the following exercise you will examine what happens when you attempt to receive some
data that is bigger than the WCF runtime allows, and how you can configure a binding to
support larger messages, if necessary.

Attempt to Receive a Large Message in a WCF Application

	 1.	 In Visual Studio, start the solution without debugging. In the Shopping Cart Client
application, specify the product number BK-M38S-46 (this is a Mountain-400-W
bicycle), and then click Get Photo.

The Shopping Cart Client application displays a message box with the following
exception:

The problem is that by default the WCF runtime places a limit of 16384 bytes (16 Kb) on
the length of any arrays received as part of a message. In the AdventureWorks database,
the photograph for the Mountain-400-W bicycle is larger than this. The WCF runtime
happily lets the service send the data (there is no limit on the size of messages that a
service can transmit), but it prevents the client application from receiving it.

	 2.	 In the message box, click OK, and then close the Shopping Cart Client window.

	 3.	 Return to the Service Configuration Editor editing the app.config file for the Shopping
CartGUIClient project. In the Configuration pane, click the BasicHttpBinding_Shopping
CartPhotoService binding in the Bindings folder.

	 4.	 In the right pane, scroll down to the ReaderQuota Properties section of the binding.
Notice that the value of the MaxArrayLength property is set to 16384. Change this value
to 32768. This setting enables the WCF runtime for the client application to receive a
message containing an array of up to 32 Kb. Save the configuration file then close the
Configuration File Editor.

	 5.	 Start the solution again without debugging. In the Shopping Cart Client application,
fetch the photograph of product BK-M38S-46. This time the image should display
successfully.

	 6.	 Close the Shopping Cart Client window.

Apart from the MaxArrayLength property, the ReaderQuotas element of all bindings provides
several other properties: MaxBytesPerRead, MaxDepth, MaxNameTableCharCount, and Max
StringContentLength. These properties determine the complexity of messages that the WCF

Download from Wow! eBook <www.wowebook.com>

486	 Windows Communication Foundation 4 Step by Step

runtime will process before throwing an exception. The data in the body of a message is an
XML document; internally, the WCF runtime uses an XmlDictionaryReader object to parse the
contents of message bodies and break them up into the appropriate parameters, returning
values that a service or client application expects. The WCF runtime uses the reader quota
properties to configure the XmlDictionaryReader object and to constrain the messages it
processes to a manageable size and structure. The MaxBytesPerRead property specifies how
many bytes the XmlDictionaryReader will read from the message at one time while processing
it; the MaxDepth property specifies the maximum node depth of elements in the message; the
MaxNameTableCharCount property limits the total number of characters in strings that are
atomized in the NameTable for the XmlDictionaryReader; and the MaxStringContentLength
determines the maximum length of string data that a message can contain. If you set any of
these properties to zero, the XmlDictionaryReader will use its default settings.

More Info  A detailed discussion of the XmlDictionaryReader class is beyond the scope of this
book, but if you want more information, consult the documentation provided with Visual Studio
(also available online at http://msdn.microsoft.com/en-us/library/system.xml.xmldictionaryreader.
aspx).

The reader quota properties you are most likely to amend are MaxArrayLength and MaxString
ContentLength, because these relate directly to the size of the data in the messages that you
send.

However, this is not the end of the story. A message may contain more than one array or
string. The reader quota properties limit the size of individual elements but not the number
of elements in a message, so it would still be possible to stage an effective Denial of Service
attack. If you examine the General section for a binding configuration in the Service Configu-
ration Editor, you will see that a binding also has a MaxReceivedMessageSize property. This
property governs the maximum overall size of a message that can be received. Note that this
property value includes any SOAP headers or other administrative information (if the binding
does not use SOAP), not just the data.

The default value for this property is 65536 bytes (64 Kb), which should be adequate for
most situations, but you can increase it if necessary. The maximum value you can specify is
2,147,483,647 (Int32.MaxValue), but you should never raise it anywhere near this level
without having a very good reason to do so (see the discussion on streaming in the next
section). However, you should always make sure that MaxReceivedMessageSize is at least
as big as the greater of MaxArrayLength and MaxStringContentLength; if it is smaller, then
this limitation will kick in before the reader quota restrictions are reached.

There is one other property that you should be aware of: MaxBufferSize. When a mes-
sage is transmitted, it is sent as a stream of bytes over the network. When a message is
received, this stream must be reconstituted back into a message. The WCF runtime uses
an in-memory buffer to do this, and the maximum amount of memory it will allocate to

Download from Wow! eBook <www.wowebook.com>

	 Chapter 13  Implementing a WCF Service for Good Performance	 487

this buffer is determined by the MaxBufferSize property. In most cases, the value of Max
BufferSize must be the same as MaxReceivedMessageSize (the WCF runtime will throw
an exception if they are different when it attempts to receive a message). However, there
is one situation when MaxBufferSize should be significantly less—when you implement
streaming.

Note  Unlike many other binding properties, the MaxReceivedMessageSize and MaxBufferSize
properties are not considered to be service metadata. What this means is that if you use the svcutil
utility or the Add Service Reference Wizard to generate a proxy for a service, the values for these
properties are not propagated from the service to the client. It is an administrator’s responsibility
to ensure that these properties are configured appropriately in a client application.

Streaming Data from a WCF Service
MTOM is useful for encoding large binary data objects in messages, but if these objects
become too large, they can consume significant amounts of memory in the computer hosting
the WCF service and the client applications that receive them. Additionally, very large mes-
sages can take a long time to construct and transmit, and it is possible that the client applica-
tion could time out while waiting for a response containing a large binary object.

In many cases, it does not make sense to even attempt to try to package up data into a single
message. Consider a WCF service that provides an operation that emits audio or video data.
In this scenario, it is far more efficient to send and receive the data as a stream than to try to
transmit it as one big chunk. Streaming allows the client application to start receiving and
processing bytes of data before the service has transmitted the end of the message, removing
the need to create large buffers for holding an entire message in the service and the client
application, and resolving the timeout issue.

Enabling Streaming in a WCF Service and Client Application
WCF provides streaming support for operations by providing you with a mechanism to modify
the TransferMode property of binding configurations based on the basicHttpBinding, netTcp
Binding, or netNamedPipeBinding bindings.

You can set the TransferMode property to one of the following values:

■■ Buffered  This is the default transfer mode. Messages are completely constructed in
memory and transmitted only when they are complete.

■■ StreamedRequest  Request messages are streamed but response messages are buffered.

Download from Wow! eBook <www.wowebook.com>

488	 Windows Communication Foundation 4 Step by Step

■■ StreamedResponse  Response messages are streamed but request messages are
buffered.

■■ Streamed  Both request and response messages are streamed.

The maximum size of a streamed message that can be received is still determined by the
MaxReceivedMessageSize property of the binding. However, when you enable streaming for a
binding, only the message header needs to be buffered by the receiver, so you should reduce
the value of the MaxBufferSize property.

Designing Operations to Support Streaming
There is more to streaming than just changing the TransferMode property of a binding—and
not all operations are conducive to streaming. To support request streaming, an operation can
take only a single input parameter, which must either be a stream object (a descendent of the
System.IO.Stream class), a Message object (an instance of the System.ServiceModel.Channel.
Message class or one of its descendants), or be serializable as XML. To support response
streaming, an operation must either have a non-void return type or a single out parameter,
and, like the input parameter, the type of this return type or parameter must either be a
stream object or be serializable as XML. The reason for this restriction is that the input param-
eter (or output parameter or return type) must constitute the entire request or response
message.

As an example, here is the service contract for a version of the GetPhoto operation from the
ShoppingCartPhotoService service that supports streaming:

public interface IShoppingCartPhotoService

{

 [OperationContract(Name = "GetPhoto")]

 Stream GetPhoto(string productNumber);

}

The implementation of the GetPhoto method returns a MemoryStream object containing the
data for the photograph, as shown in bold in the following code (remember that the Large
Photo property of a ProductPhoto object is a byte array):

public Stream GetPhoto(string productNumber)

{

 try

 {

 // Connect to the AdventureWorks database by using the Entity Framework

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 // Retrieve the photograph of the selected product

 ProductPhoto photoData = (from p in database.Products

 where string.Compare(p.ProductNumber, productNumber)

 == 0

Download from Wow! eBook <www.wowebook.com>

	 Chapter 13  Implementing a WCF Service for Good Performance	 489

 join ph in database.ProductProductPhotos

 on p.ProductID equals ph.ProductID

 join phd in database.ProductPhotos

 on ph.ProductPhotoID equals phd.ProductPhotoID

 select phd).First();

 // Return the photo as a stream

 MemoryStream data = new MemoryStream(photoData.LargePhoto);

 return data;

 }

 }

 catch (Exception e)

 {

 // If an exception occurs (possibly no such product) then return null

 return null;

 }

}

Note  A version of the ShoppingCartPhotoService and ShoppingCartGUIClient application that
uses streaming is available in the Microsoft Press\WCF Step By Step\Chapter 13\Streaming folder.
The purpose of this sample is simply to show how to define an operation that implements stream-
ing. The client application still reads the streamed response in the foreground, and so it does not
actually gain much advantage from streaming (the application still blocks until the message is
fully transmitted and received). A real-world application should read the streamed response on
a background thread by opening a StreamReader object over the Stream object returned by the
GetPhoto operation and making the streamed data available for processing as it is read.

For reasons described in the next section, the service implements the BasicHttpBinding
binding with the TransferMode property set to StreamedResponse to enable streaming for
response messages only.

If you enable message logging, you will see that the body of the response message appears
like this:

<Addressing ...>

 ...

</Addressing>

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope">

 <s:Header>

 ...

 </s:Header>

 <s:Body>... stream ...</s:Body>

</s:Envelope>

The code in the client application reads the data returned by the GetPhoto operation as a
stream:

string prudctNumber = …;

Stream photo = proxy.GetPhoto(productNumber);

Download from Wow! eBook <www.wowebook.com>

490	 Windows Communication Foundation 4 Step by Step

The TransferMode property of the BasicHttpBinding binding employed by the ShoppingCart
GUIClient application is also set to StreamedResponse; otherwise, the WCF runtime will attempt
to buffer response received from the ShoppingCartService service before passing it to the
client application.

Security Implications of Streaming
Message-level security features such as signing and encryption that are commonly employed
by the ws2007HttpBinding binding and its relatives require that the WCF runtime to have
access to the entire message. When you enable streaming for a binding, this is no longer
possible. For this reason, the ws2007HttpBinding and other related bindings do not support
streaming. The solution is to implement transport-level security over the basicHttpBinding
binding instead.

Additionally, you cannot exploit reliable messaging. This feature depends on buffering so that
the protocol can acknowledge delivery of complete messages and optionally order them (if
ordered delivery has been specified for the binding). Again, this is only really an issue for the
ws2007HttpBinding family of bindings. This is because the TCP protocol and named pipes
typically provide their own inherently reliable delivery mechanisms that are independent of
the WCF implementation of the WS-ReliableMessaging protocol.

One final point concerning security: remember that, by default, bindings created by WCF
allow a maximum received message size of 64 Kb. If a message being received exceeds this
limit, the WCF runtime throws an exception and aborts the operation. As mentioned earlier,
this limit is primarily intended to reduce the scope for Denial of Service attacks. This value is
sufficient for most message-oriented operations but is too low for many streaming scenarios.
In these cases, you will need to increase the value of the MaxReceivedMessageSize property
of the binding. However, be aware that this is a global setting for the binding, and as such, it
affects all operations exposed by the service through this binding. Consequently, if you imple-
ment streaming operations, it may be better to define them in a separate service contract
from non-streaming operations.

More Info  For further details on implementing streaming in a WCF service, see the “Large
Data and Streaming” page on the Microsoft Web site at http://msdn.microsoft.com/en-us/library/
ms733742.aspx.

Summary
In this chapter, you have seen how to use service throttling to control the requests submit-
ted to a service and ensure that a service does not overcommit itself and attempt to handle
too many concurrent operations. You have also seen how to use MTOM to optimize the way
in which WCF encodes large binary objects for transmission. Finally, you have seen how to
design operations and services that support streaming.

Download from Wow! eBook <www.wowebook.com>

491

Chapter 14

Discovering Services and Routing
Messages

After completing this chapter, you will be able to:

■■ Configure a WCF service to support discovery, and modify a client application to use discov-
ery to locate services.

■■ Implement a discovery proxy.

■■ Describe how the WCF runtime for a service dispatches messages to operations.

■■ Build a WCF service that transparently routes client requests to other WCF services.

■■ Use the WCF RoutingService class to implement message routing.

When a client application sends a message to a WCF service, it sends the request through an
endpoint. If you recall, an endpoint specifies three pieces of information: an address, a bind-
ing, and a contract. The address indicates where the message should go; the binding identifies
the transport, format, and protocols to use to communicate with the service; and the con-
tract determines the messages that the client can send and the responses it should expect to
receive. It is possible for more than one service to implement the same contract, and it is also
possible for a service to change its address. If a client application has the address of a specific
service hard-coded into its configuration, then if that service moves, becomes temporarily
unavailable, or is just too busy to handle requests, the client will not be able to communicate
with it. WCF provides discovery and routing to address these issues.

In this chapter, you will see how to implement discovery in a WCF solution. You will also learn
how you can configure a WCF service to route messages intelligently.

Implementing Discovery
WCF discovery is an implementation of the OASIS WS-Discovery specification. This feature
enables a client application to locate a service dynamically, based on criteria such as the con-
tract that the service implements. The location of the service can change, but as long as a ser-
vice is discoverable, a client application can find it and connect to it.

In the simplest form of the WS-Discovery protocol, when a client application wishes to con-
nect to a service, it broadcasts a Probe message containing information about the service with
which it wishes to communicate. A service that supports discovery listens for Probe messages
on an endpoint with a well-known address defined by the WS-Discovery specification. When

Download from Wow! eBook <www.wowebook.com>

492	 Windows Communication Foundation 4 Step by Step

the service receives a Probe request, it can examine its contents, and if the probe matches the
contract implemented by the service, it can respond to the client with a ProbeMatch message.
The ProbeMatch message contains the service addressing information that the client needs to
connect to the service. This form of discovery is known as ad hoc mode.

With WCF, you can configure a service to support discovery simply by enabling the discov-
ery behavior and adding a preconfigured discovery endpoint to the service. This endpoint is
called udpDiscoveryEndpoint and is an example of one of several standard endpoints imple-
mented by WCF. A standard endpoint implements a well-defined set of functionality and
contains built-in configuration information; all you need to do is refer to it by name. The
udpDiscoveryEndpoint endpoint has a fixed contract, a fixed HTTP binding, and a default
address as specified in the WS-Discovery specification.

Note  The udpDiscoveryEndpoint standard endpoint is implemented by the UdpDiscoveryEndpoint
class in the System.ServiceModel.Discovery namespace. If you want to create a discovery endpoint
that listens on a non-default address or change other properties of the endpoint, you can create
an instance of this class in your code, modify the values of its properties, and use that instead of
the udpDiscoveryService standard endpoint. Alternatively, you can override the default settings
for the standard endpoint by defining a standard endpoint configuration in the configuration file
for a service (the following exercise takes this latter approach).

Configuring Ad Hoc Discovery
In the following exercises, you will configure the ProductsService service to support ad hoc
discovery and add code to the client application that locates the ProductsService before
establishing a connection.

Configure the ProductsService Service to Support Ad Hoc Discovery

	 1.	 Start Visual Studio as Administrator and open the solution file ProductsService.sln
located in the Microsoft Press\WCF Step By Step\Chapter 14\ProductsService folder
(within your Documents folder).

Note  It is important that you start Visual Studio as an administrator because you will be
performing tasks that require administrative rights in a later exercise in this section.

This solution contains a copy of the ProductsService service that you have met at regular
stages throughout the book. The service is hosted by using the ASP.NET Development
Web Server, listening to port 8090. The solution also contains a version of the client
application that connects directly to the ProductsService service by using a client end-
point called WS2007HttpBinding_IProductsService and invokes the various operations.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 493

The app.config file in the client application specifies the address of the ProductsService
service as part of the client endpoint definition, as shown in bold in the following:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.serviceModel>

 ...

 <client>

 <endpoint address="http://localhost:8090/ProductsService/ProductsService.svc"

 binding="ws2007HttpBinding" bindingConfiguration="..."

 contract="ProductsService.IProductsService"

 name="WS2007HttpBinding_IProductsService">

 </endpoint>

 </client>

 </system.serviceModel>

</configuration>

	 2.	 Start the solution without debugging.

Note  If Internet Explorer starts, just close it and continue on.

Notice that the ASP.NET Development Server starts and begins listening on port 8090.
In the client application console window, verify that the address displayed is http://
localhost:8090/ProductsService/ProductsService.svc, and then press Enter. The client
application should perform its usual cycle of work; display the number of each product
in the AdventureWorks database, display the details of product WB-H098 (a water bottle),
display the current stock level of product WB-H098, and then increment it by 100.

Press Enter when the client application has finished then return to Visual Studio.

The client application does not currently use discovery to locate the ProductsService
service—and the service itself does not support discovery. In the following steps, you
will first configure discovery for the service, and then turn your attention to the client
application.

	 3.	 Open the web.config file for the C:\...\ProductsService\ project using the Service Con-
figuration Editor.

	 4.	 In the Configuration pane, expand the Advanced folder, expand the Service Behaviors
folder, and then click the (Empty Name) behavior.

	 5.	 In the Behavior pane, click the Add button. In the Adding Behavior Element Extension
Sections dialog box, select the serviceDiscovery behavior element, and then click Add.

The serviceDiscovery behavior element makes the endpoints that are exposed by the
service discoverable. However, you also need to add a discovery endpoint that can listen
for Probe requests from client applications. As mentioned earlier, you can achieve this by
adding the udpDiscoveryEndpoint standard endpoint to the service.

Download from Wow! eBook <www.wowebook.com>

494	 Windows Communication Foundation 4 Step by Step

	 6.	 In the Configuration pane, expand the Services folder, expand the ProductsService.
ProductsServiceImpl service, right-click the Endpoints folder, and then click New Service
Endpoint.

	 7.	 In the Service Endpoint pane, leave all the properties set to their default values except
Kind; set this property to udpDiscoveryEndpoint.

The Kind property specifies that this is a standard endpoint, and the value that you
specify indicates the functionality exposed by this endpoint (the developers building
WCF used the term “Kind” rather than “Type” to avoid causing confusion).

Note  The udpDiscoveryEndpoint standard endpoint is intended to be used by services
that implement the ad hoc mode of discovery. In this mode, client applications send Probe
requests to a well-known multicast address using the UDP protocol. You may have noticed
that there is another standard endpoint, simply called discoveryEndpoint. This endpoint is
intended for the managed mode of discovery, which implements unicast addressing. You will
investigate managed mode discovery in a later exercise in this chapter.

As mentioned earlier, standard endpoints have a default configuration, but you can
modify their properties by adding a standard endpoint configuration, which is what
you will do for the udpDiscoveryEndpoint endpoint next.

	 8.	 In the Configuration pane, click the Standard Endpoints folder. In the Standard End-
points pane, click New Standard Endpoint Configuration. In the Create A New Standard
Endpoint dialog box, click the udpDiscoveryEndpoint endpoint type, and then click OK.

	 9.	 In the right pane, change the Name property of the endpoint to AdHocDiscovery
Endpoint. In the General section, notice that the DiscoveryMode property is set to
Adhoc, and the DiscoveryVersion property is set to WSDiscovery11.

There are actually two commonly used versions of the WS-Discovery specification; an
early version dating from April, 2005, and an updated version, 1.1. The updDiscovery
Endpoint standard endpoint supports both but defaults to the more recent 1.1 version. If
you wish to enable older client applications to discover your service, set the Discovery
Version property to WSDiscoveryApril2005.

The purpose of the MaxResponseDelay property is to prevent the service from causing
a network storm by attempting to send a large number of ProbeMatch messages at the
same time. If you specify a non-zero value, the service will wait for a random interval up
to this period before sending each ProbeMatch response.

Notice that you can change the multicast address on which the endpoint listens (the
default value comes from the WS-Discovery specification); however, you should not
modify it unless you also change client applications to send Probe requests to the same
address.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 495

	 10.	 In the Configuration pane, click the lower (Empty Name) endpoint in the Endpoints
folder in the Services folder and return to the udpDiscoveryEndpoint endpoint. Set the
EndpointConfiguration property to AdHocDiscoveryEndpoint.

Although you did not change any of the properties of the endpoint from their default
values, this configuration lets you alter the values easily in the future if circumstances or
discovery requirements change.

	 11.	 Save the configuration file then close the Service Configuration Editor.

In the next exercise, you will modify the client application to take advantage of discovery.
The client application will create a DiscoveryClient object to broadcast a Probe message that
specifies the contract implemented by ProductsService service. The udpDiscoveryEndpoint for
the ProductsService service should receive this request, recognize that the service implements
the requested contract, and respond with a ProbeMatch message containing the details of the
service endpoint. The client application will retrieve the address of the service from the Probe
Match message and use this to connect to the ProductsService service.

Modify the Client Application to Discover the ProductsService Service

	 1.	 In Solution Explorer, add a reference to the System.ServiceModel.Discovery assembly to
the ProductsClient project. This assembly contains the types required by a client applica-
tion to perform service discovery.

	 2.	 Open the Program.cs file for the ProductsClient project in the Code And Text Editor win-
dow. Add the following using statement to the list at the top of the file:

using System.ServiceModel.Discovery;

	 3.	 In the Main method, delete the first comment (it is not going to be true any longer) and
the statement directly underneath that creates the ProductsServiceClient proxy object.
Leave the two Console.WriteLine statements and the Console.ReadLine statement intact.

	 4.	 In the Main method, above the first Console.WriteLine statement, add the following
code (shown in bold):

static void Main(string[] args)

{

 // Use Discovery to find the ProductsService service

 DiscoveryClient client = new DiscoveryClient(new UdpDiscoveryEndpoint());

 Console.WriteLine("Address of ProductsService is {0}", proxy.Endpoint.Address);

 Console.WriteLine("Press ENTER to continue");

 Console.ReadLine();

 ...

}

Download from Wow! eBook <www.wowebook.com>

496	 Windows Communication Foundation 4 Step by Step

This code creates an instance of the DiscoveryClient class and opens a local instance
of the UdpDiscoveryEndpoint endpoint for sending and receiving multicast discovery
messages. The DiscoveryClient class is located in the System.ServiceModel.Discovery
namespace. It provides the functionality required to issue Probe requests and wait for
ProbeMatch responses.

Note  By default, the UdpDiscoveryEndpoint class builds an endpoint that supports ad hoc
discovery over the address shown earlier conforming to the WS-Discovery version 1.1 pro-
tocol. You can modify the mode and address by providing parameters to the constructor of
the UdpDiscoveryEndpoint class.

	 5.	 Add the following statement (shown in bold) to the Main method:

static void Main(string[] args)

{

 // Use Discovery to find the ProductsService service

 DiscoveryClient client = new DiscoveryClient(new UdpDiscoveryEndpoint());

 FindCriteria productsServiceFindCriteria =

 new FindCriteria(typeof(IProductsService));

 Console.WriteLine("Address of ProductsService is {0}", proxy.Endpoint.Address);

 ...

}

This statement creates a System.ServiceModel.Discovery.FindCriteria object. The informa-
tion in this object will be transmitted as a Probe request in the next step. The constructor
specifies the service contract to send in the Probe request.

	 6.	 Add the following statements (shown in bold) to the Main method:

static void Main(string[] args)

{

 // Use Discovery to find the ProductsService service

 DiscoveryClient client = new DiscoveryClient(new UdpDiscoveryEndpoint());

 FindCriteria productsServiceFindCriteria =

 new FindCriteria(typeof(IProductsService));

 FindResponse productsServices = client.Find(productsServiceFindCriteria);

 client.Close();

 Console.WriteLine("Address of ProductsService is {0}", proxy.Endpoint.Address);

 ...

}

The Find method of the DiscoveryClient class broadcasts a Probe message using the local
UdpDiscoveryEndpoint endpoint. The parameter specifies the service to search for. The
Find method returns a FindResponse object containing a collection of EndpointAddress
objects that hold the address for each service that responded.

It is important to realize that the Find operation may take a significant time to run. In
the WS-Discovery protocol, when a client sends a Probe message, zero or more services

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 497

might respond. The client can elect to timeout if it receives no ProbeMatch messages
within a given period. Equally important, any given service response might not be the
most appropriate service for the client to use. Therefore, the client can continue waiting
for a specified duration, and then examine all the ProbeMatch responses it has received
to determine which service best meets its requirements (for example, the client might
examine the URLs of each response and decide to connect to the service that is geo-
graphically closest to the client).

The Find method of the DiscoveryClient class hides much of this complexity from you.
When you create a FindCriteria object, you can set its Duration and MaxResults proper-
ties. As their names imply, the Duration property specifies how long the Find method
will wait for results (the default is 20 seconds), and MaxResults specifies the maximum
number of expected results (the default is Int32.MaxInt). The Find method waits either
until this period has expired or the maximum number of responses has been received.
It then gathers all the data from the various ProbeMatch messages that have been sent
and stores this information in the Endpoints collection in the FindResponse object that it
passes back as the return value. If you do not wish to block the client application while
discovery is occurring, you can invoke the FindAsync method, which returns immedi-
ately, but raises the FindProgressChanged event of the DiscoveryClient object each time
the client receives a response. It also raises the FindCompleted event when the Discovery
Client object determines that it has spent long enough waiting for results.

When the DiscoveryClient object has finished discovering services, the Close method
closes the endpoint.

	 7.	 After the Close statement, add the following code (shown in bold) to the Main method:

static void Main(string[] args)

{

 // Use Discovery to find the ProductsService service

 DiscoveryClient client = new DiscoveryClient(new UdpDiscoveryEndpoint());

 FindCriteria productsServiceFindCriteria =

 new FindCriteria(typeof(IProductsService));

 FindResponse productsServices = client.Find(productsServiceFindCriteria);

 client.Close();

 EndpointAddress productsServiceAddress = productsServices.Endpoints[0].Address;

 ProductsServiceClient proxy = new ProductsServiceClient();

 proxy.Endpoint.Address = productsServiceAddress;

 Console.WriteLine("Address of ProductsService is {0}", proxy.Endpoint.Address);

 ...

}

This code retrieves the address for the first matching service from the Endpoints collec-
tion of the FindResponse object. It then creates a new instance of the ProductsService
Client proxy and sets the address of this proxy to the just-retrieved address. The pro-
gram then continues as before.

Download from Wow! eBook <www.wowebook.com>

498	 Windows Communication Foundation 4 Step by Step

Note  To keep the code simple, the client application assumes that at least one matching
service is found; otherwise, it will throw an exception when it attempts to access the Address
property of the object at element zero in the Endpoints collection of the productsServices
variable. In a production application, you should ensure that at least one matching service
was found before attempting to use the address (in other words, you should verify that
productsServices.Endpoints.Count is greater than zero).

	 8.	 Rebuild the solution.

Before you can test the client application, you must deploy the service to a host environment
that supports discovery. Sadly, discovery does not work with the ASP.NET Development Server,
so you will publish the ProductsService service to IIS. This exercise will also give you a chance
you prove to yourself that the client application can connect to the service even though the
service has now moved and you have not specified the new address in the client configura-
tion file.

Deploy the ProductsService Service to IIS and Test the Client Application

	 1.	 In Solution Explorer, right-click the C:\...\ProductsService\ project, and then click Publish
Web Site.

	 2.	 In the Publish Web Site dialog box, in the Target Location box, type http://localhost/
DiscoverableProductsService, and then click OK. Wait for the message “Publish suc-
ceeded” to appear in the Visual Studio status bar.

Note  If publication fails, ensure that you are running Visual Studio as Administrator.

	 3.	 Open Internet Information Services Manager as Administrator. In the Connections pane,
expand the node that corresponds to your computer, expand Sites, expand Default
Web Site, and then verify that the DiscoverableProductsService Web application appears
(refresh the Connections pane if necessary).

	 4.	 Right-click the DiscoverableProductsService Web application, click Manage Application,
and then click Advanced Settings. In the Advanced Settings dialog box, set the Applica-
tion Pool property to ASP.NET v4.0, and then click OK.

This step is necessary because the Web service connects to the AdventureWorks data-
base, and unlike the default application pool, the ASP.NET v4.0 application pool runs by
using an identity that has been granted access to the database.

	 5.	 Click the Content View tab under the middle pane. If the ProductsService service has
been deployed correctly, you should see the following files and folders in the Discoverable
ProductsService Web application:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 499

❏❏ The bin folder (holding the files App_Code.compiled, App_Code.dll, and Products
EntityModel.dll)

❏❏ PrecompiledApp.config

❏❏ ProductsService.svc

❏❏ Web.config

	 6.	 Right-click ProductsService.svc, and then click Browse. Verify that Internet Explorer starts
and displays the ProductsServiceImpl Service page. This action further verifies that your
service has been deployed correctly.

Close Internet Explorer but leave Internet Information Services Manager running.

	 7.	 Return to Visual Studio and start the solution without debugging (you can ignore the
version of the service running in the ASP.NET Development Web Server). After 20 sec-
onds (the value of the Duration property of the FindCriteria object that was passed to
the Find method), you should see the address of the ProductsService service that the
client application has located, as shown in the following image (the name of your server
will probably be different, but apart from that, the URL should be the same):

	 8.	 Press Enter. The client application should connect to this address and function exactly as
before.

	 9.	 When the client application has finished, press Enter and return to Visual Studio.

Handling Service Announcements
Discovery is undoubtedly a very powerful technique, but ad hoc discovery can be a little time
consuming and frustrating in a client application; basically, every time you want to connect
to a service you must wait while its endpoint is discovered. You can tweak the Duration prop-
erty of the FindCriteria object that you use to locate the service, but if you make this value
too small, you run the risk of not finding the service if it does not respond in a timely man-
ner to Probe requests. Ad hoc discovery can also be very network unfriendly, especially if you

Download from Wow! eBook <www.wowebook.com>

500	 Windows Communication Foundation 4 Step by Step

have a large number of clients in your organization; each time they connect to a service they
will broadcast Probe requests across your network. One possible solution to these issues is to
handle announcement messages.

A service that supports discovery “announces” its presence to the world when it starts up by
broadcasting a multicast message over a well-known address. Client applications can listen for
these multicast messages and capture the details of the service in a local collection acting as
a cache (the address of the service and metadata describing the service is transmitted as part
of the announcement). When a client wishes to send a message to a service, it can look up
the address of the service in its local collection. The client can then connect to the service and
invoke its operations, as before.

Similarly, when a service shuts down, it broadcasts a shutdown message. Client applications
can capture these messages and use the information to remove the details of the service from
their local caches.

In this case, the onus shifts from the discoverable service to the client applications. Clients no
longer send Probe messages to the service, and consequently, the service does not need to
implement a discovery endpoint. However, you need to modify the service to send announce-
ment messages as it starts up and shuts down. WCF makes this easy; all you need to do is add
a udpAnnouncementEndpoint standard endpoint to the serviceDiscovery behavior element.
The WCF runtime does the rest.

A client application can listen for announcements by using the AnnouncementService class.
This class resides in the System.ServiceModel.Discovery namespace. In a client application, you
simply create an instance of this class, host it, and provide it with an endpoint to listen to.
When a new service announces its arrival, the message triggers the OnlineAnnouncement
Received event of the AnnouncementService object, and the details of the service are passed
to this event. Similarly, when a service shuts down the OfflineAnnouncementReceived event
occurs.

In the next batch of exercises, you will modify the ProductsService service to send announce-
ment messages. You will then update the client application to capture these messages and
store the details for a service as it comes on and off line.

Configure the ProductsService Service to Send Announcements

	 1.	 In Visual Studio, open the web.config file for the C:\...\ProductsService\ project by using
the Service Configuration Editor.

	 2.	 In the Configuration pane, expand the Products.ProductsServiceImpl service in the
Services folder, expand the Endpoints folder, and then click the second (Empty Name)
endpoint. Verify that this is the udpDiscoveryEndpoint endpoint, right-click the endpoint,
and then select Delete Endpoint to remove it. In the message box that’s displaying the
text, “This Item Will Be Deleted,” click OK.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 501

The service will now send announcements rather than responding to Probe messages,
so this endpoint is no longer required. However, there is nothing to stop a service from
implementing both mechanisms, in which case you could leave the discovery endpoint
in place.

	 3.	 In the Configuration pane, expand the Advanced folder, expand the Service Behaviors
folder, expand the (Empty Name) behavior, and then expand the serviceDiscovery behavior
element.

The serviceDiscovery behavior element contains a folder called Announcement Endpoints.
You add endpoints to this folder that the service uses to send announcement messages.

	 4.	 Right-click the Announcement Endpoints folder, and then click New Client Endpoint. In
the Client Endpoint pane, set the Kind property to udpAnnouncementEndpoint.

The udpAnnouncementEndpoint endpoint is another standard endpoint preconfigured
to send announcement messages by following the protocol defined by the WS-Discovery
specification. If you need to change the address or the configuration of the announce-
ment endpoint, you can create a standard endpoint configuration for the udp
AnnouncementEndpoint type, as you did for the udpDiscoveryEndpoint type in the previ-
ous set of exercises.

	 5.	 Save the configuration file then close the Service Configuration Editor.

Modify the Client Application to Capture Announcement Messages

	 1.	 Open the Program.cs file for the ProductsClient project in the Code And Text Editor
window.

	 2.	 In the Program class, add the following using statement to the list at the top of the file.

using System.Collections.Concurrent;

	 3.	 In the Program class, add the following ConcurrentDictionary collection before the Main
method.

class Program

{

 // Store data for announced services in a ConcurrentDictionary object

 private static ConcurrentDictionary<EndpointAddress,

 EndpointDiscoveryMetadata> services =

 new ConcurrentDictionary<EndpointAddress,EndpointDiscoveryMetadata>();

 static void Main(string[] args)

 {

 ...

 }

}

Download from Wow! eBook <www.wowebook.com>

502	 Windows Communication Foundation 4 Step by Step

The ConcurrentDictionary class is a thread-safe Dictionary collection, defined in the
System.Collections.Concurrent namespace. When the client application receives service
announcement messages, it will store the details of the services that are making the
announcements in this collection.

	 4.	 In the Main method, remove all the comments and code up to the comment // Test the
operations in the service. This code is no longer necessary (it sends the Probe request
and waits for the ProbeMatch response) because you will be capturing announcement
messages instead.

	 5.	 Add the following statements to the start of the Main method.

static void Main(string[] args)

{

 // Use Service Announcements events to track the location and status of services

 AnnouncementService announcementService = new AnnouncementService();

 ...

}

The preceding statement creates an AnnouncementService object that will listen for
announcement messages.

	 6.	 Add the following code (shown in bold) to the Main method.

static void Main(string[] args)

{

 // Use Service Announcements events to track the location and status of services

 AnnouncementService announcementService = new AnnouncementService();

 announcementService.OnlineAnnouncementReceived += (sender, eventArgs) =>

 {

 Console.WriteLine("Online announcement received");

 try

 {

 services.TryAdd(eventArgs.EndpointDiscoveryMetadata.Address,

 eventArgs.EndpointDiscoveryMetadata);

 foreach (var contractName in

 eventArgs.EndpointDiscoveryMetadata.ContractTypeNames)

 {

 Console.WriteLine("Added service with contract {0} at address {1}",

 contractName.ToString(),

 eventArgs.EndpointDiscoveryMetadata.Address.ToString());

 }

 }

 catch (Exception e)

 {

 Console.WriteLine("Failed to add service at address {0}",

 data.Address.ToString());

 Console.WriteLine("Exception: {0}", e.Message);

 }

 };

 ...

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 503

This code subscribes to the OnlineAnnouncementReceived event that occurs when a
new service starts up and sends announcement messages. The eventArgs parameter to
the event is an instance of the AnnouncementEventArgs type. The principal property of
interest in this type is EndpointDiscoveryMetadata, which among other details, contains
the address and contracts implemented by the newly announced service. This event
handler adds the service metadata to the services dictionary collection, specifying the
Address as the key. (It also catches the exception that occurs if the event handler fails to
add the service to the collection, possibly because another service already exists with
the same address.) Finally, the event handler iterates through the list of contracts imple-
mented by the service and displays them in the client console window, together with
the address. This is purely so you can see when a service announcement occurs; you
would not normally do this in a production client application.

	 7.	 Add the following code (shown in bold) to the Main method.

static void Main(string[] args)

{

 // Use Service Announcements events to track the location and status of services

 AnnouncementService announcementService = new AnnouncementService();

 announcementService.OnlineAnnouncementReceived += (sender, eventArgs) =>

 {

 ...

 };

 announcementService.OfflineAnnouncementReceived += (sender, eventArgs) =>

 {

 try

 {

 Console.WriteLine("Offline announcement received");

 EndpointDiscoveryMetadata data;

 services.TryRemove(eventArgs.EndpointDiscoveryMetadata.Address, out data);

 Console.WriteLine("Removed service at address {0}",

 data.Address.ToString());

 }

 catch (Exception e)

 {

 Console.WriteLine("Failed to remove service at address {0}",

 eventArgs.EndpointDiscoveryMetadata.Address.ToString());

 Console.WriteLine("Exception: {0}", e.Message);

 }

 };

 ...

}

This code subscribes to the OfflineAnnouncementReceived event that occurs when a
service indicates that it is shutting down. The AnnouncementEventArgs parameter that’s
passed in contains the details of the service, as before. This event handler removes the
service metadata from the services collection, catching and reporting any exceptions
that occur.

Download from Wow! eBook <www.wowebook.com>

504	 Windows Communication Foundation 4 Step by Step

	 8.	 Add the following statements (shown in bold) after the code that handles the events.

static void Main(string[] args)

{

 // Use Service Announcements events to track the location and status of services

 AnnouncementService announcementService = new AnnouncementService();

 announcementService.OnlineAnnouncementReceived += (sender, eventArgs) =>

 {

 ...

 };

 announcementService.OfflineAnnouncementReceived += (sender, eventArgs) =>

 {

 ...

 };

 ServiceHost announcementServiceHost = new ServiceHost(announcementService);

 announcementServiceHost.AddServiceEndpoint(new UdpAnnouncementEndpoint());

 announcementServiceHost.Open();

 Console.WriteLine("Client listening for announcements");

 Console.WriteLine("Press ENTER when the Products Service is available");

 Console.ReadLine();

 ...

}

This code creates a host for the AnnouncementService object and starts it listening for
announcements on a UdpAnnouncementEndpoint standard endpoint object. The end-
point is configured by default to listen to the same broadcast address used by the
udpAnnouncementEndpoint standard endpoint in the service. When the host has started,
the program waits for the user to press Enter before continuing.

	 9.	 Add this code to the Main method, as shown in bold in the following:

static void Main(string[] args)

{

 ...

 Console.WriteLine("Client listening for announcements");

 Console.WriteLine("Press ENTER when the Products Service is available");

 Console.ReadLine();

 // Find the announced endpoint for the Products Service

 FindCriteria productsServiceCriteria = new FindCriteria(typeof(IProductsService));

 EndpointAddress productsServiceAddress =

 (from service in services

 where productsServiceCriteria.IsMatch(service.Value)

 select service.Key).First();

 ...

}

These statements are similar in principal to the original code that broadcast Probe mes-
sages, except that it retrieves the service details from the services collection rather than
by following the WS-Discovery protocol. The IsMatch method of the FindCriteria class

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 505

compares the metadata of a service with that of a specified service contract and returns
true if they match. In this case, the LINQ query searches the services collection for a
service that implements the IProductsService contract and returns the address of the first
matching service.

Note  If there are no matching services, the LINQ query will throw an exception. However,
for clarity, this example assumes that a matching service exists and does not catch the
exception.

	 10.	 Add the statements shown in bold in the following code to the Main method.

static void Main(string[] args)

{

 ...

 EndpointAddress productsServiceAddress =

 (from service in services

 where productsServiceCriteria.IsMatch(service.Value)

 select service.Key).First();

 // Connect to the Products Service

 ProductsServiceClient proxy = new ProductsServiceClient();

 proxy.Endpoint.Address = productsServiceAddress;

 ...

}

The preceding code creates an instance of the ProductsServiceClient proxy and attaches
it to the address of the service retrieved from the services collection.

The remainder of the code in the client application that tests each of the operations in
the service remains exactly the same as before.

	 11.	 Rebuild the solution.

The final step is to redeploy the updated service to IIS. After doing so, you can run the client
application to verify that it receives service announcements correctly.

Test the ProductsService Service and Client Application

	 1.	 In Solution Explorer, right-click the C:\...\ProductsService\ project, and then click Publish
Web Site. Publish the updated Web site to the location http://localhost/Discoverable
Service, as before. In the message box that’s displaying the text, “Existing Files In The
Destination Location Will Be Deleted. Continue?”, click Yes.

	 2. 	Start the solution without debugging. In the client console window, do not press Enter
just yet because the ProductsService service has not sent any announcement messages,
and the client application will therefore not be able to find it.

Download from Wow! eBook <www.wowebook.com>

506	 Windows Communication Foundation 4 Step by Step

	 3.	 Return to Internet Information Services Manager. In the Connections pane, click the
DiscoverablePoductsService Web application, and then click the Content View tab below
the middle pane. Right-click ProductsService.svc, and then click Browse. This action
starts the service, causing it to send announcement messages.

Close Internet Explorer but leave Internet Information Services Manager running.

	 4.	 Return to the client console window. It should now be displaying a message indicating
that it has received an announcement from a service that implements the IProducts
Service interface and showing the address, like this:

	 6.	 In the client console window, press Enter. The application should run as before. When
the application has finished, do not press Enter but leave the client console window
open.

	 7.	 Return to Internet Information Services Manager. In the Connections pane, click Appli-
cation Pools. In the middle pane, right-click the ASP.NET v4.0 application pool, and then
click Recycle.

Any active Web applications and services that run using the ASP.NET v4.0 application
pool, including the ProductsService, will be shut down.

	 8.	 Return to the client console window. You should see a message triggered by the service
sending an offline announcement, and the client application has removed the details of
the service from the dictionary collection.

Press Enter to close the client console window and return to Visual Studio.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 507

Using a Discovery Proxy
The use of service announcements can reduce the volume of network traffic associated with
large numbers of Probe and ProbeMatch messages, but what happens if a client is not run-
ning when the service starts up? The answer is that it will miss the announcement messages
and will not be aware of the service, so it will not be able to connect to it. The solution is to
use a hybrid combination of discovery messages and announcements; build an intermediary
service that lives at a well-known address that listens for announcement messages from other
services and caches them. In your client applications, send Probe requests to this intermedi-
ary service. The intermediary service should accept these Probe requests, consult its cache of
service addresses, and if it finds a match, it should return a ProbeResponse populated with the
details of the matching service. Because the intermediary service lives at a fixed, well-known
address, clients do not need to broadcast Probe messages to the world at large; instead, they
can send them in a unicast manner directly to the intermediary service.

In WCF, the intermediary service is known as a discovery proxy. Furthermore, the System.
ServiceModel.Discovery namespace contains an abstract class called DiscoveryProxy that you
can use as the basis for building one these services.

To build a discovery proxy, you inherit from the DiscoveryProxy class and then override the
abstract methods described in the following list. These methods implement the following set
of asynchronous operations and they must be thread-safe:

■■ OnBeginOnlineAnnouncement and OnEndOnlineAnnouncement  The DiscoveryProxy
effectively contains a built-in announcement service that listens for announcement
messages. When you used the AnnouncementService class in the previous exercise, you
added handlers for the OnlineAnnouncementReceived and OfflineAnnouncementReceived
events. The DiscoveryProxy class does not expose these events in the same way, but
expects you to provide the logic that these events invoke when they occur.

The OnBeginOnlineAnnouncement method runs when a service indicates that it has just
come online. The purpose of this method is to store the service metadata, in whatever
way is appropriate to the discovery proxy (this data could be stored in memory, written
to a file, or possibly held in a database). This may take some time, so this method imple-
ments the Asynchronous Programming design pattern. The parameters to this method
include the metadata describing the service, passed in as an EndpointDiscoveryMetadata
object, and an AsyncCallback object for calling back into the DiscoveryProxy object when
the operation has completed. The method returns an IAsyncResult object. The Discovery
Proxy object calls the OnEndOnlineAnnouncement method to finish the operation, pass-
ing in the IAsyncResult object returned by the OnBeginOnlineAnnouncement method.
This method blocks until the IAsyncResult object indicates that the service announce-
ment has been processed and the details of the service have been stored.

Download from Wow! eBook <www.wowebook.com>

508	 Windows Communication Foundation 4 Step by Step

■■ OnBeginOfflineAnnouncement and OnEndOfflineAnnouncement  These methods pro-
vide the logic to handle an offline announcement message sent by a service when it
shuts down. The purpose of these methods is to remove the details of the service from
storage. These methods also follow the Asynchronous Programming design pattern.

■■ OnBeginFind and OnEndFind  These methods run when a client application sends a
Probe request. The details of the service to locate are passed in as a FindRequestContext
object. The OnBeginFind method initiates a search for the service, and the OnEndFind
method blocks until the search is complete.

■■ OnBeginResolve and OnEndResolve  The WS-Discovery protocol also supports Resolve
messages as the corollary of Probe messages; a Probe message specifies the contract to
search for, and the resultant ProbeMatch contains the address of the service. A Resolve
request specifies the address of a service, and the corresponding ResolveMatch message
contains the metadata describing the service contract. The OnBeginResolve and OnEnd
Resolve methods run when a client application sends a Resolve request. The OnBegin
Resolve method should perform the search asynchronously, and the OnEndResolve
method should block until the search has finished.

In the following set of exercises, you will implement a discovery proxy by extending the
DiscoveryProxy class. You will then modify the client application to send Probe requests to
the discovery proxy rather than catch service announcements.

Implement a Discovery Proxy

	 1.	 In Solution Explorer, add a new project to the ProductsService solution by using the
Console Application template (in the Windows folder in the Installed Templates pane in
the Add New Project dialog box). Name the project ProductsServiceProxy and save it
in the Microsoft Press\WCF Step By Step\Chapter 14\ProductsService folder.

	 2.	 Add references to the System.ServiceModel and System.ServiceModel.Discovery assemblies
to the ProductsServiceProxy project.

	 3.	 Add the existing AsyncResult.cs file located in the Chapter 14 folder to the Products
ServiceProxy project. This file contains a copy of the generic AsyncResult class that
implements the IAsyncResult interface (you employed this same class in Chapter 12,
“Implementing One-Way and Asynchronous Operations”).

	 4.	 Add a new class called ProductsServiceProxy, and save it in a file called ProductsService
Proxy.cs to the ProductsServiceProxy project.

	 5.	 In the ProductsServiceProxy.cs file, add the following using statements to the list at the
top of the file:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 509

using System.ServiceModel;

using System.ServiceModel.Discovery;

using System.Threading.Tasks;

using System.Threading;

using System.Collections.Concurrent;

	 6.	 Tag the ProductsServiceProxy class with the following ServiceBehavior attribute, as shown
in bold in the following:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single,

 ConcurrencyMode = ConcurrencyMode.Multiple)]

class ProductsServiceProxy

{

}

For simplicity, the ProductsServiceProxy is going to cache service information in a
ConcurrentDictionary object in memory. Therefore, the ProductsServiceProxy service
will be implemented as a reentrant (and thread-safe) single instance service.

	 7.	 Modify the ProductsServiceProxy class so that it inherits from the DiscoveryProxy class, as
shown in bold in the following:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single,

 ConcurrencyMode = ConcurrencyMode.Multiple)]

class ProductsServiceProxy : DiscoveryProxy

{

}

	 8.	 In the ProductsServiceProxy class, add the ConcurrentDictionary collection, which will
hold the following service information (shown in bold), and add a constructor that ini-
tializes this collection.

class ProductsServiceProxy : DiscoveryProxy

{

 // Store data for registered services in a ConcurrentDictionary object

 ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> services;

 public ProductsServiceProxy()

 {

 this.services = new ConcurrentDictionary<EndpointAddress,

 EndpointDiscoveryMetadata>();

 }

}

	 9.	 Add the private AddService and RemoveService methods (shown in bold in the code that
follows) to the ProductsServiceProxy class.

These methods add the metadata for a service to the services collection, remove the
metadata from the collection, and output some diagnostic messages so that you can
see what is going on. The code is similar to the client code that implemented announce-
ment events in the previous set of exercises. You will call these methods when you imple-
ment the OnBeginOnlineAnnouncement and OnEndOnlineAnnouncement methods.

Download from Wow! eBook <www.wowebook.com>

510	 Windows Communication Foundation 4 Step by Step

class ProductsServiceProxy : DiscoveryProxy

{

 ...

 // Add the specified service to the list of registered services

 private void AddService(EndpointDiscoveryMetadata metadata)

 {

 try

 {

 this.services.TryAdd(metadata.Address, metadata);

 foreach (var contractName in metadata.ContractTypeNames)

 {

 Console.WriteLine("Added service with contract {0} at address {1}",

 contractName.ToString(), metadata.Address.ToString());

 }

 }

 catch (Exception e)

 {

 Console.WriteLine("Failed to add service at address {0}",

 data.Address.ToString());

 Console.WriteLine("Exception: {0}", e.Message);

 }

 }

 // Remove the specified service from the list of registered services

 private void RemoveService(EndpointDiscoveryMetadata metadata)

 {

 try

 {

 EndpointDiscoveryMetadata data;

 this.services.TryRemove(metadata.Address, out data);

 Console.WriteLine("Removed service at address {0}",

 data.Address.ToString());

 }

 catch (Exception e)

 {

 Console.WriteLine("Failed to remove service at address {0}",

 metadata.Address.ToString());

 Console.WriteLine("Exception: {0}", e.Message);

 }

 }

}

Note  The code for these methods is available in the AddServiceAndRemoveService.txt file,
which is located in the Chapter 14 folder.

	 10.	 Add the following private method, called FindService, to the ProductsServiceProxy class.

class ProductsServiceProxy : DiscoveryProxy

{

 ...

 // Search through the list of registered services to find all matching services

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 511

 private void FindService(FindRequestContext requestContext)

 {

 try

 {

 // Find all services that match the criteria specified by the request

 context

 var matches = from service in this.services

 where requestContext.Criteria.IsMatch(service.Value)

 select service;

 // Iterate through the list of services and add them

 // to the list of services in the FindRequestContext parameter

 foreach (var data in matches)

 {

 Console.WriteLine("Found matching service endpoint at {0}",

 data.Value.Address);

 requestContext.AddMatchingEndpoint(data.Value);

 }

 }

 catch (Exception e)

 {

 Console.WriteLine("Failed to find service with criteria {0}",

 requestContext.Criteria.ToString());

 Console.WriteLine("Exception: {0}", e.Message);

 }

 }

}

This method searches the services dictionary for a service that matches the data in the
FindRequestContext parameter of the request. The Criteria property of this parameter
holds the contract of the service to search for. The LINQ query searches the dictionary
to find the relevant services, and the foreach loop adds the endpoint details to the
FindRequestContext object passed in as the parameter.

Note  The code for this method is provided in the FindService.txt file, which is located in
the Chapter 14 folder.

	 11.	 Add the private ResolveService method shown in bold in the following code to Products
ServiceProxy class.

class ProductsServiceProxy : DiscoveryProxy

{

 ...

 // Search through the list of registered services to find a service

 // with and address that matches that in the specified ResolveCriteria

 private EndpointDiscoveryMetadata ResolveServiceRequest(ResolveCriteria criteria)

 {

 try

 {

 // Find the first service that matches the specified address

 var match = (from service in this.services

Download from Wow! eBook <www.wowebook.com>

512	 Windows Communication Foundation 4 Step by Step

 where service.Value.Address == criteria.Address

 select service).First();

 Console.WriteLine("Resolved service endpoint at {0}",

 match.Value.Address);

 // Return the service

 return match.Value;

 }

 // If there is no matching service, the LINQ query throws an exception

 // In this case, return null

 catch (Exception e)

 {

 Console.WriteLine("Failed to resolve service with address {0}",

 criteria.Address);

 Console.WriteLine("Exception: {0}", e.Message);

 return null;

 }

 }

}

This method is similar in concept to the FindService method, but it searches for services
using the address specified in the Address property of the ResolveCriteria parameter. It
returns an EndpointDiscoveryMetadata object containing the service details.

Note  The code for this method is available in the ResolveService.txt file, which is located in
the Chapter 14 folder.

	 12.	 Add the WaitForAsyncResult utility method shown in bold in the following code to the
ProductsServiceProxy class.

class ProductsServiceProxy : DiscoveryProxy

{

 ...

 private void WaitForAsyncResult(IAsyncResult result)

 {

 // The IAsyncResult parameter should be an AsyncResult object

 // returned by the OnBegin method.

 // If it is some other type, then this method will return without waiting

 AsyncResult<object> r = result as AsyncResult<object>;

 // If the OnBeginOnlineAnnouncement did not complete synchronously

 // then wait until the AsyncWaitHandle property says that

 // the async operation is complete

 if ((r != null) && !r.CompletedSynchronously)

 {

 WaitHandle waitHandle = r.AsyncWaitHandle;

 waitHandle.WaitOne();

 }

 }

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 513

You will use this method when you implement the various OnEnd methods shortly. The
purpose of this method is to block until the IAsyncResult object specified as the param-
eter indicates that the operation has completed (this operation could be an announce-
ment request, a find request, or a resolve request).

Note  The code for this method is available in the WaitForAsyncResult.txt file, which is
located in the Chapter 14 folder.

	 13.	 Override the OnBeginOnlineAnnouncement and OnEndOnlineAnnouncement methods
of the DiscoveryProxy class, as follows:

class ProductsServiceProxy : DiscoveryProxy

{

 ...

 // Asynchronously add the specified service to the list

 // registered with this discovery proxy

 protected override IAsyncResult OnBeginOnlineAnnouncement(

 DiscoveryMessageSequence messageSequence,

 EndpointDiscoveryMetadata endpointDiscoveryMetadata,

 AsyncCallback callback, object state)

 {

 Console.WriteLine("Starting OnBeginOnlineAnnouncement");

 // Create an AsyncResult object to pass back for synchronization purposes

 AsyncResult<object> result = new AsyncResult<object>(false, state);

 // Use a Task to add the service in the background

 Task.Factory.StartNew(() =>

 {

 // Add the service to the collection of registered services

 this.AddService(endpointDiscoveryMetadata);

 // Indicate that the operation is complete

 result.Complete();

 // Invoke callback and pass the AsyncResult object as the parameter

 Console.WriteLine("Calling back after adding service");

 if (callback != null)

 callback(result);

 });

 // Return the AsyncResult object

 Console.WriteLine("Returning after scheduling task to add service");

 return result;

 }

 protected override void OnEndOnlineAnnouncement(IAsyncResult result)

 {

 Console.WriteLine("Starting OnEndOnlineAnnouncement");

 WaitForAsyncResult(result);

 Console.WriteLine("Leaving OnEndOnlineAnnouncement");

 }

}

Download from Wow! eBook <www.wowebook.com>

514	 Windows Communication Foundation 4 Step by Step

The OnBeginOnlineAnnouncement method creates a Task to asynchronously call the
AddService method, which adds the service metadata specified in the parameter to the
services dictionary. This method returns an IAsyncResult containing the state information
needed to wait for the operation to complete.

The OnEndOnlineAnnouncement method takes this IAsyncResult object as a parameter
and calls the WaitForAsyncResult method, which blocks until the IAsyncResult object
indicates that the operation has completed.

Note  The code for this method is provided in the OnlineAnnouncement.txt file, which is
located in the Chapter 14 folder.

	 14.	 Override the OnBeginOfflineAnnouncement and OnEndOfflineAnnouncement methods
of the DiscoveryProxy class:

class ProductsServiceProxy : DiscoveryProxy
{
 ...
 // Asynchronously remove the specified service from the list
 // registered with this discovery proxy
 protected override IAsyncResult OnBeginOfflineAnnouncement(
 DiscoveryMessageSequence messageSequence,
 EndpointDiscoveryMetadata endpointDiscoveryMetadata,
 AsyncCallback callback, object state)
 {
 Console.WriteLine("Starting OnBeginOfflineAnnouncement");

 // The logic in this method is very similar
 // to that in OnBeginOnlineAnnouncement
 AsyncResult<object> result = new AsyncResult<object>(false, state);

 Task.Factory.StartNew(() =>
 {
 // Remove the service from the collection of registered servers
 this.RemoveService(endpointDiscoveryMetadata);
 result.Complete();

 Console.WriteLine("Calling back after removing service");
 if (callback != null)
 callback(result);
 });

 Console.WriteLine("Returning after scheduling task to remove service");
 return result;
 }

 protected override void OnEndOfflineAnnouncement(IAsyncResult result)
 {
 Console.WriteLine("Starting OnEndOfflineAnnouncement");
 WaitForAsyncResult(result);
 Console.WriteLine("Leaving OnEndOfflineAnnouncement");
 }
}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 515

The logic behind these two methods is similar to that for the OnBeginOnline
Announcement and OnEndOnlineAnnouncement methods, but the OnBeginOffline
Announcement method calls RemoveService to delete the details of the service from
the services dictionary.

Note  The code for this method is provided in the OfflineAnnouncement.txt file, which is
located in the Chapter 14 folder.

	 15.	 Override the OnBeginFind and OnEndFind methods of the DiscoveryProxy class:

class ProductsServiceProxy : DiscoveryProxy

{

 ...

 protected override IAsyncResult OnBeginFind(

 FindRequestContext findRequestContext, AsyncCallback callback, object state)

 {

 Console.WriteLine("Starting OnBeginFind");

 AsyncResult<FindRequestContext> result =

 new AsyncResult<FindRequestContext>(false, state);

 Task.Factory.StartNew(() =>

 {

 this.FindService(findRequestContext);

 result.Complete();

 Console.WriteLine("Calling back after finding service");

 if (callback != null)

 callback(result);

 });

 Console.WriteLine("Returning after scheduling task to find service");

 return result;

 }

 protected override void OnEndFind(IAsyncResult result)

 {

 Console.WriteLine("Starting OnEndFind");

 WaitForAsyncResult(result);

 Console.WriteLine("Leaving OnEndFind");

 }

}

By now, the pattern should be familiar. The OnBeginFind method calls the FindService
method to find services that match the criteria specified by the FindRequestContext
object passed as a parameter. The caller expects the endpoint details of any matching
services to be added to the FindRequestContext object passed in as the parameter.

Note  The code for this method is provided in the AsyncFind.txt file, which is located in the
Chapter 14 folder.

Download from Wow! eBook <www.wowebook.com>

516	 Windows Communication Foundation 4 Step by Step

	 16.	 Finally, override the OnBeginResolve and OnEndResolve methods of the DiscoveryProy
class:

class ProductsServiceProxy : DiscoveryProxy

{

 ...

 protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria,

 AsyncCallback callback, object state)

 {

 Console.WriteLine("Starting OnBeginResolve");

 AsyncResult<EndpointDiscoveryMetadata> result =

 new AsyncResult<EndpointDiscoveryMetadata>(false, state);

 result.Data = null;

 Task.Factory.StartNew(() =>

 {

 EndpointDiscoveryMetadata data = this.ResolveServiceRequest(resolve

 Criteria);

 result.Data = data;

 result.Complete();

 Console.WriteLine("Calling back after resolving service");

 if (callback != null)

 callback(result);

 });

 Console.WriteLine("Returning after scheduling task to resolve service");

 return result;

 }

 protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result)

 {

 Console.WriteLine("Starting OnEndResolve");

 WaitForAsyncResult(result);

 if (result is AsyncResult<EndpointDiscoveryMetadata>)

 {

 Console.WriteLine("Returning result from OnEndResolve");

 return ((AsyncResult<EndpointDiscoveryMetadata>)result).Data;

 }

 else

 {

 Console.WriteLine("Returning null from OnEndResolve");

 return null;

 }

 }

}

The OnBeginResolve invokes the ResolveService method to find the service metadata.
There is a small difference in the pattern for the OnEndResolve method; it returns the
service metadata directly rather than expecting the caller to retrieve it from the Resolve
Criteria parameter.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 517

Note  The code for this method is provided in the AsyncResolve.txt file, which is located in
the Chapter 14 folder.

	 17.	 Rebuild the solution.

You have now defined a DiscoveryProxy service that caches announcement requests in a dic-
tionary collection, in memory. The next step is to provide a host for this service. To save you
some time (and typing), and to provide a variation from using IIS, the code for a complete
host is already provided, and you’ll examine it in the next exercise. Additionally—again as a
variation and to prove that discovery is not tied to the HTTP protocol—this host exposes the
announcement and discovery endpoints using the TCP protocol.

Examine the Host for the ProductsServiceProxy Service

	 1.	 Delete the Program.cs file from the ProductsServiceProxy project and add the existing
Host.cs file located in the Chapter 14 folder to the project in its place.

	 2.	 Open the Hosts.cs file in the Code And Text Editor window.

The Program class contains two string constants called probeAddress and announcement
Address. These are both TCP addresses:

private const string probeAddress = "net.tcp://localhost:8001/Probe";

private const string announcementAddress = "net.tcp://localhost:8002/Announcement";

Client applications will send Probe messages to an endpoint that is listening to the probe
Address address, and services will send announcement messages to an endpoint that is
listening to the announcementAddress address.

The Main method creates a new ServiceHost object for hosting the ProductsServiceProxy
service:

ServiceHost proxyService = new ServiceHost(new ProductsServiceProxy());

The Main method then creates a discovery endpoint by using the DiscoveryEndpoint
and binds it to the address specified by the probeAddress constant.

Note  The DiscoveryEndpoint class is the more generalized parent class of UdpDiscovery
Endpoint that supports network protocols and addressing modes in addition to UDP multi-
casting. It is located in the System.ServiceModel.Discovery namespace:

// Create probe endpoint for discovery proxy

DiscoveryEndpoint discoveryEndpoint = new DiscoveryEndpoint();

discoveryEndpoint.Binding = new NetTcpBinding();

discoveryEndpoint.Address = new EndpointAddress(probeAddress);

discoveryEndpoint.IsSystemEndpoint = false;

Download from Wow! eBook <www.wowebook.com>

518	 Windows Communication Foundation 4 Step by Step

Note  The IsSystemEndpoint property indicates whether the endpoint is a system-defined
standard endpoint with a built-in configuration or an application-defined endpoint with
application-defined settings. By default, a DiscoveryEndpoint endpoint is classified as a
system endpoint, but in this case, you are modifying the configuration in your application
(it is a TCP endpoint with an address specified by the application), so the IsSystemEndpoint
property must be set to false. If you leave this property set to true (the default for the
DiscoveryEndpoint class), then you will receive errors when you attempt to open the discovery
proxy, indicating that you need to add a service discovery behavior to make the service
discoverable.

The Main method creates an announcement endpoint in a similar way, by using
the AnnouncementEndpoint class (also located in the System.ServiceModel.Discovery
namespace).

// Create announcement endpoint for discovery proxy

AnnouncementEndpoint announcementEndpoint = new AnnouncementEndpoint();

announcementEndpoint.Binding = new NetTcpBinding();

announcementEndpoint.Address = new EndpointAddress(announcementAddress);

Next, the Main method adds these two endpoints to the ServiceHost object, and
then starts the host running. At this point, the discovery proxy is available to receive
announcement messages from services and to handle Probe and Resolve requests from
client applications:

// Add endpoints to the service host

proxyService.AddServiceEndpoint(discoveryEndpoint);

proxyService.AddServiceEndpoint(announcementEndpoint);

// Start the service

proxyService.Open();

Console.WriteLine("Discovery Proxy Service running\n");

The service continues running until the user presses Enter, at which point the Service-
Host object shuts down:

Console.WriteLine("Press ENTER to stop");

Console.ReadLine();

// Stop the service and finish

proxyService.Close();

	 3.	 Rebuild the solution.

Before you start the ProductsService running, you must configure it to send announcement
messages to the TCP endpoint created by the discovery proxy rather than broadcasting them
to the world at large.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 519

Configure the ProductsService Service to Send Announcement Messages to the
Discovery Proxy

	 1.	 Open the web.config file for the C:\...\ProductsService\ project by using the Service
Configuration Editor.

	 2.	 In the Configuration pane, expand the Advanced folder, expand the Service Behaviors
folder, expand the (Empty Name) behavior, expand the serviceDiscovery behavior ele-
ment, expand the Announcement Endpoint folder, and then click the (Empty Name)
announcement endpoint.

The service is currently configured to broadcast announcements over a UDP connection.

	 3.	 In the Client Endpoint pane, change the Kind property to announcementEndpoint.

The announcementEndpoint endpoint is a standard endpoint for sending unicast
announcement messages announcement messages. You can specify the address to send
the messages to in the Address property.

	 4.	 In the Address property, enter net.tcp://localhost:8002/Announcement. As described
earlier, this is the address that the discovery proxy listens to for announcement mes-
sages. Set the Binding property to netTcpBinding, because this is a TCP address.

	 5.	 Save the configuration file then close the Service Configuration Editor.

You also need to amend the client application. Previously, it included functionality that lis-
tened for announcement messages, but the discovery proxy is now performing this task.
Therefore, you need to revert back to something approaching the version of the client appli-
cation that you built in the first exercise and configure it to send Probe messages. However, as
with the ProductsService service, the client should no longer broadcast these Probe requests;
instead, it should direct them toward the discovery proxy.

Modify the Client Application to Send Probe Requests to the Discovery Proxy

	 1.	 Open the Program.cs file for the ProductsClient project in the Code And Text Editor
window.

	 2.	 In the Program class, remove the definition of the services ConcurrentDictionary collec-
tion above the Main method and replace it with the following statement that specifies
the address to which to send Probe messages:

class Program

{

 private const string probeAddress = "net.tcp://localhost:8001/Probe";

 static void Main(string[] args)

 {

 ...

 }

}

Download from Wow! eBook <www.wowebook.com>

520	 Windows Communication Foundation 4 Step by Step

	 3.	 In the Main method, remove the announcementService variable and delete the code
that implements the OnlineAnnouncementReceived and OfflineAnnouncementReceived
events. Also remove the statements that create the announcementHost ServiceHost vari-
able as well as those that connect this service to the UDP announcement endpoint and
start it listening. The Main method should now start with the code that prompts the
user to press Enter when the ProductsService service is running:

static void Main(string[] args)

{

 Console.WriteLine("Press ENTER when the Products Service is available");

 Console.ReadLine();

 ...

}

	 4.	 In the Console.WriteLine statement, change the message to “Press ENTER when the
Discovery Proxy has started”.

static void Main(string[] args)

{

 Console.WriteLine("Press ENTER when the Discovery Proxy has started");

 Console.ReadLine();

 ...

}

	 5.	 After the Console.ReadLine statement, add the following code shown in bold:

static void Main(string[] args)

{

 Console.WriteLine("Press ENTER when the Discovery Proxy has started");

 Console.ReadLine();

 // Create a DiscoveryClient object that connects to the discovery proxy

 Uri discoveryProxyUri = new Uri(probeAddress);

 EndpointAddress discoveryProxyAddress = new EndpointAddress(discoveryProxyUri);

 DiscoveryEndpoint discoveryProxyEndpoint =

 new DiscoveryEndpoint(new NetTcpBinding(), discoveryProxyAddress);

 DiscoveryClient discoveryClient = new DiscoveryClient(discoveryProxyEndpoint);

 ...

}

These statements create a TCP endpoint for connecting to the discovery proxy and then
instantiate a DiscoveryClient object that connects to this endpoint.

	 6.	 The next statement creates a FindCriteria object based on the type of the contract
(IProductsService) implemented by the ProductsService service. Leave this statement
intact, but remove the subsequent statement that attempts to locate the service in the
services collection. Replace it with the following code (shown in bold) that submits a
Probe request through the DiscoveryClient object to the discovery proxy and retrieves
the address of the first endpoint returned by the ProbeMatch response:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 521

static void Main(string[] args)

{

 ...

 DiscoveryClient discoveryClient = new DiscoveryClient(discoveryProxyEndpoint);

 // Find the announced endpoint for the Products Service

 FindCriteria productsServiceCriteria = new FindCriteria(typeof(IProductsService));

 FindResponse findResponse = discoveryClient.Find(productsServiceCriteria);

 EndpointAddress productsServiceAddress = findResponse.Endpoints[0].Address;

 // Connect to the Products Service

 ...

}

Note  As in the first set of exercises in this chapter, this code assumes that at least one
matching service was found; otherwise, it will throw an exception when it attempts to access
the Address property of the object at element zero in the Endpoints collection of the find
Response variable.

	 7.	 The remainder of the code in the client application should stay unchanged. Rebuild the
solution.

You can now test the discovery proxy, but first you need to deploy the updated version of
the ProductsService service and configure the solution to start the discovery proxy, as well as
the client application.

Test the Discovery Proxy

	 1.	 In Solution Explorer, right-click the C:\...\ProductsService\ project, and then click Publish
Web Site. Publish the Web site to the location http://localhost/DiscoverableService
and allow Visual Studio to overwrite the existing files deployed previously.

	 2.	 In the ProductsService solution, set the ProductsServiceProxy and ProductsClient projects
as startup projects.

	 3.	 Start the solution without debugging but do not press Enter in the client console win-
dow just yet.

	 4.	 Return to Internet Information Services Manager and start the DiscoverableProducts
Service Web application by browsing the ProductsService.svc file, as before. Close Inter-
net Explorer but leave Internet Information Services Manager open.

	 5.	 Switch to the console window for the discovery proxy. You should see the trace messages
output by the OnBeginOnlineAnouncement and OnEndOnlineAnnouncement methods
that were triggered by the ProductsService service starting up, as shown in the image
that follows.

Download from Wow! eBook <www.wowebook.com>

522	 Windows Communication Foundation 4 Step by Step

	 6.	 Switch to the console window for the client application, and then press Enter. The
client application should send a Probe message to the discovery proxy, which returns
the address of the ProductsService service. The client application should then use this
address to connect to the ProductsService service and use it to retrieve and update
product information, as before.

	 7.	 Return to the console window for the discovery proxy. You should now see additional
trace messages that were generated by the OnBeginFind and OnEndFind methods called
when the client application submitted the Probe request:

	 8.	 Return to Internet Information Services Manager. In the Connections pane, click Appli-
cation Pools. In the middle pane, right-click the ASP.NET v4.0 application pool, and then
click Recycle. This action will shut down all Web applications services that use this appli-
cation pool, including the ProductsService service.

	 9.	 Switch back to the console window for the discovery proxy. This window should now
display further trace messages from the OnBeginOfflineAnnouncement and OnEnd
OfflineAnnouncement methods; the ProductsService service announced that it was going
offline as it shut down.

	 10.	 Press Enter to close the console windows for the discovery proxy and the client
application, and then return to Visual Studio.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 523

Implementing Routing
Routing is intended to handle a subtly different scenario from discovery.

Sometimes it is useful to be able to forward messages sent to a service to an entirely different
service for handling. For example, suppose that client applications send requests to various
WCF services hosted by an organization, but all these requests actually go through the same
front-end service, which acts as a firewall to the real WCF services. The front-end service can
run on a computer forming part of the organization’s perimeter network, and the comput-
ers hosting the real WCF services can reside in a protected network inside the organization.
The front-end service can implement a routing mechanism, forwarding requests on the
real services by examining the action or address in each message. This technique is known
as address-based routing. The front-end service can also filter messages, detecting rogue
requests and blocking them, depending on the degree of intelligence you want to incorporate
into the front-end service logic.

An alternative scheme is to route messages based on their contents rather than on the action
being requested; this mechanism is known as content-based routing. For example, if you are
hosting a commercial service, you might offer different levels of service to different users,
depending on the fees that they pay you. A “premium” user (paying higher fees) could have
requests forwarded to a high-performance server for a fast response, whereas a “standard”
user (not paying as much) might have to make do with a lower level of performance. The
client application run by both categories of user actually sends messages to the same front-
end service, but the front-end service examines some aspect of the message, such as the
identity of the user making the request, and then forwards the message to the appropriate
destination.

A front-end service can also provide other features, such as load-balancing. Requests from
client applications arrive at a single front-end server, which uses a load-balancing algorithm
to distribute requests evenly across all servers running the WCF service.

WCF provides two primary mechanisms that you can employ to implement routing, depending
upon the complexity of your requirements. The RoutingService class in the System.Service
Model.Routing namespace enables you to provide configuration information to route mes-
sages to other services, based on criteria that examine the contents and addresses of these
messages (address-based routing and content-based routing). Alternatively, if you need to
implement a more dynamic or low-level approach such as that required by a load-balancing
router, you can route messages manually, based on criteria such as the current workload of a
service.

Before looking at how you can use the RoutingService, it is useful to explain a little more
about what happens when a WCF service actually receives a request message from a client
application and how you can use this information to implement your own custom routing
service.

Download from Wow! eBook <www.wowebook.com>

524	 Windows Communication Foundation 4 Step by Step

Routing Messages Manually
A service can expose multiple endpoints, each associated with the same or a different con-
tract. When a WCF service receives a message, it must examine the message to determine
which service endpoint should actually process it. You can customize the way in which WCF
selects the endpoint to use, and this provides a mechanism for you to change the way in
which WCF routes messages within a service.

ChannelDispatcher and EndpointDispatcher Objects Revisited
In Chapter 11, “Programmatically Controlling the Configuration and Communications,” you
saw that the WCF runtime for a service creates a channel stack for each distinct address and
binding combination used to communicate with the service. Each channel stack has a Channel
Dispatcher object and one or more EndpointDispatcher objects. The purpose of the Channel
Dispatcher object is to determine which EndpointDispatcher object should handle the mes-
sage. The role of the EndpointDispatcher object is to convert the message into a method call
and invoke the appropriate method in the service.

Note  This is a very simplified view of the WCF Service Model. The EndpointDispatcher object does
not directly invoke the method in the service itself; it uses a number of other helper objects instan-
tiated by the WCF runtime. These objects have their own specific responsibilities for converting
the message into a method call, selecting the appropriate service instance, handling the value
returned by the method, and all the other low-level tasks associated with executing an operation.
The WCF runtime is highly customizable, so you can replace many of the standard components
provided by WCF that perform these tasks with your own implementations.

Each address and binding combination exposed by a service can be shared by multiple
endpoints. For example, the configuration file for the ProductsServiceHost project in the
ProductsServiceLibrary solution from Chapter 6, “Maintaining Service Contracts and Data
Contracts,” defined the following service and endpoints for the two versions of the service
contract, Products.IProductsService and Products.IProductsServiceV2:

<services>

 <service name="Products.ProductsServiceImpl">

 <endpoint address="http://localhost:8010/ProductsService/Service.svc"

 binding="ws2007HttpBinding" bindingConfiguration=""

 name="WS2007HttpBinding_IProductsService"

 contract="Products.IProductsService" />

 <endpoint address="http://localhost:8010/ProductsService/Service.svc"

 binding="ws2007HttpBinding" bindingConfiguration=""

 name="WS2007HttpBinding_IProductsService"

 contract="Products.IProductsServiceV2" />

 </service>

</services>

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 525

Notice that this configuration defines two endpoints, but they share the same address/binding
combination; the only difference is the contract associated with each endpoint. This configura-
tion causes the WCF runtime to create a single channel stack with its own ChannelDispatcher
object. However, the channel stack is associated with two possible endpoints; one for each
of the contracts available. Consequently, the WCF runtime creates two EndpointDispatcher
objects for the channel stack and adds them to the collection of EndpointDispatcher objects
associated with the ChannelDispatcher object. If the ProductsServiceHost project additionally
provided TCP endpoints for this service, as shown in the following configuration, then the
WCF runtime would create two channel stacks (one for the HTTP endpoints, and another for
the TCP endpoints), with their own ChannelDispatcher objects. The TCP endpoints would have
their own EndpointDispatcher objects.

<service name="Products.ProductsServiceImpl">

 <endpoint address="http://localhost:8010/ProductsService/Service.svc"

 binding="ws2007HttpBinding" bindingConfiguration=""

 name="WS2007HttpBinding_IProductsService"

 contract="Products.IProductsService" />

 <endpoint address="http://localhost:8010/ProductsService/Service.svc"

 binding="ws2007HttpBinding" bindingConfiguration=""

 name="WS2007HttpBinding_IProductsService"

 contract="Products.IProductsServiceV2" />

 <endpoint address="net.tcp://localhost:8080/TcpProductsService"

 binding="netTcpBinding" bindingConfiguration=""

 name="NetTcpBinding_IProductsService"

 contract="Products.IProductsService" />

 <endpoint address="net.tcp://localhost:8080/TcpProductsService"

 binding="netTcpBinding" bindingConfiguration=""

 name="NetTcpBinding_IProductsService"

 contract="Products.IProductsServiceV2" />

</service>

Figure 14-1 shows the relationship between the endpoints, channel stack, and dispatcher
object for this service configuration.

When the service receives a message on a channel, the ChannelDispatcher object at the top
of the channel stack queries each of its associated EndpointDispatcher objects to determine
which endpoint can process the message. If none of the EndpointDispatcher objects can
accept the message, the WCF runtime raises the UnknownMessageReceived event on the
ServiceHost object hosting the service. Chapter 3, “Making Applications and Services Robust,”
describes how to handle this event.

Download from Wow! eBook <www.wowebook.com>

526	 Windows Communication Foundation 4 Step by Step

…

…

TCP

En
d

p
o

in
t

D
is

p
at

ch
er

s
En

d
p

o
in

t
D

ef
in

it
io

n
s

C
h

an
n

el
D

is
p

at
ch

er
s

C
h

an
n

el
St

ac
ks

IProductsService

URI: http://localhost:8010/ProductsService/ProductsService.svc
Binding: ws2007HttpBinding
Contracts: IProductsService and IProductsServiceV2

IProductsServiceV2

…

…

TCP

IProductsService

URI: net.tcp://localhost:8080/TcpProductsService
Binding: netTcpBinding
Contracts: IProductsService and IProductsServiceV2

IProductsServiceV2

Figure 14-1  Channels and Dispatchers for the ProductsServiceImpl service.

EndpointDispatcher Objects and Filters
How does an EndpointDispatcher object indicate that it can process a message? An Endpoint
Dispatcher object exposes two properties that the ChannelDispatcher can query: AddressFilter
and ContractFilter.

The AddressFilter property is an instance of the EndpointAddressMessageFilter class. The
EndpointAddressMessageFilter class provides a method called Match that takes a message
as its input parameter and returns a Boolean value that indicates whether the Endpoint
Dispatcher object recognizes the address contained in the header of this message.

The ContractFilter property is an instance of the ActionMessageFilter class. This class also
provides a method called Match that takes a message as its input parameter, and it returns
a Boolean value that indicates whether the EndpointDispatcher object can handle the action
specified in the message header. Remember that the action identifies the method that the
EndpointDispatcher will invoke in the service instance if it accepts the request. Internally,
the ActionMessageFilter object contains a table of actions, held as strings, and all the Match
method does is iterate through this table until it either finds a match or reaches the end of
the table.

Note  The EndpointAddressMessageFilter class and the ActionMessageFilter class are both
descendents of the MessageFilter abstract class. They override the abstract Match method of
the MessageFilter class with their own specialized implementations that match endpoints and
contracts.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 527

The Match method in both filters must return true for the ChannelDispatcher object to con-
sider sending the message to the EndpointDispatcher object for processing. It is also possible
for more than one EndpointDispatcher object to indicate that it can handle the message.
In this case, the EndpointDispatcher class provides the FilterPriority property. This property
returns an integer value. An EndpointDispatcher object can indicate its relative precedence
compared to other EndpointDispatcher objects by returning a higher or lower number. If two
matching endpoints have the same priority, the WCF runtime throws a MultipleFilterMatches
Exception exception.

The WCF runtime creates the EndpointAddressFilterMessage and ActionMessageFilter objects
for each ChannelDispatcher object, based on the endpoint definitions in the service configu-
ration file (or in code, if you are creating endpoints dynamically by using the AddService
Endpoint method of the ServiceHost object, as described in Chapter 11). You can override these
filters by creating your own customized instances of these objects with your own address and
table of actions and inserting these filters when the WCF runtime builds the service prior to
opening it. One way to do this is to create a custom behavior, as you did when adding the
message inspector in Chapter 11.

By default, the EndpointDispatcher invokes the method corresponding to the action in the
service contract. However, you can modify the way in which the EndpointDispatcher processes
an operation request by creating a class that implements the IDispatchOperationSelector
interface and assigning it to the OperationSelector property of the DispatchRuntime object
referenced by the DispatchRuntime property of the EndpointDispatcher object. This interface
contains a single method called SelectOperation:

public string SelectOperation(ref Message message).

You can use this method to examine the message and return the name of a method that the
EndpointDispatcher should invoke to handle it. This is useful if you want to manually control
the way in which the dispatching mechanism works.

More Info  The Custom Demux sample included with the WCF samples that you can download
from the Microsoft Web site (http://www.microsoft.com/downloads/details.aspx?FamilyID=35ec8682-
d5fd-4bc3-a51a-d8ad115a8792&displaylang=en) provides more information on creating an
endpoint behavior class that overrides the contract filter and operation selector for an endpoint
dispatcher. This sample is based on the MsmqIntegrationBinding binding, but the general principles
are the same for other bindings. You can find this sample online at http://msdn.microsoft.com/
en-us/library/ms752265.aspx.

To summarize, the dispatching mechanism provides a highly customizable mechanism for
determining which endpoint should process a message. You can make use of this knowledge
to build services that can transparently route messages to other services.

Download from Wow! eBook <www.wowebook.com>

528	 Windows Communication Foundation 4 Step by Step

Routing Messages to Other Services
The WCF runtime makes it a relatively simple matter to build a WCF service that accepts
specific messages and sends them to another service for processing (I shall refer to this type
of service as a front-end service from here on in this chapter). All you need to do is define a
front-end service with a service contract that mirrors that of the target service. The methods
defining the operations in the front-end service can perform any pre-processing required,
such as examining the identity of the user making the request or the data being passed in as
parameters and then forward the request on to the appropriate target service.

However, creating a generalized WCF service that can accept any messages and route them to
another service running on a different computer requires a little more thought. There are at
least three issues that you need to handle:

	 1.	 The service contract. A WCF service describes the operations that it can perform by
defining a service contract. For a service to accept messages, those messages must be
recognized by the ContractFilter of one or more EndpointDispatcher objects. At first
glance, therefore, it would appear that any front-end service that accepts messages and
forwards them on to another service must implement a service contract that is the same
as that of the target service. While this is feasible when routing messages to a single
service, if you are building a front-end service for many other services, this situation can
quickly become unmanageable because the front-end service has to implement service
contracts that match all these other services.

	 2.	 The contents of messages. In some ways this issue is related to the first problem. If a
front-end service must implement the service contracts for a vast array of other services,
it also must implement any data contracts that these other services use, describing how
data structures are serialized into the bodies of the messages. Again, this can quickly
become an unwieldy task.

	 3.	 The contents of message headers. Apart from the data in the body, a message also
contains one or more message headers. These message headers contain information
such as encryption tokens, transaction identifiers, and many other miscellaneous items
used to control the flow of data and manage the integrity of messages. A front-end
service must carefully manage this information in order to appear transparent to the
client application sending requests and the services that receive and process those
requests.

Fortunately, there are reasonably straightforward solutions to at least some of these problems,
which you will investigate in the following set of exercises. In these exercises, you will see how
to build a very simple load-balancing router for the ShoppingCartService service. You will run
two instances of the ShoppingCartService service, and the load-balancing router will direct
requests transparently from client applications to each service. The load-balancing routing
will implement a very simple algorithm, sending alternate requests to each instance of the

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 529

ShoppingCartService service. Although all three services in this exercise will be running on the
same computer, it would be very easy to arrange for them to execute on different machines,
allowing you to spread the workload across different processors.

You will start by refamiliarizing yourself with the ShoppingCartService service and modifying it
to execute in a more traditional Internet environment.

Revisit the Durable ShoppingCartService Service

	 1.	 Using Visual Studio, open the ShoppingCart.sln solution file in the Microsoft Press\WCF
Step By Step\Chapter 14\LoadBalancingRouter folder.

This solution contains an amended copy of the durable ShoppingCartService, Shopping
CartServiceHost, and ShoppingCartGUIClient projects from Chapter 7, “Maintaining State
and Sequencing Operations.”

Note  This version of the ShoppingCartService service requires that you have created the
WCFPersistence database as the persistence store and configured the SQL Server persistence
provider, as described in Chapter 7. You must also have reserved port 9000. If you have
removed this reservation since performing the exercises in Chapter 7, open a Visual Studio
Command Prompt window as administrator, and enter the following command (replace
UserName with your windows user name):

netsh http add urlacl url=http://+:9000/ user=UserName

	 2.	 Open the IShoppingCartService.cs file for the ShoppingCartService project in the Code
And Text Editor window and review the code in this file. Recall from Chapter 7 that the
ShoppingCartService service implements the operations AddItemToCart, RemoveItem
FromCart, GetShoppingCart, and Checkout.

	 3.	 Open the ShoppingCartService.cs file in the Code And Text Editor window and review
the code in this file as well. Notice that the service employs the PerSession instance
context mode and that it is tagged with the DurableService attribute. Session state is
maintained between calls in the WCFPersistence SQL Server database.

	 4.	 Open the Program.cs file in the ShoppingCartHost project. This is the service host appli-
cation. All it does is start the service running by using a ServiceHost object, and then it
waits for the user to press Enter to close the host.

	 5.	 Open the App.config file for the ShoppingCartHost project in the Code And Text Editor
window. Notice that the service host creates an HTTP endpoint with the URI http://
localhost:9000/ShoppingCartService/ShoppingCartService.svc. In this version of the appli-
cation, the endpoint uses the basicHttpContextBinding binding without any additional
settings beyond its default configuration. In an Internet environment, it is likely that you
would implement transport-level security to protect messages travelling between a
client application and a service. With WCF, you can configure transport-level security by

Download from Wow! eBook <www.wowebook.com>

530	 Windows Communication Foundation 4 Step by Step

using the basicHttpBinding binding over HTTPS. The basicHttpContextBinding binding is
simply an extended version of the basicHttpBinding binding that passes the instance ID
of the session that the client application wishes to communicate with as a cookie in the
Web request header.

Close the App.config file when you have finished.

Note  For simplicity, and to allow you to concentrate on the process of routing messages,
in this exercise you will not actually configure the ShoppingCartService service to use HTTPS,
but if you want to know how to do this, go back and read the “Protecting an HTTP Service
at the Transport Level” section on page 135 in Chapter 4, “Protecting an Enterprise WCF
Service.”

	 6.	 Open the app.config file for the ShoppingCartGUIClient project in the Code And Text
Editor window and verify that the client application uses an endpoint with the same URI
and binding as the service (http://localhost:9000/ShoppingCartService/ShoppingCart
Service.svc). Close the app.config file when you have finished.

	 7.	 Start the solution without debugging to refamiliarize yourself with the client application.

In the Shopping Cart GUI Client window, enter WB-H098 in the Product Number text
box, and then click Add Item. After a short delay, a water bottle should be added to the
shopping cart and displayed in the window.

Enter BK-M38S-46 in the Product Number text box, and then click Add Item again. This
time, you should see a silver mountain bike added to the shopping cart.

Click Checkout. The shopping cart should empty.

	 8.	 Close the Shopping Cart GUI Client window as well as the service host console
application window.

At this point, you have a version of the ShoppingCartService service to which a client applica-
tion can connect directly. The next step is to run multiple instances of this service and create
another service that routes messages transparently from the client application to one of these
instances, based on the load-balancing algorithm implemented by the routing service. In this
example, you will simply send alternating requests to two instances of the ShoppingCart
Service service.

Create the ShoppingCartRouter Service

	 1.	 Add a new project to the ShoppingCart solution by using the WCF Service Library tem-
plate (in the WCF folder, located in the Installed Templates pane, in the Add New Project
dialog box). Name the project ShoppingCartServiceRouter and save it in the Microsoft
Press\WCF Step By Step\Chapter 14\LoadBalancingRouter folder within your Docu-
ments folder.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 531

	 2.	 In the ShoppingCartServiceRouter project, rename the Service1.cs file to Router.cs, and
rename the IService1.cs file to IRouter.cs. Allow Visual Studio to rename all Service1 ref-
erences to Router when prompted.

	 3.	 Open the IRouter.cs file in the Code And Text Editor window. Add the following using
statement to the list at the top of the file:

using System.ServiceModel.Channels;

	 4.	 Remove the comment above the ServiceContract attribute for the IRouter interface, and
then modify this attribute to set the Namespace and Name properties, as shown in bold
in the following:

[ServiceContract(Namespace = "http://adventure-works.com/2010/15/07",

 Name = "ShoppingCartServiceRouter")]

public interface IRouter

{

 ...

}

	 5.	 In the IRouter interface, remove the definitions of the GetData and GetDataUsing
DataContract operations and the comment, and replace them with the ProcessMessage
operation, as shown in bold in the following:

public interface IRouter

{

 [OperationContract(Action=”*”, ReplyAction=”*”)]

 Message ProcessMessage(Message message);

}

Understanding this rather simple-looking service contract is the key to appreciating how
the router works.

In the earlier discussion, you saw that the problems that you have to overcome when
designing a generalized front-end service that can forward any message on to another
service concern the service contract and the contents of messages passing through the
service. A service contract defines the operations that the service can process. Under nor-
mal circumstances, the WSDL description for an operation combines the Namespace
and Name properties from the ServiceContract attribute with the name of the operation
to generate an identifier, or action, defining the request message that a client application
should send to invoke the operation as well as the reply action for the response mes-
sage that the service will send back. For example, the AddItemToCart operation in the
ShoppingCartService service is identified as follows:

http://adventure-works.com/2010/06/04/ShoppingCartService/AddItemToCart

When the WCF runtime constructs each EndpointDispatcher for a service, it adds
the actions that the corresponding endpoint can accept to the table referenced by the
ContractFilter property.

Download from Wow! eBook <www.wowebook.com>

532	 Windows Communication Foundation 4 Step by Step

If you explicitly provide a value for the Action property of the OperationContract attri-
bute when defining an operation, the WCF runtime uses your defined value instead of
the operation name. If you specify a value of “*” for the Action property, the WCF run-
time automatically routes all messages to this operation—regardless of the value of the
action specified in the header of the message sent by the client application. Internally,
the WCF runtime for the service replaces the ActionMessageFilter object referenced by
the ContractFilter property of the EndpointDispatcher object with a MatchAllMessage
Filter object. The Match method of this object returns true for all non-null messages
passed to it, so the EndpointDispatcher will automatically indicate that it can accept all
requests sent to it (the AddressFilter property is still queried by the ChannelDispatcher,
however). In this exercise, when the ShoppingCartClient application sends AddItemTo
Cart, RemoveItemFromCart, GetShoppingCart, and Checkout messages to the Shopping
CartServiceRouter service, it will accept them all and the EndpointDispatcher will invoke
the ProcessMessage method.

You should also pay attention to the signature of the ProcessMessage method. The WCF
runtime on the client packages the parameters passed into an operation as the body
of a SOAP message. Under normal circumstances, the WCF runtime on the service con-
verts the body of the SOAP message back into a set of parameters that are then passed
into the method implementing the operation. If the method returns a value, the WCF
runtime on the service packages it up into a message and transmits it back to the
WCF runtime on the client, where it is converted back into the type expected by the client
application.

The ProcessMessage method is a little different, because it takes a Message object as
input. In Chapter 11, you saw that the Message class provides a means for transmit-
ting and receiving raw SOAP messages. When the WCF runtime on the service receives
a message from the client application, it does not unpack the parameters but instead
passes the complete SOAP message to the ProcessMessage method. It is up to the
ProcessMessage method to parse and interpret the contents of this Message object itself.

Similarly, the value returned by the ProcessMessage method is also a Message object.
The ProcessMessage method must construct a complete SOAP message that contains
the data in the format expected by the client application and return this object. This
response message must also include a ReplyAction in the message header correspond-
ing to the ReplyAction expected by the WCF runtime on the client. Usually, the WCF
runtime on the service adds a ReplyAction based on the name of the service and the
operation. For example, the message that the ShoppingCartService service sends back to
a client application in response to an AddItemToCart message is identified like this:

http://adventure-works.com/2010/06/04/ShoppingCartService/AddItemToCartResponse

If you set the ReplyAction property of the OperationContract attribute to “*”, the WCF
runtime for the service expects you to provide the appropriate ReplyAction in code and

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 533

add it to the message header when you create the response message. In this case, you
will pass the ReplyAction returned from the ShoppingCartService back to the client appli-
cation unchanged.

	 6.	 Remove the CompositeType class, including the DataContract attribute, from the
IShoppingCartServce.cs file (it is not required by the ShoppingCartServiceRouter service).

	 7.	 Open the Router.cs file for the ShpppingCartServiceRouter project in the Code And Text
Editor window.

	 8.	 Add the following using statement to the list at the top of the file:

using System.ServiceModel.Channels;

	 9.	 Remove the comment and the implementations of the GetData and GetDataUsing
DataContract methods from the Router class.

	 10.	 Add the following ServiceBehavior attribute to the Router class:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single,

 ValidateMustUnderstand = false)]

public class Router : IRouter

{

}

The Router class will provide the implementation of the ProcessMessage method (you
will add this method in a later step). If you are familiar with the SOAP protocol, you will
be aware that you can include information in message headers that the receiving service
must recognize and be able to process. In this example, the ShoppingCartServiceRouter
service is not actually going to process the messages itself, it is simply going to forward
them to an instance of the ShoppingCartService service. It therefore does not need to
examine or understand the message headers, and should pass them on unchanged. Set-
ting the ValidateMustUnderstand property of the ServiceBehavior attribute to false turns
off any enforced recognition and validation of message headers by the service.

Additionally, the ShoppingCartServiceRouter service will be a singleton service, with a
single instance accessed by all client applications.

	 11.	 Add the following private fields (shown in bold) to the Router class:

public class Router : IRouter

{

 private static IChannelFactory<IRequestChannel> factory = null;

 private EndpointAddress address1 = new EndpointAddress(

 "http://localhost:9010/ShoppingCartService/ShoppingCartService.svc");

 private EndpointAddress address2 = new EndpointAddress(

 "http://localhost:9020/ShoppingCartService/ShoppingCartService.svc");

 private static int routeBalancer = 1;

}

Download from Wow! eBook <www.wowebook.com>

534	 Windows Communication Foundation 4 Step by Step

The ShoppingCartServiceRouter service will act as a client application to two instances
of the ShoppingCartService service, sending each of them messages and waiting for
responses. The generalized nature of the ProcessMessage method requires you to con-
nect to the ShoppingCartService service using the low-level techniques described in
Chapter 11 rather than by using a proxy object. You will use the IChannelFactory object
to create a channel factory, based on the IRequestChannel shape for opening channels to
each instance of the ShoppingCartService (refer back to Chapter 11 for a brief descrip-
tion of channel shapes).

The EndpointAddress objects specify the URI for each instance of the ShoppingCart
Service service. You will configure the ShoppingCartServiceHost application to run two
instances of the ShoppingCartService service at these addresses in a later step.

The ProcessMessage method will use the routeBalancer variable to determine to which
instance of the ShoppingCartService service to send messages.

	 12.	 Add the following static constructor (shown in bold) to the Router class:

public class Router : IRouter

{

 ...

 static Router()

 {

 try

 {

 BasicHttpContextBinding service = new BasicHttpContextBinding();

 factory = service.BuildChannelFactory<IRequestChannel>();

 factory.Open();

 }

 catch (Exception e)

 {

 Console.WriteLine("Exception: {0}", e.Message);

 }

 }

}

The ProcessMessage method will use a ChannelFactory object to open a channel with
the appropriate instance of the ShoppingCartService service. ChannelFactory objects are
expensive to create and destroy, but as this is a singleton service all requests will reuse
the same ChannelFactory object. Building this object in a static constructor ensures that
it is created only once.

Also, notice that the ChannelFactory object is constructed by using a BasicHttpContext
Binding object. This binding matches the addressing scheme (http) and requirements for
the two instances of the ShoppingCartService service (they are durable services that pass
context information in the SOAP headers of messages).

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 535

	 13.	 Add the ProcessMessage method to the Router class, as follows:

public class Router : IRouter

{

 ...

 public Message ProcessMessage(Message message)

 {

 IRequestChannel channel = null;

 Console.WriteLine(“Action {0}”, message.Headers.Action);

 try

 {

 if (routeBalancer % 2 == 0)

 {

 channel = factory.CreateChannel(address1);

 Console.WriteLine(“Using {0}\n”, address1.Uri);

 }

 else

 {

 channel = factory.CreateChannel(address2);

 Console.WriteLine(“Using {0}\n”, address2.Uri);

 }

 routeBalancer++;

 message.Properties.Remove("ContextMessageProperty");

 channel.Open();

 Message reply = channel.Request(message);

 channel.Close();

 return reply;

 }

 catch (Exception e)

 {

 Console.WriteLine(e.Message);

 return null;

 }

 }

}

This method contains several Console.WriteLine statements that let you follow the exe-
cution in the service console window when the service runs.

The if statement in the try block implements the load-balancing algorithm; if the value
in the routeBalancer variable is even, the method creates a channel for forward requests
to address1 (https://localhost:9010/ShoppingCartService/ShoppingCartService.svc); other
wise, it creates a channel for address2 (https://localhost:9020/ShoppingCartService/
ShoppingCartService.svc). The method then increments the value in the routeBalancer
variable. In this way, the ProcessMessage method sends all requests alternately to one
instance or the other of the ShoppingCartService service.

Download from Wow! eBook <www.wowebook.com>

536	 Windows Communication Foundation 4 Step by Step

There is one small complication to be aware of in this method, which is caused by the
context protocol implemented by the binding. Remember that when you use one of
the context bindings (WSHttpContextBinding, BasicHttpContextBinding, or NetTcp
ContextBinding), the message can include context information that the durable service
uses to correlate requests made by a client application and direct them to the appropri-
ate session. By default, the channel that receives the message caches this context infor-
mation internally and flows this same context on if it invokes other services. However,
the message that has been received also contains the same context information, so the
same context will be sent twice when the message is forwarded, causing errors in the
service to which the router sends the message. The solution is to remove the context
from the incoming message before forwarding it, which is what the message.Properties.
Remove(“ContextMessageProperty”) statement does.

Note  You can examine the ambient information in the current operation, including any
message properties that will be flowed on to other services, by querying the static Operation
Context.Current property in the code for an operation.

The Request method of the IRequestChannel class sends the Message object through the
channel to the destination service. The value returned is another Message object con-
taining the response from the service. The ProcessMessage method passes this message
unchanged to the client application.

Important  Note that the code explicitly closes the IRequestChannel object before the
method finishes. This object is local to the ProcessMessage method, and so it is subject
to garbage collection when the method finishes. If it were open at that time, it would be
closed automatically. However, you can never be sure when the Common Language Run-
time is going to perform its garbage collection, so leaving the IRequestChannel object open
holds a connection to the service open for an indeterminate period, possibly resulting in the
service refusing to accept further connections if you exceed the value of MaxConcurrent
Instances for the ShoppingCartService service (Refer back to Chapter 13, “Implementing a
WCF Service for Good Performance,” for more details.)

Remember that the Message object sent by the client application can contain security
and other header information. Other than the context data, the ProcessMessage method
makes no attempt to examine or change this information, so the destination service is
not even aware that the message has been passed through the ShoppingCartService
Router service. Similarly, the ProcessMessage method does not modify the response
in any way, and the router is transparent to the client application. However, there is
nothing to stop you from adding code that changes the contents of a message or a
response before forwarding it. This opens up some interesting security considerations,
so you should ensure that you deploy the ShoppingCartServiceRouter service in a secure
environment.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 537

	 14.	 Rebuild the solution.

In a production environment, you would typically host the router using an environment such
as IIS that is accessible to the outside world, but to keep things concise, in this example you
will host the ShoppingCartRouterService service with the same application that hosts the
ShoppingCartService service. You will also modify the host configuration and provide two
endpoints for the ShoppingCartService service at the addresses expected by the Shopping
CartRouterService service.

Configure the ShoppingCartHost Application to Host the ShoppingCartRouterService
Service

	 1.	 Edit the app.config file for the ShoppingCartHost project by using the Service Configu-
ration Editor.

	 2.	 In the Configuration pane, right-click the Services folder then click New Service. In the
right pane, in the Name field, type ShoppingCartServiceRouter.Router.

	 3. 	 In the Configuration pane, right-click the Endpoints folder under the new Shopping-
CartServiceRout.Router service, and then click New Service Endpoint. In the Service End-
point pane, specify the values shown in the following table (leave any unlisted properties
set to their default values):

Property Value

Address http://localhost:9000/ShoppingCartService/ShoppingCartService.svc

Binding basicHttpContextBinding

Contract ShoppingCartServiceRouter.IRouter

Note that the address of the service is the same as that originally specified for the
ShoppingCartService service. Existing client applications will now connect to the router
without requiring reconfiguration.

	 4.	 In the Configuration pane, in the Services folder, expand the ShoppingCartService.
ShoppingCartServiceImpl service, expand the Endpoints folder, and then click the
(Empty Name) endpoint. In the Service Endpoint pane, set the name of this endpoint
to ShoppingCartServiceHttpEndpoint1 and change the address to http://
localhost:9010/ShoppingCartService/ShoppingCartService.svc.

	 5.	 In the Configuration pane, right-click the Endpoints folder under the ShoppingCart
Service.ShoppingCartServiceImpl service, and then click New Service Endpoint to add a
second endpoint to this service. Use the values in the following table to set the proper-
ties for this endpoint.

Download from Wow! eBook <www.wowebook.com>

538	 Windows Communication Foundation 4 Step by Step

Property Value

Name ShoppingCartServiceHttpEndpoint2

Address http://localhost:9020/ShoppingCartService/ShoppingCartService.svc

Binding basicHttpContextBinding

Contract ShoppingCartService.IShoppingCartService

	 6.	 Save the configuration file then exit the Service Configuration Editor.

	 7.	 In Solution Explorer, add a reference to the ShoppingCartServiceRouter project to the
ShoppingCartHost project.

	 8.	 Open the Program.cs file for the ShoppingCartHost project in the Code And Text Editor
window. In the Main method, add the following statements (shown in bold):

static void Main(string[] args)

{

 ServiceHost host = new ServiceHost(...)

 host.Open();

 ServiceHost routerHost = new ServiceHost(

 typeof(ShoppingCartServiceRouter.Router));

 routerHost.Open();

 Console.WriteLine("Service running");

 ...

}

These statements create and open a new ServiceHost object for the ShoppingCart
ServiceRouter service.

	 9.	 The ShoppingCartHost application uses ports 9010 and 9020 as endpoints for the
ShoppingCartService service. You must reserve these ports to enable the Shopping
CartHost application to access them. Open a Visual Studio Command Prompt window
as Administrator, and then enter the following commands (replace UserName with your
Windows user name).

netsh http add urlacl url=http://+:9010/ user=UserName

netsh http add urlacl url=http://+:9020/ user=UserName

	 10.	 Close the Visual Studio Command Prompt window then return to Visual Studio.

Test the ShoppingCartRouter Service

	 1.	 Start the solution without debugging. In the Shopping Cart GUI Client window, enter
PU-M044 in the Product Number box, and then click Add Item. Add a water bottle to
the shopping cart as well (item WB-H098), and then click Checkout.

The client application should function exactly as it did before. However, if you examine
the service console window, you can see that the router has forwarded the messages
to the two instances of the ShoppingCartService service in turn; the addresses alternate
between port 9020 and port 9010:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 539

	 2.	 Close the Shopping Cart GUI window, and then press Enter to close the service host
console window.

Using the RoutingService Class
Implementing manual routing is undoubtedly a very powerful technique, but commonly all
you want to do is to route a message to a service, based on some attribute of the request
rather than by coding some dynamic algorithm. To handle these situations, WCF provides the
RoutingService class, in the System.ServiceModel.Routing namespace.

The purpose of the RoutingService class is to implement request routing based on the con-
tents of the messages that it receives. You can configure a RoutingService object to examine
information in the headers of messages or even parse the contents in the body of messages
and make a decision based on this data. You configure the RoutingService class by providing
a filter table that contains one or more routing filters that specify criteria for matching mes-
sages and a destination to send the message when a match is successful. A routing filter is
actually an instance of the MessageFilter class that you explored in the previous section.

You can construct MessageFilter objects dynamically and associate them with a RoutingService
object, but the most common approach is to add the information for each routing filter stati-
cally to the configuration file for the application hosting the RoutingService object and let the
WCF runtime create the necessary MessageFilter objects when the service starts up. This is the
approach that you will take in the exercises in this section.

In the following exercises, you will change the routing strategy for the ShoppingCartService
service. Instead of using a load-balancing mechanism that directs alternate requests to dif-
ferent instances of the ShoppingCartService listening at different endpoints, you will route
messages based on the type of request, sending AddItemToCart and RemoveItemFromCart
messages to one instance of the ShoppingCartService service, and GetShoppingCart and
Checkout messages to another.

Download from Wow! eBook <www.wowebook.com>

540	 Windows Communication Foundation 4 Step by Step

Host and Configure the RoutingService Service

	 1.	 Using Visual Studio, open the ShoppingCart.sln solution file in the Microsoft Press\WCF
Step By Step\Chapter 14\ShoppingCartServiceWithRouter folder.

This solution contains another copy of the durable ShoppingCartService, ShoppingCart
ServiceHost, and ShoppingCartGUIClient projects from Chapter 7; it provides a starting
point similar to that used in the previous set of exercises, except that this ShoppingCart
ServiceHost application has already been configured with two HTTP endpoints that lis-
ten for ShoppingCartService service requests on ports 9010 and 9020. Both endpoints
use the BasicHttpContextBinding binding.

	 2.	 Add a new project to the ShoppingCart solution by using the Console Application tem-
plate (in the Windows folder, located in the Installed Templates pane, in the Add New
Project dialog box). Name the project StaticRouter and save it in the Microsoft Press\
WCF Step By Step\Chapter 14\ ShoppingCartServiceWithRouter folder within your
Documents folder.

	 3.	 Add references to the System.ServiceModel and System.ServiceModel.Routing assemblies
and the ShoppingCartService project to the StaticRouter project.

	 4.	 Open the Program.cs file for the StaticRouter project in the Code And Text Editor win-
dow. Add the following using statements to the list at the top of the file:

using System.ServiceModel;

using System.ServiceModel.Routing;

	 5.	 Add the following statements (shown in bold) to the Program class:

static void Main(string[] args)

{

 try

 {

 ServiceHost routerHost = new ServiceHost(typeof(RoutingService));

 routerHost.Open();

 Console.WriteLine("Router running");

 Console.WriteLine("Press ENTER to stop the service");

 Console.ReadLine();

 routerHost.Close();

 }

 catch (Exception e)

 {

 Console.WriteLine(e.Message);

 }

}

Most of this code should be familiar to you by now. All it does is create an instance of
the RoutingService class and host it in an ordinary ServiceHost object. You will define
the endpoint for the service in an application configuration file. You will also specify the
addresses of the ShoppingCartService service to which to route requests as client end-
points in the configuration file.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 541

	 6.	 Add a new application configuration file called App.config to the StaticRouter project.
Edit the application configuration file by using the Service Configuration Editor.

	 7.	 In the Configuration pane, right-click the Services folder, and then click New Service. In
the right pane, type System.ServiceModel.Routing.RoutingService in the Name field.
This is the fully qualified name of the RoutingService class.

	 8.	 In the Configuration pane, right-click the Endpoints folder under the new service, and
then click New Service Endpoint. In the Service Endpoint pane, specify the values shown
in the following table (leave any unlisted properties set to their default values):

Property Value

Address http://localhost:9000/ShoppingCartService/ShoppingCartService.svc

Binding basicHttpContextBinding

Contract System.ServiceModel.Routing.IRequestReplyRouter

The contract determines the messaging pattern that the RoutingService object imple-
ments. The IRequestReply interface handles the basic two-way request/reply pattern over
a channel, forwarding request messages from client applications and routing response
messages back to the same client. Other contracts available are IDuplexSessionRouter,
which enables the RoutingService object to route callback messages initiated by a service
to a client; ISimplexSessionRouter for routing one-way messages to a service that imple-
ments sessions; and ISimplexDatagramRouter, which supports services that do not pro-
vide sessions.

Note  Chapter 16, “Using a Callback Contract to Publish and Subscribe to Events” describes
how to create and use duplex channels in more detail.

The IRequestReplyRouter interface defined in the System.ServiceModel.Routing
namespace looks like this:

[ServiceContract(Namespace="http://schemas.microsoft.com/netfx/2009/05/routing",

 SessionMode = SessionMode.Allowed)]

public interface IRequestReplyRouter

{

 [OperationContract(AsyncPattern = true, IsOneWay= false, Action = "*",

 ReplyAction = "*")]

 [TransactionFlow(TransactionFlowOption.Allowed)]

 IAsyncResult BeginProcessRequest(Message message, AsyncCallback callback,

 object state);

 Message EndProcessRequest(IAsyncResult result);

}

Download from Wow! eBook <www.wowebook.com>

542	 Windows Communication Foundation 4 Step by Step

The IRequestReplyRouter interface enables the RoutingService class to forward request
and response messages asynchronously; it can also flow transactions. Note that the
Action and ReplyAction properties of the OperationContract attribute specify the “*”
value.

	 9.	 In the Configuration pane, expand the Advanced folder, and then click the Service
Behaviors folder. In the Service Behaviors pane, click the New Service Behavior Configu-
ration link.

	 10.	 In the right pane, clear the Name property of the behavior, and then click the Add but-
ton and add a routing behavior element. This element contains properties with which
you can configure the behavior of the RoutingService service and specify the name of
routing table (containing the routing rules for the service).

	 11.	 In the Configuration pane, expand the (Empty Name) behavior, and then click the rout-
ing element. In the right pane, enter ShoppingCartServiceRoutingTable in the Filter
TableName field, verify that the RouteOnHeadersOnly property is set to True (this is the
default value), and set the SoapProcessingEnabled property to False.

You will specify the message filters for the ShoppingCartServiceRoutingTable filter table
later in this exercise. The RouteOnHeadersOnly property indicates whether the filters in
this table can define rules that examine just the headers or include data from the body
of messages routed through the RoutingService service. In this exercise, the messages
will be routed based on the action specified in the request headers, so RouteOnHeaders
Only is set to true.

When the RoutingService service receives a request, it can route this request to a target
service over a different binding, one that possibly implements dissimilar messaging
requirements. The SoapProcessingEnabled property of the routing behavior specifies
whether the RoutingService service should convert the message between the formats
required by the bindings. If this property is set to false, the message will be forwarded
unchanged; otherwise, the RoutingService service will examine the message and change
it to the format expected by the target service if necessary. In this exercise, the Shopping
CartService service employs the BasicHttpContextBinding binding to transmit context
information containing the service instance ID between the service and the client appli-
cation. You need this information to pass verbatim through the RoutingService service
without interference, so this property is set to false.

	 12.	 In the Configuration pane, expand the Client folder, right-click the Endpoints folder, and
then click New Client Endpoint. In the Client Endpoint pane, specify the values shown in
the following table (leave any unlisted properties set to their default values):

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 543

Property Value

Name ShoppingCartServiceHttpEndpoint1

Address http://localhost:9010/ShoppingCartService/ShoppingCartService.svc

Binding basicHttpBinding

Contract *

The address matches that of the first endpoint for the ShoppingCartService service
hosted by the ShoppingCartHost application. The “*” character in the contract field
enables the service to accept any messages and not just those specified by a particular
service contract.

Notice that the Binding property is set to basicHttpBinding and not basicHttpContext
Binding. The client application connects to the RoutingService service by using the Basic
HttpContextBinding binding, which enables it to include context information containing
the service instance ID in the message header. If the RoutingService service connects to
the ShoppingCartService service also by using a context binding, the RoutingService ser-
vice will handle any context information it receives from the ShoppingCartService service
itself, remove it from the message header, and not return it to the client application.
Specifying basicHttpBinding prevents the RoutingService service from looking for this
information and removing it as it flows back to the client. Additionally, as mentioned
in the previous step, setting the SoapProcessingEnabled property of the behavior of the
RoutingService service to false stops the RoutingService service from removing any con-
text headers provided by the client, so they are passed on directly to the Shopping
CartService service.

	 13.	 Add a second client endpoint with the following values.

Property Value

Name ShoppingCartServiceHttpEndpoint2

Address http://localhost:9020/ShoppingCartService/ShoppingCartService.svc

Binding basicHttpBinding

Contract *

	 14.	 Save the configuration file, and then exit the Service Configuration Editor.

	 15.	 Open the App.config file for the StaticRouter project by using the Code And Text Editor
window. Add the routing filter table and filters after the <services> section, as shown in
bold in the following configuration:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.serviceModel>

 <services>

 ...

Download from Wow! eBook <www.wowebook.com>

544	 Windows Communication Foundation 4 Step by Step

 </services>

 <routing>

 <filters>

 <filter name="ShoppingCart1" filterType="Action" filterData=

 "http://adventure-works.com/2010/06/04/ShoppingCartService/AddItemToCart"/>

 <filter name="ShoppingCart2" filterType="Action" filterData=

 "http://adventure-works.com/2010/06/04/ShoppingCartService/RemoveItemFromCart”/>

 <filter name="ShoppingCart3" filterType="Action" filterData=

 "http://adventure-works.com/2010/06/04/ShoppingCartService/GetShoppingCart"/>

 <filter name="ShoppingCart4" filterType="Action" filterData=

 "http://adventure-works.com/2010/06/04/ShoppingCartService/Checkout"/>

 </filters>

 <filterTables>

 <filterTable name="ShoppingCartServiceRoutingTable">

 <add filterName="ShoppingCart1" endpointName="ShoppingCartServiceHttp

 Endpoint1"/>

 <add filterName="ShoppingCart2" endpointName="ShoppingCartServiceHttp

 Endpoint1"/>

 <add filterName="ShoppingCart3" endpointName="ShoppingCartServiceHttp

 Endpoint2"/>

 <add filterName="ShoppingCart4" endpointName="ShoppingCartServiceHttp

 Endpoint2"/>

 </filterTable>

 </filterTables>

 </routing>

 </system.serviceModel>

</configuration>

The list of filters in the <filters> section defines the rules for routing messages. Each
filter has a unique name and specifies a filterType that identifies a type of Message
Filter object to create for filtering messages. The Action type causes the WCF runtime
to create an ActionMessageFilter object that can filter requests based on the Action ele-
ment in message headers. The filterData property indicates the data to match against. If
a match is found, the WCF runtime looks up the entry in the <filterTable> section that
matches the filter name and routes the message to the endpoint specified by the end-
pointName for this entry. For example, if a message is received with an action of http://
adventure-works.com/2010/06/04/ShoppingCartService/AddItemToCart in the header,
the WCF runtime will route the message through the endpoint identified by the Shopping
Cart1 filter in the filter table. The endpointName property in this table refers to the
name of the endpoint as defined in the <client> section of the configuration file.

With WCF, you can filter messages based on other criteria apart from the Action in the
request header. For example, you can specify EndpointAddress to define an Endpoint
AddressMessageFilter (the filterData property should identify the endpoint address to
match). If you wish to perform filtering based on the data in message bodies, you spec-
ify XPath to create an XPathMessageFilter object. The filterData property defines the
path to the data in the message and the value to match against as an XPath expression.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 14  Discovering Services and Routing Messages	 545

More Info  For further details about the different filter types that you can define, see the
FilterType Enumeration topic in documentation provided with Visual Studio (also available
on the Microsoft Web site at http://msdn.microsoft.com/en-us/library/system.servicemodel.
routing.configuration.filtertype.aspx).

	 16.	 Rebuild the solution.

You can now test the RoutingService host application and configuration. However, to demon-
strate that messages are being routed correctly to the two ShoppingCartService service end-
points, you will configure the ShoppingCartHost application and add a service behavior that
displays the action and address of each message received and sent.

Test the RoutingService Service

	 1.	 In the ShoppingCartHost project, add a reference to the MessageInspector assembly,
located in the Chapter 14 folder.

Note  The source code for the message inspector is available in the MessageInspector proj-
ect, in the MessageInspector folder within the Chapter 14 folder. This type is very similar to
the message inspector that you created in Chapter 11.

	 2.	 Open the App.config file for the ShoppingCartHost project in the Service Configuration
Editor. In the Configuration pane, expand the Advanced folder, expand Extensions, and
then click Behavior Element Extensions.

	 3.	 At the bottom of the right pane, click New. In the Extension Configuration Element
Editor dialog box, in the Name property, type messageInspector.

Click the Type field, and then click the ellipsis (…) button that appears adjacent to this
field. In the Behavior Extension Type Browser dialog box, move to the Chapter 14 folder,
click the MessageInspector assembly, and then click Open. In the Behavior Extension
Type Browser dialog box, click MessageInspector.ShoppingCartBehaviorExtensionElement,
and then click Open.

In the Extension Configuration Element Editor dialog box, click OK.

	 4.	 In the Configuration pane, expand Service Behaviors in the Advanced folder, and then
click the DurableServiceBehavior behavior. In the right pane, click Add, and then add the
messageInspector behavior element to the DurableServiceBehavior behavior.

	 5.	 Save the configuration file and exit the Service Configuration Editor.

	 6.	 In Solution Explorer, right click the ShoppingCart solution, and then click Set StartUp
Projects. Add the StaticRouter project to the list of startup projects for the solution then
click OK.

Download from Wow! eBook <www.wowebook.com>

546	 Windows Communication Foundation 4 Step by Step

When the solution runs, it should start the ShoppingCartGUIClient, StaticRouter, and
ShoppingCartHost projects.

	 7.	 Start the solution without debugging. The Shopping Cart GUI Client window should
appear, together with console windows for the ShoppingCartHost application and the
StaticRouter application.

	 8. 	 In the Shopping Cart GUI Client window, enter SA-M198 in the Product Number box,
and then click Add Item. Next, add a water bottle to the shopping cart (item WB-H098),
and then click Checkout.

The client application should operate exactly as before.

	 9.	 Switch to the console window for the ShoppingCartHost project. You should see the
messages displayed by the message inspector. Verify that all AddItemToCart requests
are sent to the service listening on port 9010; GetShoppingCart and Checkout messages
should be sent to the service listening on port 9020.

	 10.	 Close the Shopping Cart GUI window, and then press Enter to close the service host
console window and the StaticRouter console window.

Summary
In this chapter, you have seen how you can decouple the location of a service from its imple-
mentation by configuring service discovery. You have seen the three common modes of dis-
covery supported by WCF: ad hoc, announced, and managed.

You have also looked in detail at how you can implement routing for WCF services. You have
seen how the WCF runtime for a service determines how to handle an incoming message.
The ChannelDispatcher object receiving the message queries each of its EndpointDispatcher
objects in turn. An EndpointDispatcher exposes the AddressFilter and ContractFilter properties
that the ChannelDispatcher can use to ascertain whether the EndpointDispatcher can accept
the message. The EndpointDispatcher selected to process the message invokes the appropriate
method in the service. You can customize the way in which the EndpointDispatcher accepts
and processes messages by providing your own AddressFilter and ContractFilter objects and
implementing the IDispatchOperationSelector interface.

You have also seen how to define a generalized WCF service that can act as a router for other
services, implementing a method that can accept almost any message and forward it for pro-
cessing elsewhere.

Finally, you have seen how to use and configure the RoutingService class to implement rout-
ing, based on information defined in a configuration file.

Download from Wow! eBook <www.wowebook.com>

547

Chapter 15

Building REST Services
After completing this chapter, you will be able to:

■■ Describe the REST model of Web services, and how it differs from the scheme implemented
by SOAP Web services.

■■ Build and configure a REST Web service.

■■ Detect and handle error conditions in a REST Web service.

■■ Build a custom host application for a REST Web service.

■■ Implement a client proxy that enables an application to connect to a REST Web service.

■■ Use WCF Data Services to build a REST Web service based on an Entity Framework entity
model.

There are two common architectures that organizations use for implementing Web services;
services based on the Simple Object Access Protocol (SOAP), and services based on the Rep-
resentational State Transfer (REST) model. Both architectures rely on the ubiquitous HTTP pro-
tocol and the addressing scheme implemented by the Internet, but they employ it in different
ways. So far, the exercises in this book have concentrated on the SOAP model, but this style
forces the designer to focus on the business processes implemented by the Web service and
expose these processes as operations. In contrast, the REST model considers the data exposed
by an organization and implements a scheme that enables client applications to access this
data and manipulate it using their own business logic. The REST model is becoming increas-
ingly common, and WCF provides attributes, methods, and types with which you can con-
struct and access REST Web services quickly and easily. Additionally, the Entity Framework
provides the WCF Data Services template, which you can use to expose the data and entities
from an Entity Framework model to client applications as REST resources.

The purpose of this chapter is to provide an introduction to REST Web services and show you
how to build and access them using WCF.

Understanding the REST Model
The REST model was first described in 2000 by Roy Fielding in his doctoral dissertation, “Archi-
tectural Styles and the Design of Network-based Software Architectures.” As the name of the
thesis implies, REST is an architectural style rather than a prescribed way of building Web
services, and you can implement it by using any appropriate technology. The key point is that
REST describes a stateless, hierarchical scheme for representing resources and business objects
over a network, following a structure that is very similar to that implemented by the World

Download from Wow! eBook <www.wowebook.com>

548	 Windows Communication Foundation 4 Step by Step

Wide Web (you could argue that the World Wide Web is simply a global example of the REST
model). For example, AdventureWorks might provide access to customer and sales informa-
tion in their database, exposing the details of each customer or order as a single resource.
To retrieve a list of all customers from the AdventureWorks sales Web site, a Web application
might access the following URL:

http://www.adventure-works.com/sales/customers

The data can be returned in a number of formats, but for portability the most common for-
mats include XML (sometimes referred to as “Plain Old XML” or POX) and JavaScript Object
Notation (or JSON). If AdventureWorks chooses to use POX, the result returned by querying
the URL shown above might be something like this (some details have been omitted to keep
the example concise):

<ArrayOfContact xmlns="...">

 <Contact z:Id="i1" xmlns:z="http://schemas.microsoft.com/2003/10/Serialization/">

 <ContactID>1</ContactID>

 <EmailAddress>gustavo0@adventure-works.com</EmailAddress>

 <EmailPromotion>2</EmailPromotion>

 <FirstName>Gustavo</FirstName>

 <LastName>Achong</LastName>

 <MiddleName i:nil="true" />

 <ModifiedDate>2005-05-16T16:33:33.06</ModifiedDate>

 ...

 </Contact>

 <Contact z:Id="i3" xmlns:z="http://schemas.microsoft.com/2003/10/Serialization/">

 <ContactID>2</ContactID>

 <EmailAddress>catherine0@adventure-works.com</EmailAddress>

 <EmailPromotion>1</EmailPromotion>

 <FirstName>Catherine</FirstName>

 <LastName>Abel</LastName>

 <MiddleName>R.</MiddleName>

 <ModifiedDate>2005-05-16T16:33:33.077</ModifiedDate>

 ...

 </Contact>

 <Contact z:Id="i5" xmlns:z="http://schemas.microsoft.com/2003/10/Serialization/">

 <ContactID>3</ContactID>

 <EmailAddress>kim2@adventure-works.com</EmailAddress>

 <EmailPromotion>0</EmailPromotion>

 <FirstName>Kim</FirstName>

 <LastName>Abercrombie</LastName>

 <MiddleName i:nil="true" />

 <ModifiedDate>2005-05-16T16:33:33.077</ModifiedDate>

 ...

 </Contact>

 ...

</ArrayOfContact>

Web services that follow the REST model typically enable a Web application to drill down into
the data by specifying additional path elements. For example, to find the details of a single

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 549

customer—customer 99 for example—the AdventureWorks Web site would enable a Web
application to specify a URL such as this:

http://www.adventure-works.com/sales/customers/99

Additionally, it might be useful to enable a Web application to find all the orders placed by a
given customer by querying a URL, such as the following:

http://www.adventure-works.com/sales/customers/99/orders

The key to designing a REST-based solution is to understand how to divide a business model
into a set of resources and how to relate these resources together. In some cases, such as cus-
tomers and orders, this might be straightforward, but in other situations this might be more
of a challenge.

The REST model relies on the application that accesses the data sending the appropriate
HTTP verb as part of the request used to access the data. For example, the requests shown
previously should send an HTTP GET request to the Web service. HTTP supports other verbs
as well, such as POST, PUT, and DELETE, which you can exploit in a REST service to create,
modify, and remove resources, respectively. Using the REST model, you can exploit these verbs
and build Web services that can insert, update, and delete data.

In contrast to SOAP, the messages sent and received by using the REST model tend to be
much more compact. This is primarily because REST does not provide the same routing, pol-
icy, or security facilities described by the WS-* specifications, and you must rely on the under-
lying transport infrastructure implemented by the Web server to protect REST Web services.
It is also important to bear in mind that a key aspect of the REST model is that it is stateless;
there is no concept of sessions or transactions that can span interactions between a client
application and a service (although there is nothing to stop a service implementing transac-
tions internally to guarantee the integrity of individual insert, update, and delete operations).
However, this minimalist approach means that a REST Web service is usually much more effi-
cient than the equivalent SOAP Web service when transmitting and receiving messages.

Querying Data by Implementing a REST Web Service
Implementing a REST Web service by using WCF is a straightforward process, and WCF
provides a number of types in the System.ServiceModel.Web assembly that can assist you.
However, the most important part of the process is designing the scheme that you will use to
provide access to the resources exposed by the service. In many cases, resources are naturally
grouped into collections and have relationships with other resources and collections. The
exercises in this section use the scheme described in the table that follows (which was intro-
duced in the examples discussed earlier).

Download from Wow! eBook <www.wowebook.com>

550	 Windows Communication Foundation 4 Step by Step

URI Description

Customers All customers in the AdventureWorks database.

Customers/{customerID} A specific customer. For example, Customers/99.

Orders All orders in the AdventureWorks database.

Orders/{orderID} A specific order. For example, Orders/43687.

Orders/{orderID}/Customer The customer that placed the specified order. For example,
Orders/43687/Customer retrieves the customer that placed
order 43687.

Customers/{customerID}/Orders The orders for a specific customer. For example, Customers/99/
Orders retrieves the list of orders placed by customer 99.

Depending on the volume of data in the database, the Customers and Orders URIs might
identify a large number of items. Therefore, it makes sense to provide additional query
parameters that a user can specify to limit the number of items returned. In the following
exercises, you will implement two optional query parameters called skip and top, which a user
can specify as shown in the following examples:

Orders?top=10

Orders?skip=500

Orders?skip=9&top=20

The purpose of the top parameter is to retrieve only the first n items, where n is the value
specified for this parameter. The first example shown above fetches only the first 10 orders.
The skip parameter causes the query to omit the first n items and fetch data starting at item
n + 1. The second example omits the first 500 orders and fetches the data starting with order
501. You can combine the skip and top parameters. The third example retrieves 20 orders
starting, at position 10 (it omits orders 1 through 9, and then fetches orders 10 through 29
inclusive). Combining the parameters in this way enables a client implementation to imple-
ment a paging mechanism that retrieves data in manageable block sizes.

As with a SOAP Web service, the first task in implementing a REST Web service is to define the
service contract. This contract specifies the operations that the service exposes and associates
these operations with the URIs that identify the various resources. Web client applications can
then invoke these operations by querying these URIs.

Define the ProductsSales REST Web Service Contract

	 1.	 Using Visual Studio, create a new solution by using the information in the following
table:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 551

Item Value

Template Blank Solution (in the Other Project Types/Visual Studio Solutions folder in the
Installed Templates pane)

Name ProductsSales

Location Microsoft Press\WCF Step By Step\Chapter 15 (within your Documents folder)

	 2.	 Add a new Class Library project to the ProductsSales solution (select the Class Library
template in the Visual C# folder in the Installed Templates pane in the Add New Proj-
ect dialog box). Name the project ProductsSalesService and save it in the Microsoft
Press\WCF Step By Step\Chapter 15\ProductsSales folder.

	 3.	 In Solution Explorer, add the ProductsSalesModel.edmx file and the App.config file (both
located in the Chapter 15 folder) to the ProductsSalesService project.

Hint  To display .edmx and .config files in the Add Existing Item dialog box, click All Files
(*.*) in the drop-down list box adjacent to the File Name box.

The ProductsSalesModel.edmx file is an Entity Framework model that defines two enti-
ties called Contact and SalesOrderHeader. In the AdventureWorks database, the Contacts
table contains the details of all contacts and customers, and the SalesOrderHeader table
holds the information about the orders placed by customers. The App.config file con-
tains the connection string that the entity model uses to connect to the AdventureWorks
database.

	 4.	 Rebuild the solution. This action generates the code for Contact and SalesOrderHeader
classes from the entity model.

	 5.	 Add references to the System.ServiceModel and System.ServiceModel.Web assemblies to
the ProductsSalesService project.

	 6.	 In Solution Explorer, change the name of the Class1.cs file to IProductsSales.cs.
Allow Visual Studio to change all references to the Class1 class to IProductsSales when
prompted.

	 7.	 Open the IProductsSales.cs file in the Code And Text Editor window. Add the following
using statements to the list at the top of this file:

using System.ServiceModel;

using System.ServiceModel.Web;

using System.ComponentModel;

Download from Wow! eBook <www.wowebook.com>

552	 Windows Communication Foundation 4 Step by Step

	 8.	 Change the IProductsSales class into a public interface and prefix it with the Service
Contract attribute, as shown in bold in the following code example.

[ServiceContract(Namespace = "http://adventure-works.com/2010/07/28",

 Name = "ProductsSales")]

public interface IProductsSales

{

}

	 9.	 In the IProductsSales interface, add the GetAllOrders method and annotate it with the
attributes, as shown in bold in the following code example.

public interface IProductsSales

{

 [OperationContract]

 [WebGet(UriTemplate = "Orders?skip={skip}&top={top}")]

 [Description("Returns a list of all orders. By default, the list is limited to" +

 " the first 100 orders; specify the SKIP and TOP parameters to" +

 " implement paging.")]

 ICollection<SalesOrderHeader> GetAllOrders(int skip, int top);

}

This operation will return a collection of SalesOrderHeader objects, containing the data
for each order. The OperationContract attribute marks this method as a Web service
operation in exactly the same way that you have seen in previous chapters. The Web-
Get attribute indicates that this is a REST operation that responds to HTTP GET requests
and specifies the URI that Web client applications can use to invoke this operation in
the UriTemplate property. This URI includes the optional skip and top query parameters.
The items in the curly braces (skip and top) are placeholders that will be substituted
with the values provided by the client application at runtime. The definition of the
GetAllOrders method includes parameters with the same names; the WCF runtime will
populate these parameters with the corresponding values passed in by the client appli-
cation. Note that the order of these parameters is immaterial (a Web client application
can specify the top and skip parameters in any order), but names of these parameters
must match the names in the curly braces in the UriTemplate property of the WebGet
attribute.

Note  You can also use the WebGet attribute to specify the format for request and response
messages. By default, operations marked with WebGet send response messages format-
ted as XML data, and the WCF runtime serializes them as POX objects. However, you can
send response messages in JSON format by specifying the ResponseFormat property of the
WebGet attribute with the value WebMessageFormat.Json, as shown here:

[WebGet(UriTemplate = "...", ResponseFormat = WebMessageFormat.Json)]

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 553

With the Description attribute (defined in the System.ComponentModel namespace), you
can specify some simple documentation that can be displayed by the Help page for the
service (you will learn more about this feature later in this section).

	 10.	 Add the GetOrder method shown below in bold to the IProductsSales interface:

public interface IProductsSales

{

 ...

 [OperationContract]

 [WebGet(UriTemplate = "Orders/{orderID}")]

 [Description("Returns the details of an order")]

 SalesOrderHeader GetOrder(string orderID);

}

This operation runs when a Web client application specifies a URI of the form Orders/
orderID and will retrieve the SalesOrderHeader object that corresponds to this order. As
before, notice that the method takes a parameter that matches the placeholder speci-
fied in the URI. Another point worth noticing is that this parameter is passed as a string,
although the equivalent column in the SalesOrderHeader table in the AdventureWorks
database is an integer. The reason for this is that navigational elements in a URI must be
strings. This restriction does not apply to query parameters (the skip and top parameters
for the GetAllOrders method in the previous step are integers).

	 11.	 Add the GetCustomerForOrder method to the IProductsSales interface, as shown in bold
below:

public interface IProductsSales

{

 ...

 [OperationContract]

 [WebGet(UriTemplate = "Orders/{orderID}/Customer")]

 [Description("Returns the details of the customer that placed the order")]

 Contact GetCustomerForOrder(string orderID);

}

This method runs when a Web client application specifies a URI that fetches the cus-
tomer that placed the specified order.

	 12.	 Add the GetAllCustomers, GetCustomer, and GetOrdersForCustomer methods shown in
bold in the following code example to the IProductsSales interface:

public interface IProductsSales

{

 ...

 [OperationContract]

 [WebGet(UriTemplate = "Customers?skip={skip}&top={top}")]

 [Description("Returns a list of all customers")]

 ICollection<Contact> GetAllCustomers(int skip, int top);

Download from Wow! eBook <www.wowebook.com>

554	 Windows Communication Foundation 4 Step by Step

 [OperationContract]

 [WebGet(UriTemplate = "Customers/{customerID}")]

 [Description("Returns the details of a customer")]

 Contact GetCustomer(string customerID);

 [OperationContract]

 [WebGet(UriTemplate = "Customers/{customerID}/Orders")]

 [Description("Returns the orders placed by a customer")]

 ICollection<SalesOrderHeader> GetOrdersForCustomer(string customerID);

}

These methods define operations that enable a Web client application to retrieve all
customers, the details of a specific customer, and the orders for a specific customer,
respectively. They follow the same pattern as the operations defined in the preceding
steps.

	 13.	 Rebuild the solution.

Implement the ProductsSales REST Web Service

	 1.	 Add a new class file to the ProductsSalesService project. Name the class file Products
Sales.cs.

	 2.	 Open the ProductsSales.cs file in the Code And Text Editor window and add the follow-
ing using statements to the list at the top of the file:

using System.ServiceModel;

using System.ServiceModel.Web;

using System.Net;

	 3.	 Modify the definition of the ProductsSales class so that it is public and implements the
IProductsSales interface, as shown in bold in the following code example:

public class ProductsSales : IProductsSales

{

}

	 4.	 Add the following GetAllOrders method (shown in bold) to the ProductsSales class:

public class ProductsSales : IProductsSales

{

 // Return a list of orders

 public ICollection<SalesOrderHeader> GetAllOrders(int skip, int top)

 {

 List<SalesOrderHeader> salesOrders = null;

 if (top == 0)

 {

 top = 100;

 }

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 555

 try

 {

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 salesOrders = (from order in database.SalesOrderHeaders

 orderby order.SalesOrderID

 select order).Skip(skip).Take(top).ToList();

 }

 }

 catch

 {

 throw new WebFaultException(HttpStatusCode.BadRequest);

 }

 return salesOrders;

 }

}

Note  The code for this method is available in the file GetAllOrders.txt, which is located in
the Microsoft Press\WCF Step By Step\Chapter 15 folder.

This method retrieves a list of orders from the AdventureWorks database and returns
it as a collection of SalesOrderHeader objects. Remember that a Web application can
invoke this operation by visiting the Orders URI exposed by the Web site hosting the
service. The Web application can optionally provide values for the skip and top argu-
ments as query parameters. If the Web application does not specify values for these
parameters, they both default to zero. It is possible that the database may contain
hundreds, if not thousands, of orders. Therefore, the service will fetch only the first 100
orders unless the user explicitly constrains the number of orders requested. If an appli-
cation actually requires every order in the database, it can fetch them in blocks by mak-
ing repeated calls to the GetAllOrders operation and specifying appropriate values for
the skip and top parameters.

This method performs very limited parameter validation and error checking; for exam-
ple, it does not verify that the values of the skip and top parameters are not negative. If
an exception occurs, the method throws a WebFaultException exception. This type is a
specialized version of the FaultException class that you encountered in Chapter 3, “Making
Applications and Services Robust,” except that it generates an HTTP fault rather than a
SOAP fault. The parameter to the WebFaultException constructor specifies the HTTP status
code that the HTTP fault contains. The HttpStatusCode enumeration in the System.Net
namespace defines the list of codes that you can pass back to a Web application; the
value HttpStatusCode.BadRequest generates an HTTP 400 (Bad Request) error message,
which is a good catch-all if no other, more specific error applies. For security reasons, as
described in Chapter 3, you should avoid attempting to return too much information if
an error does occur (although it is commonly accepted practice to record the details of
errors locally on the server, often in the Application Event Log).

Download from Wow! eBook <www.wowebook.com>

556	 Windows Communication Foundation 4 Step by Step

	 5.	 Add the GetOrder method shown in bold in the following code example to the Products
Sales class:

public class ProductsSales : IProductsSales

{

 ...

 // Return the details of the specified order

 public SalesOrderHeader GetOrder(string orderID)

 {

 SalesOrderHeader header = null;

 try

 {

 int id = Convert.ToInt32(orderID);

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 header = (from order in database.SalesOrderHeaders

 where order.SalesOrderID == id

 select order).FirstOrDefault();

 }

 }

 catch

 {

 throw new WebFaultException(HttpStatusCode.BadRequest);

 }

 return header;

 }

}

Note  The code for this method is provided in the file GetOrder.txt, which is located in the
Chapter 15 folder.

This method locates and returns the SalesOrderHeader object that matches the order
ID passed in as the parameter. Note that the order ID is provided as a string, so it must
be converted to an integer before being referenced by the LINQ query. The LINQ query
itself generates a null reference which the service returns to the Web application if no
matching order is found. As before, the method performs no error checking, but gener-
ates a Bad Request fault if an exception occurs.

	 6.	 Implement the GetCustomerForOrder method in the ProductsSales class, as shown below
in bold:

public class ProductsSales : IProductsSales

{

 ...

 // Return the details of the customer for the specified order

 public Contact GetCustomerForOrder(string orderID)

 {

 Contact orderCustomer = null;

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 557

 try

 {

 int id = Convert.ToInt32(orderID);

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 orderCustomer = (from customer in database.Contacts

 join order in database.SalesOrderHeaders

 on customer.ContactID equals order.CustomerID

 where order.SalesOrderID == id

 select customer).FirstOrDefault();

 }

 }

 catch

 {

 throw new WebFaultException(HttpStatusCode.BadRequest);

 }

 return orderCustomer;

 }

}

Note  The code for this method is provided in the file GetCustomerForOrder.txt, which is
located in the Chapter 15 folder.

The preceding method retrieves the customer that placed the specified order. To do
that, it joins the Contact and SalesOrderHeader tables in the AdventureWorks data-
base on their ContactID and CustomerID columns, respectively. It returns the data as a
Contact object.

	 7.	 Add the following GetAllCustomers, GetCustomer, and GetOrdersForCustomer methods
(shown in bold) to the ProductsSales class:

public class ProductsSales : IProductsSales

{

 ...

 // Return a list of customers

 public ICollection<Contact> GetAllCustomers(int skip, int top)

 {

 List<Contact> orderCustomers = null;

 if (top == 0)

 {

 top = 100;

 }

 try

 {

 using (AdventureWorksEntities database = new AdventureWorksEntities())

Download from Wow! eBook <www.wowebook.com>

558	 Windows Communication Foundation 4 Step by Step

 {

 orderCustomers = (from customer in database.Contacts

 orderby customer.ContactID

 select customer).Skip(skip).Take(top).ToList();

 }

 }

 catch

 {

 throw new WebFaultException(HttpStatusCode.BadRequest);

 }

 return orderCustomers;

 }

 // Return the details of the specified customer

 public Contact GetCustomer(string customerID)

 {

 Contact orderCustomer = null;

 try

 {

 int id = Convert.ToInt32(customerID);

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 orderCustomer = (from customer in database.Contacts

 where customer.ContactID == id

 select customer).FirstOrDefault();

 }

 }

 catch

 {

 throw new WebFaultException(HttpStatusCode.BadRequest);

 }

 return orderCustomer;

 }

 // Return the orders for the specified customer

 public ICollection<SalesOrderHeader> GetOrdersForCustomer(string customerID)

 {

 List<SalesOrderHeader> salesOrders = null;

 try

 {

 int id = Convert.ToInt32(customerID);

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 salesOrders = (from customer in database.Contacts

 join order in database.SalesOrderHeaders

 on customer.ContactID equals order.CustomerID

 where customer.ContactID == id

 select order).ToList();

 }

 }

 catch

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 559

 {

 throw new WebFaultException(HttpStatusCode.BadRequest);

 }

 return salesOrders;

 }

}

Note  The code for these methods are available in the GetAllCustomers.txt, GetCustomer.txt,
and GetOrdersForCustomer.txt files, which are located in the Chapter 15 folder.

These methods follow a pattern similar to those you added in the previous steps, except
that they focus on customers rather than orders.

	 8.	 Rebuild the solution.

As with a SOAP Web service, you can host a REST Web service by using IIS, or you can create
a custom host application. WCF provides the WebServiceHost class in the System.ServiceModel.
Web namespace, which is a specialized version of the ServiceHost class that provides the host-
ing environment for REST Web services. The WebServiceHost class adds an endpoint behavior
called WebHttpBehavior to the services that it hosts. This behavior enables the service to
receive and send messages as HTTP requests rather than SOAP requests. You will make use
of this class in the next exercise.

Host the ProductsSales REST Web Service

	 1.	 Add a new Console Application project to the ProductsSales solution. Name the project
ProductsSalesHost and save it in the Microsoft Press\WCF Step By Step\Chapter
15\ProductsSales folder.

	 2.	 Open the Properties page for the ProductsSalesHost project (right-click the Products
SalesHost project in Solution Explorer then click Properties), and then click the Applica-
tion tab. Set the Target Framework property to .NET Framework 4 and allow Visual
Studio to close and reopen the project.

This application will use types from the System.ServiceModel.Web assembly. Note that
this assembly is only available in the full version of the .NET Framework 4.0, not the .NET
Framework 4.0 Client Profile.

	 3.	 Add a reference to the ProductsSalesService project. Also add references to the System.
ServiceModel and System.ServiceModel.Web assemblies to the ProductsSalesHost project.

	 4.	 Open the Program.cs file in the Code And Text Editor window. Add the following using
statement to the list at the top of the file.

using System.ServiceModel.Web;

Download from Wow! eBook <www.wowebook.com>

560	 Windows Communication Foundation 4 Step by Step

	 5.	 In the Program class, add the following statements (shown in bold) to the Main method.

class Program

{

 static void Main(string[] args)

 {

 WebServiceHost host = new WebServiceHost(

 typeof(ProductsSalesService.ProductsSales));

 host.Open();

 Console.WriteLine("Service running");

 Console.WriteLine("Press ENTER to stop the service");

 Console.ReadLine();

 host.Close();

 }

}

This code creates a WebServiceHost object based on the ProductsSalesService class, and
then starts it listening for requests. It is very similar to code shown in previous chapters
for building a custom host.

	 6.	 Delete the app.config file from the ProductsSalesHost project and replace it with the
App.config file, located in the Microsoft Press\WCF Step By Step\Chapter 15 folder.

Remember that this file contains the connection string for connecting to the Adventure-
Works database.

	 7.	 Open the app.config file for the ProductsSalesHost project by using the Service Con-
figuration Editor.

	 8.	 In the Configuration pane, right-click the Services folder, and then click New Service. In
the right pane, in the Name property, type ProductsSalesService.ProductsSales.

	 9.	 In the Configuration pane, under the ProductsSalesService.ProductsSales service, right-
click the Endpoints folder, and then click New Service Endpoint. In the Service Endpoint
pane, enter the values shown in the following table:

Property Value

Address http://localhost:8000/Sales

Binding webHttpBinding

Contract ProductsSalesService.IProductsSales

The URIs specified by the UriTemplate property for the operations defined in the
WebGet attribute applied to the IProductsSales service contract are applied relative
to the address of the service. For example, the GetCustomerForOrder operation has

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 561

the UriTemplate property set to “Orders/{ordered}/Customer.” A Web client applica-
tion can invoke this operation by visiting a URL such as http://localhost:8000/Sales/
Orders/54545/Customer, where 54545 is the ID of an order.

The webHttpBinding binding configures endpoints for REST Web services exposed
through HTTP requests instead of SOAP messages.

	 10.	 Save the configuration file and close the Service Configuration Editor.

	 11.	 Rebuild the solution.

The ProductsSales service responds to HTTP GET requests that you can submit from a Web
application, but you can also use a Web browser such as Internet Explorer, which is what you
will do in the following exercise. Note that the WebServiceHost class disables WSDL metadata
publishing (WSDL applies only to SOAP Web services). However, you can still query a REST
Web service to find out its capabilities if it is help-enabled. Therefore, in the following exercise,
you will also configure the ProductsSalesService service to provide help information, listing
the URLs that the service supports and the structure of the data returned when you query
each URL.

Note  The ProductsSalesHost application assumes that you still have the reservation for
port 8000 in place. If this is not the case, then open a Visual Studio Command Prompt
window as Administrator and run the following command, replacing UserName with your
Windows user name:

netsh http add urlacl url=http://+:8000/ user=UserName

Test the ProductsSales REST Web Service by Using a Web Browser

	 1.	 In Solution Explorer, set the ProductsSalesHost project as the startup project for the
solution, and then start the solution without debugging. Verify that the console window
for the ProductsSalesHost application displays the message “Service Running.”

	 2.	 Start Internet Explorer, type the URL http://localhost:8000/Sales/Orders into the
address field, and then press Enter. Navigating to this URL invokes the GetOrders opera-
tion, which responds by returning a collection of SalesOrderHeader objects, serialized as
XML. Internet Explorer displays this XML data, as shown in the image that follows.

Download from Wow! eBook <www.wowebook.com>

562	 Windows Communication Foundation 4 Step by Step

If you scroll through this list, you will see that the ProductsSales service has returned the
first 100 orders. The ID of the first order is 43659, and the ID of the final order is 43758.

	 3.	 Specify a URL of http://localhost:8000/Sales/Orders?skip=100&top=5, and then
examine the data returned by the ProductsSales service.

This time the ProductsSales service retrieves five orders, starting with order ID 43759.

	 4.	 Move to each of the URLs listed in the following table and verify that the results match
those expected.

URL Expected Result

http://localhost:8000/Sales/Orders?top=-10 An error page with the title “HTTP 400 Bad
Request”. The GetOrders operation attempts
to retrieve –10 orders, so the Take method
in the LINQ query throws an exception. The
GetOrders method catches this exception and
throws a WebFaultException exception with
the value HttpStatusCode.BadRequest.

http://localhost:8000/Sales/Orders/43700 The details of the single order with ID 43700.

http://localhost:8000/Sales/Orders/30000 A blank page. There is no order with ID 30000
in the AdventureWorks database.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 563

URL Expected Result

http://localhost:8000/Sales/Orders/43700/
Customer

The details for customer with ID 14501. This is
the customer that placed order 43700.

http://localhost:8000/Sales/Customers The details of the first 100 customers in the
AdventureWorks database.

http://localhost:8000/Sales/Customers/100 The details of customer 100.

http://localhost:8000/Sales/Customers/100/
Orders

The details of all orders placed by customer
100.

	 5.	 Return to the console application window for the ProductsSales service, press Enter to
stop the service, and then close the console window but leave Internet Explorer running.

	 6.	 In Visual Studio, open the App.Config file for the ProductsSalesHost project by using the
Service Configuration Editor.

	 7.	 In the Configuration pane, expand the Advanced folder, right-click the Endpoint Behav-
iors folder, and then click New Endpoint Behavior Configuration. In the right pane, clear
the Name property. In the lower part of the right pane, click the Add button and add a
webHttp behavior extension element to the endpoint behavior.

	 8.	 In the Configuration pane, click the webHttp node under the (Empty Name) endpoint
behavior. In the WebHttp pane, set the HelpEnabled property to True. This property
enables a REST Web service to publish a help page that describes the operations for the
service, the XML schema of the response message, and an example JSON structure for
the response message.

Note  The default value of the HelpEnabled property is false.

	 9.	 Save the configuration file, and then close the Service Configuration Editor.

	 10.	 In Visual Studio, start the solution without debugging.

	 11.	 Return to Internet Explorer and browse to the URL http://localhost:8000/Sales/help.
The help page for the ProductsSales service appears (as shown in the following image),
displaying the URI and description for each operation exposed by the service.

Download from Wow! eBook <www.wowebook.com>

564	 Windows Communication Foundation 4 Step by Step

	 12.	 Click the GET link for the Customers/{customerID} URI. Another page appears that
describes the format of the response message returned by the GetCustomer operation:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 565

	 13.	 Examine the format of the response messages for the remaining operations, and then
close Internet Explorer.

	 14. 	Return to the console application window for the ProductsSalesService service. Press
Enter to stop the service, and then close the window.

As well as sending requests through URLs in a Web application or Web browser, you can also
invoke the operations in a REST Web service from a procedural client application. The tech-
nique is very similar to building a client application for a SOAP Web service; you can create a
proxy class and invoke the methods exposed by the service in the usual way. Unfortunately,
Visual Studio does not currently provide the functionality to generate a proxy class for a REST
Web service—but it is not difficult to implement a proxy class manually by extending the
System.ServiceModel.ClientBase class (Chapter 11, “Programmatically Controlling the Configu-
ration and Communications,” introduced this class to you). This is the approach that you will
take in the next exercise.

Build a Procedural Client Application for the ProductsSales REST Web Service

	 1.	 In Visual Studio, add a new Console Application project to the ProductsSales solution.
Name the project ProductsSalesClient, and save it in the Microsoft Press\WCF Step
By Step\Chapter 15\ProductsSales folder.

	 2.	 Open the Properties page for the ProductsSalesClient project and set the Target
Framework property to .NET Framework 4. Allow Visual Studio to close and reopen
the project.

Like the ProducstSalesHost project, this application will use types from the System.
ServiceModel.Web assembly, which is only available in the full version of the .NET
Framework 4.0.

	 3.	 Add a reference to the ProductsSalesService project. In addition, add references to the
System.Data.Entity, and System.ServiceModel assemblies to the ProductsSalesClient
project.

The client application needs access to the definition of the operations of the service
contract exposed by the ProductsSalesService service in order to implement the proxy
class.

	 4.	 Add a new class file to the ProductSalesClient project. Name the class file Products-
SalesProxy.cs.

	 5.	 Open the ProductsSalesProxy class in the Code And Text Editor window. Add the follow-
ing using statements to the list at the top of the file:

using System.ServiceModel;

using ProductsSalesService;

Download from Wow! eBook <www.wowebook.com>

566	 Windows Communication Foundation 4 Step by Step

	 6.	 Modify the definition of the ProductsSalesProxy class so that it extends the ClientBase<
IProductsSales> class and implements the IProductsSales interface, as shown in bold in
the following code example:

class ProductsSalesProxy : ClientBase<IProductsSales>, IProductsSales

{

}

	 7.	 Implement the GetAllOrders method defined by the IProductsSales interface in the
ProductsSalesProxy class as follows:

class ProductsSalesProxy : ClientBase<IProductsSales>, IProductsSales

{

 public ICollection<SalesOrderHeader> GetAllOrders(int skip = 0, int top = 0)

 {

 return this.Channel.GetAllOrders(skip, top);

 }

}

As described in Chapter 11, this method simply routes calls through the channel con-
nected to the service and invokes the operation with the same name in the service (the
Channel property is inherited from the ClientBase class). This implementation specifies
the skip and top parameters as optional, with a default value of zero.

	 8.	 Add the GetOrder, GetCustomerForOrder, GetAllCustomers, GetCustomer, and GetOrders
ForCustomer methods, shown in bold in the code example that follows, to the Products-
SalesProxy class. These methods all follow the same pattern as the GetAllOrders method;
they simply invoke the corresponding method in the service through the channel con-
nected to the service.

class ProductsSalesProxy : ClientBase<IProductsSales>, IProductsSales

{

 ...

 public SalesOrderHeader GetOrder(string orderID)

 {

 return this.Channel.GetOrder(orderID);

 }

 public Contact GetCustomerForOrder(string orderID)

 {

 return this.Channel.GetCustomerForOrder(orderID);

 }

 public ICollection<Contact> GetAllCustomers(int skip = 0, int top = 0)

 {

 return this.Channel.GetAllCustomers(skip, top);

 }

 public Contact GetCustomer(string customerID)

 {

 return this.Channel.GetCustomer(customerID);

 }

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 567

 public ICollection<SalesOrderHeader> GetOrdersForCustomer(string customerID)

 {

 return this.Channel.GetOrdersForCustomer(customerID);

 }

}

	 9.	 Open the Program.cs file for the ProductsSalesClient project in the Code And Text Editor
window. Add the following using statement to the list at the top of the file.

using ProductsSalesService;

	 10.	 Add the following statements (shown in bold) to the Main method.

static void Main(string[] args)

{

 Console.WriteLine("Press ENTER when the service has started");

 Console.ReadLine();

 // Create a proxy object and connect to the service

 ProductsSalesProxy proxy = new ProductsSalesProxy();

 // Test the operations in the service

 try

 {

 // Obtain a list of 30 orders, starting with the 11th

 Console.WriteLine("Test 1: List orders");

 ICollection<SalesOrderHeader> orders = proxy.GetAllOrders(10, 30);

 Console.WriteLine("Order\tDate Placed\tCustomer\tAmount Due");

 foreach (SalesOrderHeader order in orders)

 {

 Console.WriteLine("{0}\t{1:d}\t{2}\t\t{3:C}",

 order.SalesOrderID, order.OrderDate, order.CustomerID,

 order.TotalDue);

 }

 Console.WriteLine();

 // Find the details for order 43687

 Console.WriteLine("Test 2: Get details for order 43687");

 SalesOrderHeader salesOrder = proxy.GetOrder("43687");

 Console.WriteLine(

 "Order ID: {0}\nDate Placed {1}\nCustomer ID: {2}\nAmount Due: {3:C}\n\n",

 salesOrder.SalesOrderID, salesOrder.OrderDate, salesOrder.CustomerID,

 salesOrder.TotalDue);

 // Find the customer that placed order 43687

 Console.WriteLine("Test 3: Find the customer for order 43687");

 Contact salesCustomer = proxy.GetCustomerForOrder("43687");

 Console.WriteLine("Customer: {0} {1}\nEmail: {2}\nPhone: {3}\n\n",

 salesCustomer.FirstName, salesCustomer.LastName,

 salesCustomer.EmailAddress, salesCustomer.Phone);

 // Find all customers with an ID in the range 75 to 90

 Console.WriteLine("Test 4: List customers");

 ICollection<Contact> customers = proxy.GetAllCustomers(74, 15);

 Console.WriteLine("Name\t\tEmail\t\t\t\tPhone");

Download from Wow! eBook <www.wowebook.com>

568	 Windows Communication Foundation 4 Step by Step

 foreach (Contact customer in customers)

 {

 Console.WriteLine("{0} {1}\t{2}\t{3}",

 customer.FirstName, customer.LastName,

 customer.EmailAddress, customer.Phone);

 }

 Console.WriteLine();

 // Find the details of customer 99

 Console.WriteLine("Test 5: Find the details for customer 99");

 salesCustomer = proxy.GetCustomer("99");

 Console.WriteLine("Customer: {0} {1}\nEmail: {2}\nPhone: {3}\n\n",

 salesCustomer.FirstName, salesCustomer.LastName,

 salesCustomer.EmailAddress, salesCustomer.Phone);

 // Find all orders placed by customer 99

 Console.WriteLine("Test 6: Find all orders for customer 99");

 orders = proxy.GetOrdersForCustomer("99");

 Console.WriteLine("Order\tDate Placed\tCustomer\tAmount Due");

 foreach (SalesOrderHeader order in orders)

 {

 Console.WriteLine("{0}\t{1:d}\t{2}\t\t{3:C}",

 order.SalesOrderID, order.OrderDate,

 order.CustomerID, order.TotalDue);

 }

 Console.WriteLine();

 // Disconnect from the service

 proxy.Close();

 }

 catch (Exception e)

 {

 if (e.InnerException != null)

 {

 Console.WriteLine("{0}", e.InnerException.Message);

 }

 else

 {

 Console.WriteLine("General exception: {0}", e.Message);

 }

 }

 Console.WriteLine("Press ENTER to finish");

 Console.ReadLine();

}

Note  This code is available in the Main.txt file, which is located in the Chapter 15 folder.

This code creates an instance of the ProductsSalesProxy class and then exercises each of
the methods available through the proxy with the following series of tests:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 569

❏❏ Retrieve orders by using the GetAllOrders method, specifying values for the skip
and top parameters to limit the number of orders returned.

❏❏ Retrieve the details of order 43687 by calling the GetOrder method.

❏❏ Find the customer that placed order 43687 by calling the GetCustomerForOrder
method.

❏❏ Find the details of customers with IDs between 75 and 90 by calling the GetAll
Customers method with values for the skip and top parameters.

❏❏ Retrieve the details of customer 99 by calling the GetCustomer method.

❏❏ Find all orders for customer 99 by calling the GetOrdersForCustomer method.

	 11.	 Open the app.config file for the ProductsSalesClient project by using the Service Con-
figuration Editor.

	 12.	 In the Configuration pane, expand the Client folder, right-click the Endpoints folder, and
then click New Client Endpoint.

	 13.	 In the Client Endpoint pane, specify the following values for the new endpoint:

Property Value

Address http://localhost:8000/Sales

Binding webHttpBinding

Contract ProductsSalesService.IProductsSales

	 14.	 In the Configuration pane, expand the Advanced folder, right-click the Endpoint Behav-
iors folder, and then click New Endpoint Behavior Configuration. In the right pane, clear
the Name property. In the lower part of the right pane, click the Add button and add a
webHttp behavior extension element to the endpoint behavior.

Note  Unlike a service hosted by using the WebServiceHost class, the endpoint for a client
application for a REST service is not automatically configured to send HTTP requests, so you
must always add the WebHttpBehavior behavior to the client endpoint.

	 15.	 Save the configuration file then close the Service Configuration Editor.

	 16.	 In Visual Studio, set the ProductsSalesClient and ProductsSalesHost projects as the
startup projects for the solution, and then start the solution without debugging.

	 17.	 In the ProductsSalesClient console window, press Enter. The various tests should all per-
form successfully and produce output similar to that shown in the image that follows.

Download from Wow! eBook <www.wowebook.com>

570	 Windows Communication Foundation 4 Step by Step

	 18.	 Press Enter to close the ProductsSalesClient console window, and then close the
ProductsSalesHost console window.

Updating Data Through a REST Web Service
A REST Web service provides operations that can query data by responding to HTTP GET
requests. However, the HTTP protocol supports other forms of requests, and you can exploit
these message types to provide operations that can modify data in a REST Web service. The
common convention is that you use HTTP POST requests to specify operations that can create
new items, HTTP PUT requests for operations that update existing data, and HTTP DELETE
requests to define operations that can remove items.

Note  This convention is not enforced, and you could use HTTP POST requests to update and
delete data, but this is not considered to be good practice. The rationale behind the convention is
that in the HTTP protocol, POST requests are non-idempotent, whereas PUT and DELETE requests
are idempotent. What this means is that PUT and DELETE requests can be used for operations
that may be repeated any number of times, and they have an effect that is the same as if they had
been executed only once, whereas the same is not true of POST requests. So, if you implement an
update operation by using a PUT request, you can repeatedly perform this update operation over
the same data and the result should always be the same. This logic also applies to removing data
by using DELETE requests; if you delete an item that has already been deleted, it is still deleted.
However, repeatedly adding the same information by using POST requests may result in duplicate
data.

In a WCF REST Web service, you mark operations that respond to HTTP GET requests with the
WebGet attribute. You also provide a template that specifies the URI that Web clients can visit
to invoke the operation. To support HTTP POST, PUT, and DELETE requests, WCF supplies the
WebInvoke attribute. Again, you use this attribute to identify a URI, but you can also indicate
the type of the request message to which to respond. When the REST Web service receives
a message of the defined type directed at the specified URI, it will invoke the corresponding
operation. This scheme makes it possible for multiple operations to respond to the same URI,

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 571

as long as they expect different types of HTTP messages. This is extremely useful and prevents
you from having to think up multiple URI schemes to support different operations over the
same logical data. For example, the GetCustomer operation in the IProductsSales service con-
tract looks like this:

[OperationContract]

[WebGet(UriTemplate = "Customers/{customerID}")]

[Description("Returns the details of a customer")]

Contact GetCustomer(string customerID);

You can define the DeleteCustomer operation that deletes a customer by reusing the same
URI (which makes sense because you are referring to the same data), but by specifying that
the operation responds to HTTP DELETE messages, as shown in the following:

[OperationContract]

[WebInvoke(Method = "DELETE", UriTemplate = "Customers/{customerID}")]

[Description("Deletes a customer")]

void DeleteCustomer(string customerID);

In the following set of exercises, you will extend the ProductsSales REST Web service to enable
insert, update, and delete operations for Customer data.

Extend the ProductsSales REST Web Service to Support Data Updates

	 1.	 In Visual Studio, open the IProductsSales.cs file for the ProductsSalesService project by
using the Code And Text Editor window.

	 2.	 Add the following operation to the IProductsSales interface:

public interface IProductsSales

{

 ...

 [OperationContract]

 [WebInvoke(Method = "POST", UriTemplate =

 "Customer?FirstName={firstName}&LastName={lastName}&EmailAddress={email}" +
 "&Phone={phone}")]
 [Description("Adds a new customer")]

 int CreateCustomer(string firstName, string lastName, string email, string phone);

}

You will implement the CreateCustomer method to add a new customer to the Adventure
Works database. The operation is tagged with the WebInvoke attribute, and the Method
property is set to POST because this is an insert operation. The UriTemplate property
specifies arguments that provide the details for the customer (the Customer table in the
AdventureWorks database contains more columns than the list of parameters, but you
will generate default values for these columns). As with the skip and top arguments in
the GetAllOrders and GetAllCustomers operations in the previous set of exercises, the
order of these arguments is immaterial, as long as you define parameters with the same
names in the CreateCustomer method.

Download from Wow! eBook <www.wowebook.com>

572	 Windows Communication Foundation 4 Step by Step

A Web application can submit POST requests with a URI with the form indicated by the
UriTemplate property to create new customers. For example, to add a record for John
Sharp, an application could specify the following URI (note that the URI should be a
single line):

Customers?FirstName=John&LastName=Sharp&

 EmailAddress=john@adventure-works.com&Phone=(123)456789

	 3.	 Add the following UpdateCustomer operation (shown in bold) to the IProductsSales
interface.

public interface IProductsSales

{

 ...

 [OperationContract]

 [WebInvoke(Method = "PUT", UriTemplate =

 "Customers/{customerID}?EmailAddress={email}&Phone={phone}")]

 [Description("Updates the email address and/or telephone number for a customer")]

 void UpdateCustomer(string customerID, string email, string phone);

}

The UpdateCustomer method will modify the customer with the specified customer ID
and change the email address and telephone number by using the values provided as
arguments. It will respond to HTTP PUT requests.

	 4.	 Add the DeleteCustomer operation to the IProductsSales interface, as shown in the fol-
lowing code example:

public interface IProductsSales

{

 ...

 [OperationContract]

 [WebInvoke(Method = "DELETE", UriTemplate = "Customers/{customerID}")]

 [Description("Deletes a customer")]

 void DeleteCustomer(string customerID);

}

This method will respond to HTTP DELETE requests, removing the specified customer
from the AdventureWorks database.

	 5. 	Open the ProductsSales.cs file for the ProductsSalesService project in the Code And Text
Editor window and implement the CreateCustomer method in the ProductsSales class, as
shown in bold below.

public class ProductsSales : IProductsSales

{

 ...

 // Create a new customer, and return the customer ID

 public int CreateCustomer(string firstName, string lastName,

 string email, string phone)

 {

 try

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 573

 {

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 // Create and populate a new Contact object

 Contact newCustomer = new Contact()

 {

 FirstName = firstName,

 LastName = lastName,

 EmailAddress = email,

 Phone = phone,

 PasswordHash = "",

 PasswordSalt = "",

 rowguid = Guid.NewGuid(),

 ModifiedDate = DateTime.Now

 };

 // Add the new customer to the database and save the changes

 database.AddToContacts(newCustomer);

 database.SaveChanges();

 return newCustomer.ContactID;

 }

 }

 catch

 {

 throw new WebFaultException(HttpStatusCode.BadRequest);

 }

 }

}

Note  The code for this method is available in the file CreateCustomer.txt, which is located
in the Chapter 15 folder.

This method uses the parameters passed in to create a new Contact object (remember
that customers are stored in the Contact table in the AdventureWorks database) and
then uses the Entity Framework to save this new object to the database. Notice that
default values are generated for some of the columns. The AdventureWorks database
automatically generates an ID for the new customer when the record is saved, and the
CreateCustomer method returns that ID value. If an error occurs, the method throws a
WebFaultException exception with an HTTP status code of 400 (Bad Request).

	 6.	 Add the following UpdateCustomer method (shown in bold) to the ProductsSales class:

public class ProductsSales : IProductsSales

{

 ...

 // Update the email address and/or telephone number

 // for the specified customer

 public void UpdateCustomer(string customerID, string email, string phone)

 {

 try

Download from Wow! eBook <www.wowebook.com>

574	 Windows Communication Foundation 4 Step by Step

 {

 int id = Convert.ToInt32(customerID);

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 // Find the customer in the database

 var findCustomer = from customer in database.Contacts

 where customer.ContactID == id

 select customer;

 if (findCustomer.Count() > 0)

 {

 // Update the details for the customer and save the changes

 Contact customer = findCustomer.First();

 if (email != null)

 customer.EmailAddress = email;

 if (phone != null)

 customer.Phone = phone;

 customer.ModifiedDate = DateTime.Now;

 database.SaveChanges();

 }

 else

 {

 throw new WebFaultException(HttpStatusCode.NotFound);

 }

 }

 }

 catch (Exception e)

 {

 if (e is WebFaultException)

 {

 throw;

 }

 else

 {

 throw new WebFaultException(HttpStatusCode.BadRequest);

 }

 }

 }

}

Note  The code for this method is available in the file UpdateCustomer.txt, which is located
in the Chapter 15 folder.

The UpdateCustomer method first tries to locate the customer to be updated. When it
finds a match, it sets the email address and telephone number to the values specified
by the email and phone parameters. Note that if either of these parameters is null then
the method ignores them; this enables a Web client application to omit either of these
parameters if the corresponding columns in the database do not need to be modified.
If there is no matching customer in the AdventureWorks database, the method throws a

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 575

WebFaultException exception with the HTTP status 404 (Not Found). If an error occurs,
the method throws a WebFaultException exception with the HTTP status 400 (Bad
Request).

	 7.	 Add the DeleteCustomer method to the ProductsSales class, as shown in bold in the fol-
lowing code example:

public class ProductsSales : IProductsSales

{

 ...

 // Delete the specified customer

 public void DeleteCustomer(string customerID)

 {

 try

 {

 int id = Convert.ToInt32(customerID);

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 // Find the customer in the database

 var findCustomer = from customer in database.Contacts

 where customer.ContactID == id

 select customer;

 if (findCustomer.Count() > 0)

 {

 // Remove the customer and save the changes

 Contact customer = findCustomer.First();

 database.DeleteObject(customer);

 database.SaveChanges();

 }

 else

 {

 throw new WebFaultException(HttpStatusCode.NotFound);

 }

 }

 }

 catch (Exception e)

 {

 if (e is WebFaultException)

 {

 throw;

 }

 else

 {

 throw new WebFaultException(HttpStatusCode.BadRequest);

 }

 }

 }

}

Note  The code for this method is available in the DeleteCustomer.txt file, which is located
in the Chapter 15 folder.

Download from Wow! eBook <www.wowebook.com>

576	 Windows Communication Foundation 4 Step by Step

This method is similar to UpdateCustomer, in so much as it locates the customer to be
removed. When a match is found it deletes the corresponding record from the Adventure
Works database. If there is no matching customer in the AdventureWorks database, the
method throws a WebFaultException exception with the HTTP status 404 (Not Found). If
an error occurs, the method throws a WebFaultException exception with the HTTP status
400 (Bad Request).

	 8.	 Rebuild the ProductsSalesService project.

Make sure that you only rebuild the ProductsSalesService project and not the entire
solution; at this point, the ProductsSales client project will fail to build because the
CreateCustomer, UpdateCustomer, and DeleteCustomer methods are missing from the
client proxy. You will add these methods in the next exercise.

You can invoke the CreateCustomer, UpdateCustomer, and DeleteCustomer operations from a
Web application that submits the appropriate POST, PUT, and DELETE requests. The following
code fragment is taken from an ASP.NET Web application and shows how to submit an HTTP
DELETE request that attempts to delete customer 101 from the AdventureWorks database:

System.Net.WebRequest request =

 System.Net.HttpWebRequest.Create("http://localhost:8000/Sales/Customers/101");

request.Method = "DELETE";

System.Net.HttpWebResponse response = request.GetResponse() as System.Net.HttpWebResponse;

if (response != null && response.StatusCode == System.Net.HttpStatusCode.OK)

{

 ... // Customer 101 was successfully deleted

}

else

{

 ... // Customer 101 was not deleted

}

You cannot easily invoke these operations directly by specifying a URI in the address bar of
a Web browser such as Internet Explorer. This is because most Web browsers work by send-
ing HTTP GET requests; by their nature they are intended to query data rather than modify it.
To test these new operations, you can either create an ASP.NET Web application or you can
invoke the operations by name from a procedural client application, as you did in the previ-
ous set of exercises; this is the approach that you will employ in the next exercise.

To call the new operations from the client application, you must first update the Products
SalesProxy class.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 577

Update the Procedural Client Application and Test the ProductsSales REST
Web Service

	 1.	 Open the ProductsSalesProxy.cs file for the ProductsSalesClient project in the Code And
Text Editor window. Add the CreateCustomer, UpdateCustomer, and DeleteCustomer
methods shown in the following code in bold to the ProductsSalesProxy class.

class ProductsSalesProxy : ClientBase<IProductsSales>, IProductsSales

{

 ...

 public int CreateCustomer(string firstName, string lastName,

 string email, string phone)

 {

 return this.Channel.CreateCustomer(firstName, lastName, email, phone);

 }

 public void UpdateCustomer(string customerID, string email=null,

 string phone=null)

 {

 this.Channel.UpdateCustomer(customerID, email, phone);

 }

 public void DeleteCustomer(string customerID)

 {

 this.Channel.DeleteCustomer(customerID);

 }

}

These methods follow the same pattern as the methods you defined in the previous set
of exercises; they simply route the requests to the service using the Channel property of
the ClientBase<IProductsSales> class. Notice that the UpdateCustomer method provides
default values for the email and phone parameters so that the client application can
omit either of them if necessary.

	 2.	 Open the Program.cs file for the ProductsSales project in the Code And Text Editor win-
dow. In the Main method of the Program class, add the following statements (shown in
bold) after Test 6, but before the statement that closes the proxy object.

static void Main(string[] args)

{

 ...

 // Test the operations in the service

 try

 {

 ...

 // Find all orders placed by customer 99

 Console.WriteLine("Test 6: Find all orders for customer 99");

 orders = proxy.GetOrdersForCustomer("99");

 Console.WriteLine("Order\tDate Placed\tCustomer\tAmount Due");

 foreach (SalesOrderHeader order in orders)

Download from Wow! eBook <www.wowebook.com>

578	 Windows Communication Foundation 4 Step by Step

 {

 Console.WriteLine("{0}\t{1:d}\t{2}\t\t{3:C}",

 order.SalesOrderID, order.OrderDate,

 order.CustomerID, order.TotalDue);

 }

 Console.WriteLine();

 // Create a new customer

 Console.WriteLine("Test 7: Create a new customer");

 int customerID = proxy.CreateCustomer("John", "Sharp",

 "john@adventure-works.com", "(123)456789");

 salesCustomer = proxy.GetCustomer(customerID.ToString());

 Console.WriteLine("Customer ID: {0}\nName: {1} {2}\nEmail: {3}"+

 "\nPhone: {4}\n\n", salesCustomer.ContactID,

 salesCustomer.FirstName, salesCustomer.LastName,

 salesCustomer.EmailAddress, salesCustomer.Phone);

 // Change the email address for the new customer

 Console.WriteLine("Test 8: Change the email address for the new customer");

 proxy.UpdateCustomer(customerID.ToString(),

 email: "newaddress@adventure-works.com");

 salesCustomer = proxy.GetCustomer(customerID.ToString());

 Console.WriteLine("Customer ID: {0}\nName: {1} {2}\nEmail: {3}"+

 "\nPhone: {4}\n\n", salesCustomer.ContactID,

 salesCustomer.FirstName, salesCustomer.LastName,

 salesCustomer.EmailAddress, salesCustomer.Phone);

 // Delete the new customer

 Console.WriteLine("Test 9: Delete a customer");

 proxy.DeleteCustomer(customerID.ToString());

 salesCustomer = proxy.GetCustomer(customerID.ToString());

 if (salesCustomer == null)

 Console.WriteLine("Customer deleted");

 else

 Console.WriteLine("Customer not deleted");

 // Disconnect from the service

 proxy.Close();

 }

 ...

}

This code implements tests that invoke each of the new operations in turn. The first test
creates a new customer, and then calls GetCustomer with the ID of the newly created
customer to verify that the operation was successful. The second test changes the email
address for this customer, and again calls GetCustomer to retrieve the updated details.
The final test deletes the new customer. After the call to DeleteCustomer, the Get
Customer method should return a null object if the delete operation was successful.

	 3.	 Rebuild the solution.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 579

	 4.	 Start the solution without debugging. In the ProductsSalesClient console window, press
Enter. The new tests should all perform successfully and add a new customer record
(your customer ID might vary from that shown) before updating the email address and
then deleting the customer.

	 5.	 Press Enter to close the ProductsSalesClient console window and then close the
ProductsSalesHost console window.

Using WCF Data Services
The examples shown so far in this chapter have been very generalized. They illustrate how to
utilize WCF to build a REST Web service that exposes data by using a scheme that you define
manually through the WebGet and WebInvoke attributes. If you are constructing REST Web
services that provide access to data through an ADO.NET Entity Framework entity model, you
can employ WCF Data Services to automate many of these tasks. WCF Data Services provides
an additional layer of abstraction for constructing REST Web Services through the WCF Data
Service template and assemblies provided with Visual Studio 2010.

You can add a WCF Data Service to a Web application. You define the entity model describing
the data that you want to publish and then add the WCF Data Service to the project. The WCF
Data Service template generates a very basic data service class based on the generic System.
Data.Services.DataService type, as shown in the following code fragment:

using System;

using System.Data.Services;

using System.Data.Services.Common;

using System.Collections.Generic;

using System.Linq;

using System.ServiceModel.Web;

Download from Wow! eBook <www.wowebook.com>

580	 Windows Communication Foundation 4 Step by Step

public class WcfDataService : DataService< /* TODO: put your data source class name here */ >

{

 // This method is called only once to initialize service-wide policies.

 public static void InitializeService(DataServiceConfiguration config)

 {

 // TODO: set rules to indicate which entity sets and service operations are visible,

 // updatable, etc.

 // Examples:

 // config.SetEntitySetAccessRule("MyEntityset", EntitySetRights.AllRead);

 // config.SetServiceOperationAccessRule("MyServiceOperation",

 // ServiceOperationRights.All);

 config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2;

 }

}

The type parameter for this class is the ObjectContext class generated for the entity model (in
the previous examples, the ObjectContext class is the AdventureWorksEntities type), and you
should replace the comment with this type. The InitializeService method executes automati-
cally when the service starts running. You add statements to this method that identify the
entities in the entity model that the service publishes and that specify the permissions client
applications have over this data. For example, you can indicate that the data in one set of
entities is read-only, while the data in another entity set allows write access.

The following exercises provide a basic introduction to building and consuming a REST Web
service by using the WCF Data Services template.

Build a WCF Data Service to Expose Sales Information

	 1.	 Using Visual Studio, create a new Web site by using the ASP.NET Empty Web Site tem-
plate. Set the Web Location to File System and save the project in the Microsoft Press\
WCF Step By Step\Chapter 15\SalesData folder within your Documents folder. Allow
Visual Studio to create this folder when prompted.

	 2.	 In Solution Explorer, click the C:\...\SalesData project. In the Properties window, set the
Use Dynamic Ports property for this project to False, and then set the Port Number
property to 48000 (it is easier to reference the service from a client application if the
port number is fixed).

	 3.	 In Solution Explorer, right-click the C:\...SalesData\ project, and then click Add New Item.
In the Add New Item dialog box, select the ADO.NET Entity Data Model template. In the
Name text box type SalesDataModel.edmx, and then click Add. Allow Visual Studio to
add the data model to the App_Code folder in your project when prompted.

	 4.	 In the Entity Data Model Wizard, on the Choose Model Contents page, click Generate
From Database, and then click Next.

	 5.	 On the Choose Your Data Connection page, click New Connection. In the Connection
Properties dialog box, in the Server Name field, type .\SQLExpress. In the Select Or
Enter A Database Name field, type AdventureWorks, and then click OK.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 581

	 6.	 On the Choose Your Data Connection page, verify that the Save Entity Connection Set-
tings In Web.Config As: check box is selected, change the name to AdventureWorks
Entities if necessary, and then click Next.

	 7.	 On the Choose Your Database Objects page, expand Tables, and select the Contact
(Person), SalesOrderDetail (Sales), and SalesOrderHeader (Sales) tables. Verify or
specify the following values for the other items on this page, and then click Finish.

Item Value

Pluralize or singularize generated object names Checked

Include foreign key columns in the model Checked

Model Namespace AdventureWorksModel

The resulting entity model should look like this.

When a customer places an order, the order may contain multiple items. The SalesOrder
Header table contains the information about the order (such as the date the order was
placed, the customer that placed the order, and so on), and the SalesOrderDetail table
contains a row for each item in the order (such as the product and quantity required).

	 8.	 Build the solution.

	 9.	 In Solution Explorer, add another new item to the C:\...SalesData\ project. In the Add
New Item dialog box, select the WCF Data Service template. In the Name text box,
type SalesDataService.svc, and then click Add.

The Visual Studio template generates a new file called SalesDataService.cs that contains
a class called SalesDataService, which inherits from the DataService class, as described
earlier.

Download from Wow! eBook <www.wowebook.com>

582	 Windows Communication Foundation 4 Step by Step

	 10.	 In the SalesDataService.cs file, in the Code And Text Editor window, add the following
using statement to the list at the top of the file:

using AdventureWorksModel;

	 11.	 In the definition of the SalesDataService class, delete the comment, /* TODO: put your
data source class here */ between the opening and closing angle brackets and replace it
with the AdventureWorksEntities type, as shown in below in bold:

public class SalesDataService : DataService<AdventureWorksEntities>

{

 ...

}

The AdventureWorksEntities class is the ObjectContext type generated by the ADO.NET
Entity Model Wizard for accessing the data presented by the entity model.

For security reasons, the WCF Data Services template does not automatically expose any
resources, such as entity collections that the entity model implements. You must specify
a policy that enables or disables access to resources in the InitializeService method of
your data service. This method takes a DataServiceConfiguration object, which you can
use to define the access policy.

	 12.	 In the InitializeService method, remove the comments at the start of the method and
add the following statements shown in bold.

public class SalesDataService : DataService<AdventureWorksEntities>

{

 // This method is called only once to initialize service-wide policies.

 public static void InitializeService(DataServiceConfiguration config)

 {

 config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2;

 config.SetEntitySetAccessRule("Contacts", EntitySetRights.AllRead);

 config.SetEntitySetAccessRule("SalesOrderHeaders", EntitySetRights.AllRead);

 config.SetEntitySetAccessRule("SalesOrderDetails", EntitySetRights.AllRead);

 }

}

The SetEntitySetAccessRule method of the DataServiceConfiguration class specifies the
level of access that client applications have to each of the entities defined in the under-
lying entity model. In this case, the WCF Data Service provides read-only access to the
data.

The SetEntitySetAccessRule method takes two parameters:

❏❏ The name of the entity set. In the entity model, this is the same as the name of an
entity but specified as a plural. This string can also contain the “*” wildcard charac-
ter to indicate all entity sets, although this is not considered to be good practice.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 583

Note  You can specify either the name of an entity or the string “*”; you cannot combine
“*” with other characters to form entity set name patterns. If you need to provide access to
multiple entity sets, you must call the SetEntitySetAccessRule method for each entity set.

❏❏ The access rights you want to grant to this entity set. This is a value from the
System.Data.Services.EntitySetRights enumeration. This enumeration defines vari-
ous read and write access rights. You can combine entity set rights by using the
bitwise OR operator. The following table summarizes the values in the EntitySet
Rights enumeration.

Value Description

None Denies all rights to access data. This is the default setting for all entities.

ReadSingle Authorization to read single items in an entity set.

ReadMultiple Authorization to read sets of data.

WriteAppend Authorization to create new data items in datasets.

WriteReplace Authorization to replace data.

WriteDelete Authorization to delete data items from datasets.

WriteMerge Authorization to merge data.

AllRead Shorthand for ReadSingle | ReadMultiple.

AllWrite Shorthand for WriteAppend | WriteReplace | WriteDelete | WriteMerge.

All Shorthand for all read and write operations.

	 13.	 Add the following statement (shown in bold) to the end of the InitializeService method:

public static void InitializeService(DataServiceConfiguration config)

{

 ...

 config.SetEntitySetPageSize("*", 25);

}

Each entity set (Contacts, SalesOrderHeaders, SalesOrderDetails) could contain many
thousands of rows, and a client application could potentially issue a query that fetches
all this data. To prevent unconstrained queries that might tie up the network bandwidth,
the SetEntitySetPageSize method limits the number of items returned by a query, in this
case to 25. The first parameter specifies the name of the entity set to constrain, and—
like the SetEntitySetAccessRule method—you can provide the wildcard name “*” to apply
the restriction to all entity sets. However, unlike the SetEntitySetAccessRule method, pro-
viding “*” as the first parameter is considered acceptable practice with the SetEntitySet
PageSize method.

	 14.	 Build the solution.

Download from Wow! eBook <www.wowebook.com>

584	 Windows Communication Foundation 4 Step by Step

That is all you need to do to build a simple REST Web service using the WCF Data Services
template. At runtime, the DataServices class automatically exposes the data by using a scheme
based on the names of the entities and their relationships in the entity model. You specify
URIs that match the structure of the entity model. WCF Data Services also provides a number
of operators that you can use to selectively retrieve data from individual columns, sort data,
and perform aggregate calculations over data. You will investigate some of these operators in
the next exercise.

Test the SalesData WCF Data Service

	 1.	 In Solution Explorer, open the SalesDataService.svc file in the Code And Text Editor win-
dow. This file contains the following code:

<%@ ServiceHost Language="C#" Factory="System.Data.Services.DataServiceHostFactory"

Service="SalesDataService" %>

The WCF runtime uses the information in this file to determine how to start the Sales
DataService service. The Factory attribute specifies the DataServiceHostFactory type
located in the System.Data.Services namespace. This type is provided with WCF Data
Services, and its purpose is to create an instance of a WCF Data Service by using the
type indicated by the Service attribute, call the InitializeService method of this type to
set the security policy, and then start it running.

	 2.	 Right-click the SalesDataService.svc file, and then click View In Browser.

The service starts running and Internet Explorer opens, displaying the following data:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 585

WCF Data Services utilize the Atom Publishing Protocol (AtomPub) to publish data. This
page lists the names of each entity set as an Atom title.

Note  The AtomPub protocol is a simple HTTP-based protocol for creating and updating
Web resources. This protocol was proposed as a standard by the Internet Engineering Task
Force (IETF) and published as RFC 5023. For more information, visit the IETF Web site at
http://www.rfc-editor.org/rfc/rfc5023.txt.

	 3.	 In the address bar of Internet Explorer, enter the URL http://localhost:48000/
SalesData/SalesDataService.svc/Contacts.

Internet Explorer displays the data for the first 25 contacts in the AdventureWorks data-
base. The data is displayed as an Atom feed, again following the AtomPub protocol.

Note  Depending on how Internet Explorer is configured, you may need to turn off the
feed-reading view to display the data in this format. To do this, on the Tools menu, click
Internet Options. In the Internet Options dialog box, click the Content tab. In the Feeds And
Web Slices section near the bottom of the dialog box, click Settings. In the Feed And Web
Slice Settings dialog box, clear the Turn On Feed Reading View check box, and then click
OK. Click OK again and then close Internet Explorer. Finally, open the SalesDataService.svc
file by using Internet Explorer as described in step 2 of this exercise, and then browse to the
URL http://localhost:48000/SalesData/SalesDataService.svc/Contacts.

Download from Wow! eBook <www.wowebook.com>

586	 Windows Communication Foundation 4 Step by Step

	 4.	 Enter the URL http://localhost:48000/SalesData/SalesDataService.svc/SalesOrder
Details. The data from the first 25 rows from the SalesOrderDetails table in the Adventure
Works database should appear.

If you need to access items beyond the first 25 rows, WCF Data Services allows you to
fetch data in chunks by using query options it defines, called $top and $skip. These
query options function in a manner similar to the top and skip query parameters that
you implemented in the ProductsSales REST Web service earlier in this chapter.

	 5.	 Enter the URL http://localhost:48000/SalesData/SalesDataService.svc/SalesOrder
Details?$skip=50.

This time, Internet Explorer displays 25 SalesOrderDetails records, starting with the
51st item found in the AdventureWorks database. Notice that the data is displayed in
ascending order of the SalesOrderID column; this is the primary key of the table in the
database.

	 6.	 Change the URL to http://localhost:48000/SalesData/SalesDataService.svc/Sales
OrderDetails?$orderby=UnitPrice.

This time, the data is displayed in ascending order of the UnitPrice field. You can switch
to descending order by specifying desc, like this:

http://localhost:48000/SalesData/SalesDataService.svc/SalesOrderDetails?$order	
by=UnitPrice desc

	 7.	 WCF Data Services provides operators with which you can drill into the data for an
entity. Enter the following URL in the address bar of Internet Explorer:

http://localhost:48000/SalesData/SalesDataService.svc/SalesOrderHeaders?$	
select=SalesOrderID,OrderDate,CustomerID,TotalDue

This URL forms a projection that limits the data returned to the items in the SalesOrderID,
OrderDate, CustomerID, and TotalDue columns. You can also specify predicates that
limit the items returned according to criteria that you specify by using the $filter option.
The following example displays the SalesOrderID and TotalDue for all SalesOrderHeader
records for customer 99.

http://localhost:48000/SalesData/SalesDataService.svc/SalesOrderHeaders?$	
select=SalesOrderID,TotalDue&$filter=CustomerID eq 99

Notice that you can use the standard “&” character in a query string in a URL to separate
the different options.

	 8.	 WCF Data Services also makes it easy to traverse the relationships between entities and
fetch related data. Enter the following URL:

http://localhost:48000/SalesData/SalesDataService.svc/SalesOrderHeaders(43682)

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 587

This URL retrieves the data for a single SalesOrderDetail item, with the specified value
for the primary key column (the SalesOrderID) in the AdventureWorks database. If you
want to find the details of the contact that placed this order, you can append the text
“/Contact” to the URL, as follows (Note that you specify the entity name as a singular
noun rather than the plural that is used to identify an entity set. This is because the
underlying entity model implements this relationship as a many-to-one relationship
between the SalesOderDetail and Contact entities, and the name of the navigation
property that connects these two entities in the entity model is called Contact):

http://localhost:48000/SalesData/SalesDataService.svc/SalesOrderHeaders	
(43682)/Contact

To find the SalesOrderDetails rows for this order, enter the following URL (note that
SalesOrderDetails is plural because this is a one-to-many relationship between the
SalesOrderHeader and SalesOrderDetail entities, and the name of the navigation prop-
erty generated by the entity model is SalesOrderDetails):

http://localhost:48000/SalesData/SalesDataService.svc/SalesOrderHeaders	
(43682)/SalesOrderDetails

	 9.	 Enter the following URL:

http://localhost:48000/SalesData/SalesDataService.svc/SalesOrderHeaders?$	
expand=Contact

This query fetches the first 25 SalesOrderHeader rows, but the $expand option causes
WCF Data Services to also fetch the related Contact information for each row.

	 10.	 Close Internet Explorer and return to Visual Studio.

You have now built a WCF Data Service and seen how to access it from a Web browser. The
service itself was hosted by using the ASP.NET Development Web server, but you can easily
deploy this service to IIS. You can also build a custom host application by using the Web
ServiceHost class, as you did in the exercises in the first part of this chapter.

Consuming a WCF Data Service in a Client Application
The SalesData service is very simple, and with it, a user can perform a variety of very complex
queries. However, although the AtomPub protocol is widely accepted, the format of the data
returned by this protocol is not always easy to understand or parse; you certainly should not
expect end users to make sense of this data. Fortunately, you can build client applications that
consume the data from a WCF Data Service and present it in a more understandable format.
To do this, you must generate a WCF Data Services client library. This client library acts as a
proxy for the service, providing access to the data published by the service.

Download from Wow! eBook <www.wowebook.com>

588	 Windows Communication Foundation 4 Step by Step

You can generate a client library in two ways; you can use the DataSvcUtil utility from the
command line, or you can use the Add Service Reference Wizard in Visual Studio. To use the
DataSvcUtil utility, open a Visual Studio command prompt and type the following command
while the WCF Data Service is running:

DataSvcUtl /out:SalesClient.cs /uri:http://localhost:48000/SalesData/SalesDataService.svc

This command creates a source file called SalesClient.cs that contains the methods that a
client application can use to send requests to the WCF Data Service. The client library exposes
the data through a series of collections and properties that closely resemble the underlying
entity model in the WCF Data Service. The difference is that when a client application attempts
to retrieve data from one of these collections, the client library formulates the corresponding
HTTP request and sends it to the service. When the data is returned by the service, the client
library converts the data from AtomPub format into .NET Framework collections and types
that the client application can more easily consume.

In the following exercise you will build a test client application that connects to the SalesData
service and performs queries similar to those that you ran by using Internet Explorer in the
previous section.

Build a Test Client Application for the SalesData Service

	 1.	 In Visual Studio, add a new Console Application project to the SalesData solution. Name
the project SalesDataClient and save it in the Microsoft Press\WCF Step By Step\
Chapter 15 folder.

	 2.	 In Solution Explorer, right-click the new SalesDataClient project, and then click Add
Service Reference. In the Add Service Reference dialog box, click Discover. In the
Namespace box, type SalesDataService, and then click OK.

At first glance, the Add Service Reference dialog box operates in exactly the same way
as adding a reference to a SOAP Web service. However, the Visual Studio detects that
the service is a WCF Data Service, and so generates a client library that matches the
data exposed by the service rather than a series of methods that correspond to SOAP
Web service operations.

The client library for a WCF Data Service consists of a class that is derived from the
DataServiceContext type. This class exposes one or more DataServiceQuery objects as
properties. The name of this class is usually the same as the name of the ObjectContext
object that is used by the entity model on which the WCF Data Service is based. For
example, the SalesDataService service uses an ObjectContext object called Adventure
WorksEntities to connect to the underlying entity model, so the name of the DataService
Context type generated for the client library is also AdventureWorksEntities.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 589

The DataServiceContext class performs a role similar to the ObjectContext class in the
Entity Framework. A client application connects to the data source (in this case, a WCF
Data Service) through a DataServiceContext object and fetches the data for the entities
that the data service exposes by using the DataServiceQuery properties. Each Data
ServiceQuery property is a generic collection object that presents data from one of the
underlying entities that provides the data for the WCF Data Service. In the SalesData
service, the entity model provides access to the Contact, SalesOrderHeader, and Sales
OrderDetail tables in the AdventureWorks database. The AdventureWorksEntities class in
the client library has DataServiceQuery properties called Contacts, SalesOrderHeaders,
and SalesOrderDetails.

The client library also provides definitions of the types that each DataServiceQuery col-
lection contains (Contact, SalesOrderHeader, and SalesOrderDetail). A client application
can perform LINQ queries against the DataServiceQuery collection properties, and the
client library constructs the appropriate HTTP request to fetch the corresponding data.
The WCF Data Service fetches the matching data and populates the DataServiceQuery
collection. The client application can then iterate through this collection and retrieve the
data for each item.

	 3.	 Open the Program.cs file for the SalesDataClient project in the Code And Text Editor
window. Add the following using statement to the list at the top of the file:

using SalesDataClient.SalesDataService;

This namespace contains the types in the client library that are generated by the Add
Service Reference Wizard.

	 4.	 In the Main method in the Program class, add the following code shown in bold:

static void Main(string[] args)

{

 AdventureWorksEntities service = new AdventureWorksEntities(

 new Uri("http://localhost:48000/SalesData/SalesDataService.svc"));

}

This statement connects to the SalesData service. As described earlier, the Adventure
WorksEntities type is a DataServiceContext object that acts like a proxy for sending
requests to the SalesData service. The URI that you specify in the constructor is the
address of the service.

	 5.	 Add the following code (shown in bold) to the Main method.

static void Main(string[] args)

{

 AdventureWorksEntities service = new AdventureWorksEntities(

 new Uri("http://localhost:48000/SalesData/SalesDataService.svc"));

 Console.WriteLine("Test 1: List details of contacts");

 foreach (Contact contact in service.Contacts)

Download from Wow! eBook <www.wowebook.com>

590	 Windows Communication Foundation 4 Step by Step

 {

 Console.WriteLine("ID: {0}\nFirst Name: {1}\nLast Name: {2}\n",

 contact.ContactID, contact.FirstName, contact.LastName);

 }

 Console.WriteLine("Press ENTER to continue");

 Console.ReadLine();

}

These statements retrieve the details of contacts from the SalesData service and display
the first name and last name of each contact. Note that when you reference the Contacts
collection in the AdventureWorksEntities object, the client library sends the correspond-
ing HTTP GET request (http://localhost:48000/SalesData/SalesDataService.svc/Contacts)
to the SalesData service to populate this collection. This request is subject to the same
constraints as any queries that you perform by using Internet Explorer; it will return only
the first 25 contacts.

	 6.	 Add the following code to the Main method:

static void Main(string[] args)

{

 ...

 Console.WriteLine("Test 2: List sales order details");

 foreach (SalesOrderDetail detail in service.SalesOrderDetails)

 {

 Console.WriteLine("Order ID: {0}\nProduct: {1}\nQuantity: {2}\n"+

 "Unit Price: {3:C}\n", detail.SalesOrderID,

 detail.ProductID, detail.OrderQty, detail.UnitPrice);

 }

 Console.WriteLine("Press ENTER to continue");

 Console.ReadLine();

}

This code is similar to that in the previous step except that it queries the SalesOrder
Details collection. As before, this action causes the AdventureWorksEntities object to
send an HTTP GET request (http://localhost:48000/SalesData/SalesDataService.svc/
SalesOrderDetails) to the SalesData service, and also as before, the request returns only
the first 25 rows.

	 7.	 Add the statements shown below in bold to the Main method:

static void Main(string[] args)

{

 ...

 Console.WriteLine("Test 3: Skip the first 50 order details records");

 foreach (SalesOrderDetail detail in service.SalesOrderDetails.Skip(50))

 {

 Console.WriteLine("Order ID: {0}\nProduct: {1}\nQuantity: {2}\n"+

 "Unit Price: {3:C}\n", detail.SalesOrderID,

 detail.ProductID, detail.OrderQty, detail.UnitPrice);

 }

 Console.WriteLine("Press ENTER to continue");

 Console.ReadLine();

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 591

This code retrieves 25 SalesOrderDetails records, starting with the 51st item in the
AdventureWorks database. The Skip method, which normally causes a LINQ query to
simply omit the specified number of items, in this case is overridden by code in the cli-
ent library and the System.Data.Services.Client assembly, and causes the Adventure
WorksEntities object to generate a URL with the query string $skip=50.

Note  The Add Service Reference Wizard added a reference to the System.Data.Services.
Client assembly when you generated the client library for the SalesData service.

	 8.	 Add the code shown in the following example to the Main method:

static void Main(string[] args)

{

 ...

 Console.WriteLine("Test 4: Sort data by unit price");

 foreach (SalesOrderDetail detail in service.SalesOrderDetails.OrderBy((d) =>

 d.UnitPrice))

 {

 Console.WriteLine("Order ID: {0}\nProduct: {1}\nQuantity: {2}\n"+

 "Unit Price: {3:C}\n", detail.SalesOrderID,

 detail.ProductID, detail.OrderQty, detail.UnitPrice);

 }

 Console.WriteLine("Press ENTER to continue");

 Console.ReadLine();

 Console.WriteLine("Test 5: Sort data by unit price (most expensive first)");

 foreach (SalesOrderDetail detail in

 service.SalesOrderDetails.OrderByDescending((d) => d.UnitPrice))

 {

 Console.WriteLine("Order ID: {0}\nProduct: {1}\nQuantity: {2}\n"+

 "Unit Price: {3:C}\n", detail.SalesOrderID,

 detail.ProductID, detail.OrderQty, detail.UnitPrice);

 }

 Console.WriteLine("Press ENTER to continue");

 Console.ReadLine();

}

This block of code retrieves SalesOrderDetails records, but it sequences them according to
the value of the UnitPrice field, in ascending and descending order. Again, the OrderBy
method is overridden and generates a query string containing the text, $orderby=
UnitPrice. Similarly, the OrderByDescending method generates the query string,
$orderby=UnitPrice desc.

	 9.	 Add the following block of code to the Main method:

static void Main(string[] args)

{

 ...

 Console.WriteLine(

 "Test 6: Display the SalesOrderID and TotalDue "+

 "for all orders for customer 99");

Download from Wow! eBook <www.wowebook.com>

592	 Windows Communication Foundation 4 Step by Step

 foreach (var orderData in

 from o in service.SalesOrderHeaders

 where o.CustomerID == 99

 select new {o.SalesOrderID, o.TotalDue})

 {

 Console.WriteLine("Order ID: {0}\nTotal Due: {1:C}\n",

 orderData.SalesOrderID, orderData.TotalDue);

 }

 Console.WriteLine("Press ENTER to continue");

 Console.ReadLine();

}

This code uses LINQ syntax to filter and project data, listing the SalesOrderID and Total
Due fields for all orders placed by customer 99. The client library generates a $filter
query expression for the where clause in the LINQ query, and a $select query expression
for the select clause. The result looks similar to this:

$filter=CustomerID eq 99 &$select=SalesOrderID,TotalDue

	 10.	 Add the code shown in bold to the Main method:

static void Main(string[] args)

{

 ...

 Console.WriteLine("Test 7: fetch the contact details for all orders");

 foreach (var orderData in

 from o in service.SalesOrderHeaders.Expand("Contact")

 select o)

 {

 Console.WriteLine("Order ID: {0}\nCustomer: {1} {2}\n",

 orderData.SalesOrderID, orderData.Contact.FirstName,

 orderData.Contact.LastName);

 }

 Console.WriteLine("Press ENTER to finish");

 Console.ReadLine();

}

This block of code retrieves orders and the corresponding contacts for each order. If an
entity has related data in other entities, you can fetch the data from those entities by
using the Expand method. This method causes the query to include the $expand option
to automatically fetch the related data from these entities. If you omit the Expand
method, then no related data will be fetched.

	 11.	 Rebuild the solution.

You can now test the client application. However, before doing that, it is useful to configure
tracing for the SalesData service so that you can see the queries that the client application
actually sends to the service.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 593

Configure Tracing and Test the SalesData Service

	 1.	 In the C:\...\SalesData\ project, open the Web.config file by using the Service Configura-
tion Editor.

	 2.	 In the Configuration pane, click the Diagnostics node. In the Diagnostics pane, click the
Enable Tracing link.

	 3.	 Click the link adjacent to the Trace Level label. In the Tracing Settings dialog box, set the
Trace Level property to Information, and then click OK.

	 4.	 Click the ServiceModelTraceListener link. In the Listener Settings dialog box, set the Log
File property to web_tracelog.svclog under the Microsoft Press\WCF Step By Step\
Chapter 15 folder within your Documents folder, and then click OK.

	 5.	 Save the configuration file then close the Service Configuration Editor.

	 6.	 In Solution Explorer, open the SalesData solution properties window, set the C:\...\Sales
Data\ and SalesDataClient projects as startup projects for the SalesData solution, and
then click OK.

	 7.	 Start the solution without debugging. Minimize Internet Explorer when it appears. In
the client application console window, verify that the names of the first 25 customers
appear:

	 8.	 Press Enter and then verify that the first 25 SalesOrderDetails records appear. These
items have an order ID in the range 43659 to 43661 (there are multiple SalesOrder
Details records for each order).

	 9.	 Press Enter again and verify that a different set of SalesOrderDetails records are dis-
played. This batch should be for orders in the range 43662 to 43666.

	 10.	 Press Enter again. The SalesOrderDetails records should be sorted in ascending order of
the UnitPrice field (the cheapest product costs $1.33).

	 11.	 Press Enter again. This time the SalesOrderDetails records should be displayed in
descending order of the value in the UnitPrice field (the most expensive product costs
$3578.27).

Download from Wow! eBook <www.wowebook.com>

594	 Windows Communication Foundation 4 Step by Step

	 12.	 Press Enter again. You should see the SalesOrderID and TotalDue fields from the Sales
OrderHeader table in the AdventureWorks database for orders placed by customer 99,
starting with order ID 43682, and finishing with order ID 69485.

	 13.	 Press Enter again. This time you should see a list of order IDs and customer names for
each order.

	 14.	 Press Enter to finish the application and close the client console window.

	 15.	 In the Windows task bar, right-click the ASP.NET Development Server icon, and then
click Stop.

	 16.	 Start the Service Trace Viewer utility in the Microsoft Visual Studio 2010 | Microsoft
Windows SDK Tools group on the Windows Start menu, and then open the web_tracelog.
svclog file located in the Microsoft Press\WCF Step By Step\Chapter 15 folder.

	 17.	 In the Service Trace Viewer, click the Activity tab, and then click the first activity named
“Process action”. In the right pane, click the item named “Received a message over a
channel”. In the lower pane on the right side, scroll down to the Message Properties And
Headers section to display the “To” address. The URI in this address should be http://
localhost:48000/SalesData/SalesDataService.svc/Contacts. This is the URL generated by
the first test in the client application:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 595

	 18.	 In the Activity pane, click the second “Process action” activity. In the right pane, click
the “Received a request over a channel” item, and in the lower pane, verify that the To
address is http://localhost:48000/SalesData/SalesDataService.svc/SalesOrderDetails. This
is the URL generated by the second test in the client application.

	 19.	 Repeat this process for the remaining “Process action” activities. The following table lists
the expected To addresses for each of the remaining tests (note that space characters
are replaced with the sequence “%20” in URLs):

Test To Address

3 http://localhost:48000/SalesData/SalesDataService.svc/SalesOrderDetails()?$skip=50

4 http://localhost:48000/SalesData/SalesDataService.svc/SalesOrderDetails()?$orderby=
UnitPrice

5 http://localhost:48000/SalesData/SalesDataService.svc/SalesOrderDetails()?$orderby=
UnitPrice%20desc

6 http://localhost:48000/SalesData/SalesDataService.svc/SalesOrderHeaders()?$filter=
CustomerID%20eq%2099&$select=SalesOrderID,TotalDue

7 http://localhost:48000/SalesData/SalesDataService.svc/SalesOrderHeaders()?$expand=
Contact

	 20.	 Close the Service Trace Viewer and return to Visual Studio.

Modifying Data by Using a WCF Data Service
As you might expect, with WCF Data Services, you can also build client applications that can
modify data as well as query it. The client library implements a model with which you to make
changes locally to the collections that correspond to the entity sets exposed by the service,
and then send these changes to the service as a batch by using the SaveChanges method
of the DataServiceContext object that you used to connect to the service. You should note,
however, that the WCF Data Service must explicitly enable you to make changes to entities
by specifying the appropriate access rights in the InitializeService method. The following code
shows how to enable updates for the Contacts entity set in the SalesData service by specifying
the EntitySetRights.AllWrite privilege:

public static void InitializeService(DataServiceConfiguration config)

{

 ...

 config.SetEntitySetAccessRule("Contacts",

 EntitySetRights.AllRead | EntitySetRights.AllWrite);

 ...

}

The code example that follows shows you how to create a new Contact entity object. When
you create the client library for a WCF Data Service, the Add Service Reference Wizard

Download from Wow! eBook <www.wowebook.com>

596	 Windows Communication Foundation 4 Step by Step

generates a static Create method for each entity type, with a parameter for every non-
nullable entity property. It also generates an AddTo method for every entity type; you call this
method to add the new object to the appropriate collection in the DataServiceContext object
before invoking SaveChanges.

AdventureWorksEntities service = new AdventureWorksEntities(

 new Uri("http://localhost:48000/SalesData/SalesDataService.svc"));

...

// Create a new Contact object

// The parameters to CreateContact are values for each field in the Contact type

Contact newContact = Contact.CreateContact(0, true, "John", Sharp", ...);

// Add the Contact object to the DataServiceContext object

service.AddToContacts(newContact);

// Send the new contact to the WCF Data service

service.SaveChanges();

The SaveChanges method generates an HTTP POST request, passing the data for the new
contact as the body of the message.

To modify an object, you simply retrieve it by sending a query to the WCF Data Service, change
the values required, and then call the UpdateObject method of the DataServiceContext object
to notify it of the changes. When you call SaveChanges to send the updates back to the service,
the DataServiceContext object generates either an HTTP PUT or an HTTP MERGE message for
each object that has changed, and passes the data for the object in the body of the message.
The following code shows how to modify the email address for contact 99.

AdventureWorksEntities service = new AdventureWorksEntities(

 new Uri("http://localhost:48000/SalesData/SalesDataService.svc"));

...

// Fetch the details for contact 99

Contact contact = (from c in service.Contacts

 where c.ContactID == 99

 select c).First();

// Update the email address

contact.EmailAddress = "NewEmailAddress@Adventure-Works.com";

// Inform the DataServiceContext object of the change

service.UpdateObject(contact);

// Save the change to the WCF Data Service

service.SaveChanges();

Note  By default, the DataServiceContext object will send a MERGE message if possible, but you
can override this decision and explicitly request that it sends a PUT message by specifying the
SaveChangesOptions.ReplaceOnUpdate flag as a parameter to the SaveChanges method.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 15  Building REST Services	 597

To delete an object, the process is similar; you fetch the object to be deleted and then call
DeleteObject on the DataServiceContext object followed by SaveChanges. The SaveChanges
method generates an HTTP DELETE message which it sends to the WCF Data Service. The fol-
lowing code shows an example that attempts to delete contact 101.

AdventureWorksEntities service = new AdventureWorksEntities(

 new Uri("http://localhost:48000/SalesData/SalesDataService.svc"));

...

// Fetch the details for contact 101

Contact contact = (from c in service.Contacts

 where c.ContactID == 101

 select c).First();

// Inform the DataServiceContext object that you want to delete this contact

service.DeleteObject(contact);

// Delete the object in the WCF Data Service

service.SaveChanges();

Note that these examples have shown the SaveChanges method being called after each
operation. If you are making several changes (inserts, updates, deletes, or combinations of
these operations) you only need to call SaveChanges once after you have made the final
change. The DataServiceContext object tracks the state of all the objects in its various col-
lections and generates the appropriate HTTP POST, PUT, MERGE, and DELETE messages for
each modification, sending each of them to the WCF Data Service. As a further optimization,
you can specify the SaveChangesOptions.ReplaceOnUpdate.Batch flag as a parameter to the
SaveChanges method. This flag causes the DataServiceContext object to send all changes as
a single message. This approach can reduce the number of round trips and improve the per-
formance of the client application. Batches also behave like transactions, so either all of the
operations in the batch succeed or they all fail. This can help with the design of data-integrity
rules in the application. Each batch request results in a single HTTP response that contains
the response results for all of the operations in the batch. If any individual operation fails, the
batch response will contain just one response result for that failed operation.

As with any multiuser data application, concurrency exceptions may be raised and you need
to handle them appropriately in the client application. You also need to ensure that you main-
tain data integrity when modifying relational data.

Handling Exceptions in a Client Application
When a client application sends a request to a WCF Data Service, that request may fail for
many reasons. For example, the client application may have attempted to access data to
which it does not have rights, or it tried to perform a query that requires functionality that
the service has restricted.

Download from Wow! eBook <www.wowebook.com>

598	 Windows Communication Foundation 4 Step by Step

If the failure is due to the way in which the client application interacts with the service (as
opposed to a failure caused by some other problem, such as a network failure when attempting
to connect to the service), the service responds by throwing a DataServiceException exception.
The DataServiceException type is a serializable exception that is specifically designed to com-
municate the causes of a failure in a WCF Data Service. When the client library receives a
DataServiceException exception, it actually deserializes it as a DataServiceClientException
object, which it passes to your application.

If your application was performing a query when the exception occurred, the DataService
ClientException exception is wrapped in a DataServiceQueryException object, with the mes-
sage “An error occurred while processing the request.” You can access the DataService
ClientException exception that contains the reason for the exception by examining the Inner
Exception property of the DataServiceQueryException object.

If a client application sends a request other than a query, the WCF Data Service can respond
with a DataServiceRequestException exception.

A client application should be prepared to catch the DataServiceQueryException type when it
performs query operations, and the DataServiceRequestException exception when it performs
other types of operations, such as modifying data. A client application should also be pre-
pared to catch the DataServiceClientException type to handle any other exceptions that the
WCF Data Service throws when it performs other types of operations.

Summary
In this chapter, you have seen how to build WCF services that follow the REST model. You can
use REST Web services to define a URL scheme that client applications can use to query and
update data in a logical manner. When you build a REST Web service from scratch, you have
full control over these URLs through the WebGet and WebInvoke attributes. You have also
seen how to retrieve data by using a Web browser as well as how to construct a proxy class
that a client application can use to connect to a REST Web service.

The second half of this chapter introduced WCF Data Services. This is a highly flexible frame-
work with which you can build REST Web services based directly on an ADO.NET Entity
Framework entity model. Visual Studio provides tools that can generate a client library that
applications can use to connect to the service and query and modify the data. The client
library hides all the complexity associated with building, sending, and receiving the appropriate
HTTP messages, so developers can concentrate on the application’s business logic. WCF Data
Services is a very large topic in its own right, and this chapter has only just scratched the sur-
face. For example, you can define custom business operations, and you can expose data that
is not defined in an entity model. For more information, visit the WCF Data Services page on
the Microsoft Web site at http://msdn.microsoft.com/en-us/data/odata.aspx.

Download from Wow! eBook <www.wowebook.com>

599

Chapter 16

Using a Callback Contract to Publish
and Subscribe to Events

After completing this chapter, you will be able to:

■■ Define a callback contract that enables a WCF service to call back in to a client application.

■■ Create a client application that implements a callback contract.

■■ Use a callback contract to build a simple mechanism for alerting client applications about
significant events.

The examples and exercises that you have seen so far in this book have concentrated on the
client/server model of processing. In this model, a server provides a service that waits passively
for a request from a client application, handles that request, and then optionally sends a
response back to the client application. The client application is the active participant, making
requests and effectively determining when the service should perform its work. While this is
the most common model, WCF supports other processing schemes, such as peer-to-peer net-
working and client callbacks.

In the peer-to-peer scenario, there are no passive services. All applications are autonomous
clients that can communicate with each other as equals (or peers). There is no client/server
relationship, so applications should be prepared to handle messages sent to them at any time.

More Info  Peer-to-peer technologies have been an integral part of the Windows operating sys-
tem since Windows Vista. The .NET Framework includes a number of types in the System.Net.Peer
ToPeer namespace that you can use to implement peer network functionality. Additionally, WCF
provides the Peer Channel for communicating between peers and the NetPeerTcpBinding binding
for configuring communication parameters and specifying security settings.

A detailed discussion of using WCF to build peer-to-peer applications is beyond the scope of this
book, but the Visual Studio documentation provides information and examples in the Peer-to-Peer
Networking section, under WCF Feature Details. This content is also available on the Microsoft
Web site at http://msdn.microsoft.com/en-us/library/ms733761.aspx.

Using client callbacks, a service can invoke a method in a client application, in essence invert-
ing the client/server relationship between the client application and the service. In this chap-
ter, you will look at how to define a client callback and how to use it to implement a simple
eventing mechanism for alerting interested client applications about a change of state in the
service.

Download from Wow! eBook <www.wowebook.com>

600	 Windows Communication Foundation 4 Step by Step

Implementing and Invoking a Client Callback
In the traditional client/server arrangement, a service listens for messages on one or more
endpoints by using the WCF service infrastructure established when the host application
opens a ServiceHost object, but a client application only expects to receive messages in
response to explicit requests that it sends. However, once a client has opened a channel to a
service, WCF also enables the service to send additional messages to the client, as long as the
client application has a means to receive them. WCF provides two features that you can use to
implement this functionality: callback contracts and duplex channels.

There is one key aspect that is important to understand; callbacks can only be sent as part of
the processing for a request sent by a client, and the callback is invoked by using the commu-
nications channel that the client initiated to send this request.

Defining a Callback Contract
A callback contract defines operations that a service can invoke in a client application. A call-
back contract is very similar to a service contract in the respect that it is an interface or class
that contains operations marked with the OperationContract attribute. The main syntactic dif-
ference is that you do not decorate it with the ServiceContract attribute. Here is an example
defining a method that a service can call to alert a client application that the price of a prod-
uct has been changed:

public interface IProductsServiceV3Callback

{

 // Inform the client application that the price of the specified

 // product has changed

 [OperationContract]

 void OnPriceChanged(ProductData product);

}

A client application listening for callbacks provides an implementation of each method in
the callback contract. A service can discover the callbacks supported by a client by referenc-
ing the callback contract from the service contract that defines the operations implemented by
the service. You achieve this by using the CallbackContract property of the ServiceContract
attribute, as shown in the code example that follows. The intention in this example is that the
client application calls the ChangePrice operation to update the price of a specified product.
The service invokes the OnPriceChanged operation in the client when the price has been suc-
cessfully modified and passes back a copy of the modified product. As an aside, you should
note that any other operations in the IProductsServiceV3 service contract shown in the exam-
ple can also call the OnPriceChanged operation because the callback contract is tied to the
service contract and not to a specific operation in the service contract:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 16  Using a Callback Contract to Publish and Subscribe to Events	 601

[ServiceContract(..., CallbackContract=typeof(IProductsServiceV3Callback)]

public interface IProductsServiceV3

{

 // Any method in this contract can invoke the OnPriceChanged method

 // in the client application

 [OperationContract]

 List<string> ListProducts();

 ...

 [OperationContract]

 bool ChangePrice(string productNumber, decimal price);

 ...

}

Important  You can associate only a single callback contract with a service contract.

Implementing an Operation in a Callback Contract
When you create a client proxy class intended to access a service implementing a contract
that has an associated callback contract, the proxy class generated is based on the generic
System.ServiceModel.DuplexClientBase class (an ordinary client proxy extends the ClientBase
generic class, as described in Chapter 11, “Programmatically Controlling the Configuration
and Communications”). An abbreviated and edited version of the proxy code for the Products
Service service looks like this:

Note  The names of the interfaces in the proxy in the following code sample have been changed
for clarity. The svcutil utility actually generates different names for these items, depending on the
Name attribute specified for the service contract when it is defined.

...

[System.ServiceModel.ServiceContractAttribute(...,

 CallbackContract=typeof(IProductsServiceV3Callback))]

public interface ProductsServiceV3

{

 [System.ServiceModel.OperationContractAttribute(Action=..., ReplyAction=...)]

 string[] ListProducts();

 ...

 [System.ServiceModel.OperationContractAttribute(Action=..., ReplyAction=...)]

 bool ChangePrice(string productNumber, decimal price);

 ...

}

...

public interface IProductsServiceV3Callback

Download from Wow! eBook <www.wowebook.com>

602	 Windows Communication Foundation 4 Step by Step

{

 [OperationContractAttribute(Action=...)]

 void OnPriceChanged(ProductData product);
}

...

public partial class ProductsServiceV3Client :

 System.ServiceModel.DuplexClientBase<IProductsServiceV3>, IProductsServiceV3
{

 ProductsServiceV3Client(System.ServiceModel.InstanceContext callbackInstance) :

 base(callbackInstance)

 {

 }

 public ProductsServiceClient(System.ServiceModel.InstanceContext callbackInstance,

 string endpointConfigurationName) :

 base(callbackInstance, endpointConfigurationName)

 {

 }

 // Other constructors not shown

 ...

 public string[] ListProducts()

 {

 return base.Channel.ListProducts();

 }

 ...

 bool ChangePrice(string productNumber, decimal price);

 {

 return base.Channel.ChangePrice(productNumber,price);

 }

 ...

}

The bold statements in the preceding example highlight the important differences between
this code and the code for an ordinary proxy that does not define a callback contract. It is the
responsibility of the developer building the client application to provide a class that imple-
ments the IProductsServiceV3Callback interface, including the OnPriceChanged method.

The ProductsServiceV3Client proxy class extends the DuplexClientBase<IProductsServiceV3>
class and defines a number of constructors that the client application can use to instantiate
a proxy object. The preceding code fragment shows only two of these constructors, but the
main feature of all the constructors is that they expect you to provide an InstanceContext
object as the first parameter. This is the key property that enables the service to invoke the
operation in the client application.

You should already be familiar with the concept of “instance context” for a service as dictated
by the InstanceContextMode specified for the service, but to recap, each instance of a service
runs in its own context and holds state information (instance variables and pieces of system
information) for that instance. Each instance of a service has its own context. The WCF run-
time creates and initializes this context automatically when it instantiates the service instance.
This can occur when:

Download from Wow! eBook <www.wowebook.com>

	 Chapter 16  Using a Callback Contract to Publish and Subscribe to Events	 603

■■ A client application starts a new session (if the services specifies the PerSession instance
context mode)

■■ The client invokes an operation in the service (if the service specifies the PerCall instance
context mode)

■■ The service host starts the service (if the service specifies the Single instance context
mode)

When a client connects to a service instance, the communications channel used to transmit
messages between the client and the service holds information about the specific service
instance being used, so the WCF runtime can direct messages to the correct instance.

When you implement a client callback, you must provide the same facility so that the WCF
runtime can route messages back to the appropriate client. To do this, you create an Instance-
Context object that refers to a specific instance of the client application and pass that Instance
Context to the service when you connect to it through the proxy. When the client application
sends a request message through the proxy to the service, the WCF runtime automatically
includes the client context with the request. If the service needs to invoke an operation in the
callback contract, it uses the context object to direct the call to the appropriate instance of
the client application (you will see how to do this shortly).

As an example, here is the code for part of a client application that implements the IProducts
ServiceV3Callback interface defined in the client proxy:

class Client : IProductsServiceV3Callback, IDisposable

{

 private ProductsServiceV3Client proxy = null;

 public void DoWork()

 {

 // Create a proxy object and connect to the service

 InstanceContext context = new InstanceContext(this);
 proxy = new ProductsServiceV3Client(context, ...);

 ...

 // Invoke operations

 bool result = proxy.ChangePrice(...);

 ...

 }

 public void Dispose()

 {

 // Disconnect from the service

 if (proxy != null && proxy.State == CommunicationState.Opened)

 {

 proxy.Close();

 }

 }

Download from Wow! eBook <www.wowebook.com>

604	 Windows Communication Foundation 4 Step by Step

 // Method specified in the ProductsServiceCallback interface

 public void OnPriceChanged(ProductData product)
 {

 Console.WriteLine("Price of {0} changed to {1}",

 product.Name, product.ListPrice);

 }

}

The parameter specified for the InstanceContext constructor (this) is a reference to the object
implementing the IProductsServiceV3Callback contract. The statement that creates the proxy
object in the DoWork method references this InstanceContext object. If the service invokes the
OnPriceChanged operation through this context object, the WCF runtime will call the method
on this instance of the client application.

Notice that the client class also implements the IDisposable interface; the Dispose method
closes the proxy. A service could potentially call back into the client application at any time
after the Client object has connected to the service and sent an initial message. If the client
application closes the proxy immediately after sending requests to the service in the DoWork
method, the service will fail if it attempts to call back into the Client object, because the client
InstanceContext object would no longer be valid. In the code shown above, if a Client object
continues to exist after the DoWork method finishes, closing the proxy in the Dispose method
enables a service to invoke operations in the Client object at any time until the client applica-
tion terminates or it explicitly disposes the Client object.

Invoking an Operation in a Callback Contract
To invoke an operation in a callback contract, a service must obtain a reference to the
instance of the client application that sent the request. As you’ve just seen, the WCF runtime
for the service makes this information available through the operation context for the service.
You can access the operation context through the static OperationContext.Current property,
which returns an OperationContext object. The OperationContext class provides the generic
GetCallbackChannel method, which in turn returns a reference to a channel that the service
can use to communicate with the instance of the client application that invoked the service. The
value returned by the GetCallbackChannel method is a typed reference to the callback con-
tract; you can invoke operations through this reference, as shown in the following:

// WCF service class that implements the service contract

public class ProductsServiceImpl : IProductsServiceV3

{

 ...

 public bool ChangePrice(string productNumber, decimal price)

 {

 // Update the price of the product in the database

 ...

Download from Wow! eBook <www.wowebook.com>

	 Chapter 16  Using a Callback Contract to Publish and Subscribe to Events	 605

 // Invoke the callback operation in the client application

 IProductsServiceV3Callback callback =

 OperationContext.Current.GetCallbackChannel<

 IProductsServiceV3Callback>();

 callback.OnPriceChanged(GetProduct(productNumber));

 ...
 }

}

It is possible that the client application could terminate or close the communication channel
in the period between invoking the operation in the service and the service calling back into
the service, especially if the operation in the service is a one-way operation. You should there-
fore check to ensure that the callback channel has not been closed before invoking a callback
operation:

IProductsServiceV3Callback callback =

 OperationContext.Current.GetCallbackChannel<

 IProductsServiceV3Callback>();

if (((ICommunicationObject)callback).State

 == CommunicationState.Opened)

{

 callback.OnPriceChanged(GetProduct(productNumber));

}

All WCF channels implement the ICommunicationObject interface. This interface provides the
State property, which you can use to determine whether the channel is still open. If the value
of the State property is anything other than CommunicationState.Opened, the service should
not attempt to use the callback.

Note  Channels exhibit the same set of states and state transitions that a ServiceHost object does
(the ServiceHost class indirectly implements the ICommunicationObject interface). Refer to Chapter 3,
“Making Applications and Services Robust,” for a description of these states.

Reentrancy and Threading in a Callback Operation
If a service invokes an operation in a callback contract, it is possible for the client code imple-
menting that contract to make another operation call back into the service. By default, the
WCF runtime in the service handling the callback executes by using a single thread, so calling
back into the service could possibly result in the service blocking the thread processing the
initial request. In this case, the WCF runtime detects the situation and throws an InvalidOperation
Exception exception, with the message “This operation would deadlock because the reply can-
not be received until the current Message completes processing.” To prevent this situation
from arising, you can set the concurrency mode of the class implementing the callback

Download from Wow! eBook <www.wowebook.com>

606	 Windows Communication Foundation 4 Step by Step

contract in the client application either to enable multiple threading (if the client application
code is thread-safe) or enable reentrancy (if the client application code is not thread-safe but
the data it uses remains consistent across calls). You achieve this by applying the Callback
Behavior attribute to the class in the client application implementing the callback contract
and setting the ConcurrencyMode property to ConcurrencyMode.Multiple or Concurrency-
Mode.Reentrant:

[CallbackBehavior(ConcurrencyMode = ConcurrencyMode.Reentrant)]

class Client : ProductsServiceCallback, IDisposable

{

 ...

}

Bindings and Duplex Channels
Not all bindings support client callbacks. Specifically, you must use a binding that supports
bidirectional communications; either end of the connection must be able to initiate commu-
nications, and the other end must be able to accept them. Transports such as TCP and named
pipes are inherently bidirectional, so you can use the NetTcpBinding and NetNamedPipeBinding
bindings with a client callback. However, the model implemented by the HTTP protocol does
not support bidirectional operations, so you cannot use the BasicHttpBinding, WSHttpBinding,
or WS2007HttpBinding bindings. This sounds like a major shortcoming if you want to build an
Intranet system based on the HTTP transport. However, WCF provides the WSDualHttp
Binding binding for this purpose. This binding establishes two HTTP channels (one for send-
ing requests from the client application to the service, and the other for the service to send
requests to the client application) but hides much of the complexity from you, so you can
treat it as a single bidirectional channel.

There are some important differences between the WSDualHttpBinding binding and the
WSHttpBinding or WS2007HttpBinding bindings. Specifically, the WSDualHttpBinding binding
does not support transport-level security, but it always implements reliable sessions (you can-
not disable them).

Using a Callback Contract to Notify a Client of the
Outcome of a One-Way Operation

The principal use of a callback contract is to provide a service with a means to inform a client
application of the result of a one-way operation—which by definition does not return any
information. The example in these exercises is based on an extended version of the price
change scenario described earlier. When a client application invokes the ChangePrice opera-
tion in the ProductsService service, the service will call back to the client to notify it when the
database has been updated.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 16  Using a Callback Contract to Publish and Subscribe to Events	 607

Add a Callback Contract to the ProductsService Service and Invoke a Callback
Operation

	 1.	 Using Visual Studio, open the solution file ProductsServiceV3.sln, located in the Micro-
soft Press\WCF Step By Step\Chapter 16\ProductsServiceV3 folder.

This solution contains version 3 of the ProductsService service (versions 1 and 2 have
been removed from the ProductsService service, to keep the project concise and focused).
This service implements the operations you’ve already seen such as ListProducts, Get
Product, CurrentStockLevel, and ChangeStockLevel. It also includes a new operation
called ChangePrice, which a client application can invoke to change the price of a prod-
uct. In addition, the solution contains a WPF application for hosting the service, and a
client application that you will use to test the ProductsService service.

	 2.	 Build and run the solution. In the Products Service Host window, click Start. In the client
console window, press Enter when the service has started.

Note  The ProductsServiceHost application assumes that you still have the reservation for
port 8010 in place. If this is not the case, open a Visual Studio Command Prompt window
as Administrator and run the following command, replacing UserName with your Windows
user name:

netsh http add urlacl url=http://+:8010/ user=UserName

The client application connects to the service, lists the product number of every prod-
uct, displays the details for product FR-M21S-40 (a bicycle frame), changes the price of
this product, and then displays the new price.

When the client application has finished, close the client console window, click Stop in
the Products Service Host window, close the Products Service Host window, and then
return to Visual Studio.

	 3.	 In Solution Explorer, open the Program.cs file for the ProductsClient project in the Code
And Text Editor window.

Examine the code in the Main method. This method creates an instance of a class called
Client, and then runs the TestProductsService method in this instance. The Client class is
implemented in the same file. The TestProductsService method contains the now-familiar
code that creates a proxy object to connect to ProductsService service (the endpoint is
named WS2007HttpBinding_IProductsServiceV3 in the application configuration file),
and then exercises the ListProducts and GetProduct operations. The TestProductsService
method also calls the PriceChange method to update the price of the specified product.

Download from Wow! eBook <www.wowebook.com>

608	 Windows Communication Foundation 4 Step by Step

The ChangePrice operation currently blocks client applications that call it until the price
has been changed, and then returns a Boolean value to the caller indicating whether the
change was successful. As this operation may take some time to update the database,
you will modify it to become a one-way operation and provide a callback contract that
the ProductsService service can use to notify the client of the operation’s outcome. This
strategy lets the client application continue running while the change is made.

	 4.	 In Solution Explorer, open the IProductsService.cs file for the ProductsService project in
the Code And Text Editor window. Add the following callback contract to the file, imme-
diately before the IProductsServiceV3 interface defining the service contract:

// Callback interface for notifying the client that the price has changed

public interface IProductsServiceV3Callback

{

 [OperationContract(IsOneWay = true)]

 void OnPriceChanged(ProductData product);

}

This callback contract contains a single operation called OnPriceChanged. You will mod-
ify the ChangePrice operation in the ProductsService service to invoke this operation
in a later step. The purpose of this operation is to inform the client of a change in the
price of the product passed in as the parameter. Notice that this operation is defined as
a one-way operation; it simply alerts the client application and does not return any sort
of response.

	 5.	 Modify the ServiceContract attribute for the IProductsServiceV3 interface to reference
this callback contract, as shown in bold in the following code example:

// Version 3 of the service contract

[ServiceContract(Namespace = "http://adventure-works.com/2010/07/22",

 Name = "ProductsService",

 CallbackContract = typeof(IProductsServiceV3Callback))]

public interface IProductsServiceV3

{

 ...

}

The value to the CallbackContract property must be a type, so this code uses the typeof
operator to return the type of the IProductsServiceV3Callback interface.

	 6.	 In the IProductsServiceV3 interface, modify the definition of the ChangePrice operation
and mark it as a one-way operation. One-way methods cannot return a value, so change
the return type to void, as shown in bold below:

public interface IProductsServiceV3

{

 ...

 [OperationContract(IsOneWay = true)]

 void ChangePrice(string productNumber, decimal price);

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 16  Using a Callback Contract to Publish and Subscribe to Events	 609

	 7.	 Open the ProductsService.cs file in the Code And Text Editor window. Locate the
ChangePrice method at the end of the ProductsServiceImpl class (the ProductsService
Impl class implements the IProductsServiceV3 service contract). This method updates the
AdventureWorks database with the new product price, returning true if the update was
successful or false if otherwise (the method performs very limited error checking).

Change the return type of the method to void. Modify the two return statements that
return false (to indicate failure) in the if statement and the catch block to simply finish
without returning a value. Remove the final return statement that returns true and
replace it with code that creates a ProductData object for the updated product and
invokes the OnPriceChanged operation in the callback contract, as shown in bold in the
following code (the comments in the method have also been updated to reflect the way
in which the method now works):

public void ChangePrice(string productNumber, decimal price)

{

 // Modify the price of the selected product

 Product product = null;

 try

 {

 // Connect to the AdventureWorks database by using the Entity Framework

 using (AdventureWorksEntities database = new AdventureWorksEntities())

 {

 if (!ProductExists(productNumber, database))

 return;

 else

 {

 // Find the specified product

 product = (from p in database.Products

 where String.Compare(p.ProductNumber, productNumber) == 0

 select p).First();

 // Change the price for the product

 product.ListPrice = price;

 // Save the change back to the database

 database.SaveChanges();

 }

 }

 }

 catch

 {

 // If an exception occurs, just return

 return;

 }

 // Notify the client that the price has been changed successfully

 IProductsServiceV3Callback callback =

 OperationContext.Current.GetCallbackChannel<IProductsServiceV3Callback>();

Download from Wow! eBook <www.wowebook.com>

610	 Windows Communication Foundation 4 Step by Step

 if (((ICommunicationObject)callback).State == CommunicationState.Opened)

 {

 ProductData productData = new ProductData()

 {

 ProductNumber = product.ProductNumber,

 Name = product.Name,

 ListPrice = product.ListPrice,

 Color = product.Color

 };

 callback.OnPriceChanged(productData);

 }

}

	 8.	 Build the ProductsService project.

The next step is to implement the callback contract in the client application, but first you need
to generate the proxy code for the client.

Generate the Client Proxy and Implement the Callback Contract

	 1.	 Generate a proxy class for the client application by using the following procedure:

	 a.	 Open a Visual Studio Command Prompt window and move to the
ProductsServiceV3\ProductsService\bin\Debug folder in the Microsoft Press\
WCF Step By Step\Chapter 16 folder.

	 b.	 In the Visual Studio Command Prompt window, run the command:

svcutil ProductsService.dll

	 c.	 Run the command (all on one line):

svcutil /namespace:*,ProductsClient.ProductsService *.wsdl *.xsd

 /out:ProductsServiceProxy.cs

	 2.	 Leave the Visual Studio Command Prompt window open, and then return to Visual Stu-
dio. In the ProductsClient project, delete the existing ProductsServiceProxy.cs file and
add the new ProductsServiceProxy.cs file that you have just generated in the
ProductsServiceV3\ProductsService\bin\Debug folder.

	 3.	 Edit the Program.cs file for the ProductsClient project in the Code And Text Editor win-
dow. Modify the Client class to implement the ProductsServiceCallback and IDisposable
interfaces, as show in bold in the following:

class Client : ProductsServiceCallback, IDisposable

{

 ...

}

ProductsServiceCallback is the interface in the proxy that defines the callback contract.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 16  Using a Callback Contract to Publish and Subscribe to Events	 611

Note  The name of this interface is governed by the logical Name property of the Service
Contract attribute for the ProductsService service rather than the physical name of the inter-
face implemented by this service. If you examine the IProductsServiceV3 interface in the
IProductsService.cs file for the ProductsService project, the Name property for the service is
set to ProductsService, so the name of the interface for the callback contract generated by
svcutil is ProductsServiceCallback.

	 4.	 Add the following OnPriceChanged method to the Client class, after the TestProducts
Service method:

public void OnPriceChanged(ProductData product)

{

 Console.WriteLine("\nCallback from service:\nPrice of {0} changed to {1:C}",

 product.Name, product.ListPrice);

}

This method implements the operation in the ProductsServiceCallback interface defining
the callback contract.

	 5.	 After the OnPriceChanged method, add the following Dispose method to the Client
class:

public void Dispose()

{

 // Disconnect from the service

 proxy.Close();

}

This method is part of the IDisposable interface; it closes the connection to the service
when the Client object is garbage collected.

	 6.	 In the TestProductsService method in the Client class, modify the statement that creates
the proxy object, as shown in bold in the following code example:

public void TestProductsService()

{

 // Create a proxy object and connect to the service

 proxy = new ProductsServiceClient(new InstanceContext(this),

 "WSDualHttpBinding_IProductsServiceV3");

 // Test the operations in the service

 ...

}

This code creates an InstanceContext object that references the Client object and passes
it to the connection. Notice that the name of the endpoint for the connection has also
changed (it was WS2007HttpBinding_IProductsServiceV3); you will add the definition
of the WSDuaHtpBinding_IProductsServiceV3 endpoint to the client configuration file
shortly.

Download from Wow! eBook <www.wowebook.com>

612	 Windows Communication Foundation 4 Step by Step

	 7.	 In the TestProductsService method, locate the if/else block of code that calls the Change
Price method of the proxy object and reports the results. The ChangePrice operation is
now one-way and does not return a value. Change this section of code to remove the
if/else processing, as shown in bold below.

public void TestProductsService()
{
 ...
 // Test the operations in the service
 try
 {
 ...
 // Modify the price of this bicycle frame
 Console.WriteLine("Test 3: Modify the price of a bicycle frame");
 proxy.ChangePrice("FR-M21S-40", product.ListPrice + 10);
 Console.WriteLine();
 }

 catch (Exception e)
 {
 Console.WriteLine("Exception: {0}", e.Message);
 }
 ...
}

	 8.	 After the catch block, remove the statement that closes the proxy object; this is now
handled by the Dispose method.

	 9.	 In the Main method of the Program class, refactor the statements that create the Client
object, call the TestProductsService method, and wait for the user to press Enter when
the application has finished into a using block, as shown in bold in the following code
example:

static void Main(string[] args)
{
 Console.WriteLine("Press ENTER when the service has started");
 Console.ReadLine();

 using (Client client = new Client())
 {
 client.TestProductsService();

 Console.WriteLine("Press ENTER to finish");
 Console.ReadLine();
 }
}

The Client class now implements the IDisposable interface. The using block ensures
that the Dispose method runs in a timely manner when the application finishes and
closes the connection to the service. If you don’t do this, you will notice that the service
takes longer to shut down when you click Stop in the Products Service Host window
while it waits to determine the status of the connection.

	 10.	 Build the solution.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 16  Using a Callback Contract to Publish and Subscribe to Events	 613

Configure the WCF Service and Client Application to Use the WSDualHttpBinding
Binding

	 1.	 Edit the App.config file for the ProductsServiceHost project by using the Service
Configuration Editor.

	 2.	 In the Configuration pane, expand the Services folder, expand the Products.Products
ServiceImpl service, expand the Endpoints folder, right-click the WS2007HttpBinding_
IProductsService endpoint, and then click Delete Endpoint. In the Microsoft Service
Configuration Editor dialog box, click OK to confirm the deletion.

The WS2007HttpBinding_IProductsService endpoint is no longer suitable for the Products
Service service, and the service will not start if this endpoint is left in place.

	 3.	 In the Configuration pane, right-click the Endpoints folder, and then click New Service
Endpoint. Add a new endpoint with the values specified in the following table:

Property Value

Name WSDualHttpEndpoint_IProductsService

Address http://localhost:8010/ProductsService/Service.svc

Binding wsDualHttpBinding

Contract Products.IProductsServiceV3

Note  By default, the wsDualHttpBinding binding implements message-level security and
uses Windows identities.

	 4.	 Save the configuration, and then exit the WCF Service Configuration Editor.

	 5.	 Edit the App.config file in the ProductsClient project by using the Service Configuration
Editor.

	 6.	 In the Configuration pane, expand the Client folder, right-click the Endpoints folder, and
then click New Client Endpoint to add a new endpoint. Set the properties of this end-
point using the values in this table:

Property Value

Name WSDualHttpBinding_IProductsServiceV3

Address http://localhost:8010/ProductsService/Service.svc

Binding wsDualHttpBinding

Contract ProductsClient.ProductsService.ProductsService

Note that—unlike the ProductsServiceHost application—you can leave the existing
client endpoint definition in place in the application configuration file.

Download from Wow! eBook <www.wowebook.com>

614	 Windows Communication Foundation 4 Step by Step

	 7.	 Save the configuration file, and then exit the Service Configuration Editor.

	 8.	 Start the solution without debugging. In the Products Service Host window, click Start.
In the client application console window, press Enter.

The client application displays a list of products, followed by the details for the bicycle
frame with product number FR-M21S-40. The code then adds 10 to the price of the
frame and invokes the ChangePrice operation with this new price. Notice that after
Test 3 starts, the message “Callback from service: Price of LL Mountain Frame – Silver,
40 changed to $594.05” appears. This message was displayed by the OnPriceChanged
operation that was invoked by the service, as shown in the following image:

Note  The price displayed might be different if you have previously modified the data in
the AdventureWorks database. The important points are that this message appears, and
that the price has increased by 10 from the value displayed in Test 2. Additionally, the text
output by the callback may be displayed after the “Press ENTER to finish” message has
appeared; again, this is not a problem but is due to the order in which the .NET Framework
decides to schedule the callback to run compared to the main application thread.

	 9.	 Press Enter to close the client application console window. In the Products Service Host
window, click Stop, and then close the window.

Using a Callback Contract to Implement an Eventing
Mechanism

The callback contract enables the service to confirm to the client application that the product
price has changed, but the client application instance that receives the confirmation probably
already knew this because it initiated the change! It is arguably more useful for other concur-
rent instances of the client application to be informed of this update.

You can use callbacks to implement an eventing mechanism; the service can advertise
events and provide operations to enable client applications to subscribe to these events or

Download from Wow! eBook <www.wowebook.com>

	 Chapter 16  Using a Callback Contract to Publish and Subscribe to Events	 615

unsubscribe from them. The service can employ a callback contract to send a message to each
subscribing client when an event occurs. To do this, the service must have a reference to each
client application instance. In the following exercises, you will modify the ProductsService ser-
vice to enable client application instances to register their interest in product price changes
by adding a subscribe operation. The purpose of this operation is simply to cache a reference
to the client application instance that the service can use later to invoke the OnPriceChanged
operation. You will also add an unsubscribe operation so client application instances can
remove themselves from notification list.

Add Subscribe and Unsubscribe Operations to the ProductsService Service

	 1.	 In Visual Studio, open the IProductsService.cs file for the ProductsService project in the
Code And Text Editor window.

	 2.	 Add the following SubscribeToPriceChangedEvent and UnsubscribeFromPriceChanged
Event methods (shown in bold) to the end of the IProductsServiceV3 service contract:

[ServiceContract(Namespace = "http://adventure-works.com/2010/07/22",

 Name = "ProductsService",

 CallbackContract = typeof(IProductsServiceV3Callback))]

public interface IProductsServiceV3

{

 ...

 // Subscribe to the "price changed" event

 [OperationContract]

 bool SubscribeToPriceChangedEvent();

 // Unsubscribe from the "price changed" event

 [OperationContract]

 bool UnsubscribeFromPriceChangedEvent();

}

Client applications will use the SubscribeToPriceChangedEvent operation to declare an
interest in product price changes and the UnsubscribeFromPriceChangedEvent operation
to indicate that they are no longer interested in product price changes.

	 3.	 Open the ProductsService.cs file in the Code And Text Editor window and add the fol-
lowing private variable to the ProductsServiceImpl class:

public class ProductsServiceImpl : IProductsServiceV3

{

 static List<IProductsServiceV3Callback> subscribers =

 new List<IProductsServiceV3Callback>();

 ...

}

The ProductsServiceImpl class will add references to client callbacks to this list for each
client application instance that indicates its interest in product price changes.

Download from Wow! eBook <www.wowebook.com>

616	 Windows Communication Foundation 4 Step by Step

	 4.	 Add the following SubscribeToPriceChanged method (shown in bold) to the Products
ServiceImpl class:

public class ProductsServiceImpl : IProductsServiceV3

{

 ...

 public bool SubscribeToPriceChangedEvent()

 {

 try

 {
 IProductsServiceV3Callback callback =

 OperationContext.Current.GetCallbackChannel<

 IProductsServiceV3Callback>();

 if (!subscribers.Contains(callback))

 {

 subscribers.Add(callback);

 }

 return true;

 }

 catch (Exception)

 {

 return false;

 }

 }

}

This method obtains a reference to the callback contract for the client application
instance invoking the operation and stores it in the subscribers list. If the callback con-
tract reference is already in the list, this method does not add it again.

	 5.	 Add the UnsubscribeFromPriceChangedEvent method to the ProductsServiceImpl class,
as follows:

public class ProductsServiceImpl : IProductsServiceV3

{

 ...

 public bool UnsubscribeFromPriceChangedEvent()

 {

 try

 {

 IProductsServiceV3Callback callback =

 OperationContext.Current.GetCallbackChannel<

 IProductsServiceV3Callback>();

 subscribers.Remove(callback);

 return true;

 }

 catch (Exception)

 {

 return false;

 }

 }

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 16  Using a Callback Contract to Publish and Subscribe to Events	 617

This method removes the callback reference for the client application instance invoking
the operation from the subscribers list.

	 6.	 Add the private method (shown in bold) to the ProductsServiceImpl class:

public class ProductsServiceImpl : IProductsServiceV3

{

 ...

 private void raisePriceChangedEvent(ProductData product)

 {

 subscribers.AsParallel().ForAll(callback =>

 {

 if (((ICommunicationObject)callback).State == CommunicationState.Opened)

 {

 callback.OnPriceChanged(product);

 }

 else

 {

 subscribers.Remove(callback);

 }

 });

 }

}

This method iterates (in parallel) through all the callback references in the subscribers list.
For each reference found, if it is still valid (the client application instance is still running),
the method invokes the OnPriceChanged operation, passing in the specified product
as the parameter. If the reference is not valid, the method removes it from the list of
subscribers.

	 7.	 At the end of the ChangePrice method, remove the statements that obtain the callback
reference to the client application and invoke the OnPriceChanged method. Replace
them with code that creates a ProductData object to hold the details of the modified
product and calls the raisePriceChangedEvent method instead, as shown in bold in the
following code example:

public void ChangePrice(string productNumber, decimal price)

{

 ...

 // Notify registered clients that the price has been changed successfully

 ProductData productData = new ProductData()

 {

 ProductNumber = product.ProductNumber,

 Name = product.Name,

 ListPrice = product.ListPrice,

 Color = product.Color

 };

 raisePriceChangedEvent(productData);

}

Download from Wow! eBook <www.wowebook.com>

618	 Windows Communication Foundation 4 Step by Step

When a client application instance changes the price of a product, all client application
instances that have subscribed to the “price changed” event will be notified by running
the OnPriceChanged method.

	 8.	 Rebuild the ProductsService project.

Update the WCF Client Application to Subscribe to the “Price Changed” Event

	 1.	 Regenerate the proxy class for the client application:

❏❏ In the Visual Studio Command Prompt window that you opened earlier, run the
following commands:

svcutil ProductsService.dll

svcutil /namespace:*,ProductsClient.ProductsService *.wsdl *.xsd

 /out:ProductsServiceProxy.cs

	 2.	 Close the Visual Studio Command Prompt window, and then return to Visual Studio.
Delete the ProductsServiceProxy.cs file from the ProductsClient project and add the new
version of this file from the ProductsServiceV3\ProductsService\bin\Debug folder.

	 3.	 Open the Program.cs file for the ProductsClient project in the Code And Text Editor
window. Invoke the SubscribeToPriceChangedEvent operation as the first action inside
the try block in the TestProductsService method in the Client class:

public void TestProductsService()

{

 ...

 // Test the operations in the service

 try

 {

 proxy.SubscribeToPriceChangedEvent();

 // Obtain a list of products

 ...

 }

 ...

}

Whenever any instance of the client application updates the price of a product, the ser-
vice will call the OnPriceChanged method in this instance (and any other instances that
subscribe to the event) of the client application.

	 4.	 Rebuild the ProductsClient project.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 16  Using a Callback Contract to Publish and Subscribe to Events	 619

Test the “Price Changed” Event in the ProductsService Service

	 1.	 In Solution Explorer, right-click the ProductsServiceHost project, select Debug, and then
click Start new instance. In the Products Service Host window, click Start.

	 2.	 Using Windows Explorer, navigate to the Microsoft Press\WCF Step By Step\Chapter 16\
ProductsServiceV3\ProductsClient folder.

Apart from the various code files, you should notice a command file called RunClients.
cmd. This command file simply runs the ProductsClient application concurrently, three
times, each time opening a new window, like this:

start bin\Debug\ProductsClient

start bin\Debug\ProductsClient

start bin\Debug\ProductsClient

	 3.	 Double-click the RunClients.cmd file. Three console windows appear, one for each
instance of the client application. In one console window, press Enter. Wait for the list of
bicycle frames to appear, the details of frame FR-M21S-40 to be displayed, and the price
of the frame to be changed. Verify that the message from the callback appears. Leave
this command window open (do not press Enter).

	 4.	 In one of the other two console windows, press Enter. Again, wait while the list of frames
and the details of frame FR-M21S-40 are displayed and the price of the frame is updated.
Verify that the callback message appears in this client console window. Notice that a
second callback message appears in the first client console window, also displaying the
new price.

	 5.	 In the final console window, press Enter. Verify that when this instance of the client
application updates the price of the bicycle frame and displays the callback message,
the other two client console windows also output the callback message. The first client
console window should now display three callback messages, as shown in the following
image:

	 6.	 Press Enter in each of the client application console windows to close them. In the Products
Service Host window, click Stop, and then close the window.

Download from Wow! eBook <www.wowebook.com>

620	 Windows Communication Foundation 4 Step by Step

Delivery Models for Publishing and Subscribing
Using a callback contract makes it very easy to implement a basic publication and subscrip-
tion service based on WCF. You should be aware that you have been using a somewhat artifi-
cial and idealized configuration for these exercises. If you are implementing such a system in a
large enterprise, or across the Internet, you would need to consider security and scalability,
and how they impact the operation of a WCF service calling back into a client application.

There are at least three well-known models that publication and subscription systems fre-
quently implement, and you can use WCF to build systems based on any of them. Each model
has its own advantages and disadvantages, as described in the following sections.

The Push Model
This is the model you have used in the exercises in this chapter. In this model, the publisher
(the WCF service) sends messages directly to each subscriber (WCF client applications) through
an operation in a callback contract. The service must have sufficient resources to be able to
invoke operations in a potentially large number of subscribers simultaneously; the service
could spawn a new thread for each subscriber if the callback operations return data or could
make use of one-way operations if not. The primary disadvantage of this approach is security;
the callback operations invoked by the service could be blocked by a firewall protecting client
applications from unexpected incoming messages.

The Pull Model
In this model, the publisher updates a single, trusted third service with information about
events as they occur. Each subscriber periodically queries this third service for updated infor-
mation (they invoke an operation on the third service that returns the latest version of the
data). This model is less prone to firewall blocking issues, but it requires more complexity on
the part of the subscribers. There could also be scalability issues with the third service if a
large number of subscribers query it too frequently. On the other hand, if a subscriber does
not query the third site frequently enough, it might miss an event.

The Broker Model
This model is a hybrid of the first two schemes. The publisher updates a single, trusted third
service with information about events as they occur. This third site is placed in a location, such
as a perimeter network, that is trusted by both the publishing service and the subscribing
clients. Subscribers register with this third site rather than with the site that originates events.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 16  Using a Callback Contract to Publish and Subscribe to Events	 621

The third site handles calls back to the subscribers when an event occurs. As well as reducing
the likelihood of messages being blocked by a firewall, this model also resolves some of the
scalability issues associated with subscribers polling for updated information too quickly.

Note  You can also make use of Windows Network Load Balancing and clustering technologies to
overcome some of the scalability concerns when using the Pull or Broker models.

The WS-Eventing Specification
The callback mechanism for implementing events described in this chapter depends
primarily on features provided by WCF and the .NET Framework. Consequently, it works
only with services and client applications built by using WCF. However, asynchronous
notification is a universally useful pattern, and the World Wide Web Consortium has
published several specifications over the last decade or so that propose a standardized
approach to supporting eventing. This approach is based on Web services and SOAP
messaging and is intended to be independent of and interoperable across different
technologies. These are the WS-Eventing specifications.

The current draft (at the time of writing), dated August 5, 2010, lists the following
requirements that the specification seeks to address (this list is taken from the W3C Web
site, at http://www.w3.org/TR/ws-eventing/):

■■ Define a means to create and delete event subscriptions.

■■ Define expiration for subscriptions and allow them to be renewed.

■■ Define how one Web service can subscribe on behalf of another.

■■ Define how an event source delegates subscription management to another
service.

■■ Allow subscribers to specify how notifications are to be delivered.

■■ Leverage other Web service specifications for secure, reliable, transacted message
delivery.

■■ Support complex eventing topologies that allow the originating event source and
the final event sink to be decoupled.

■■ Provide extensibility for more sophisticated and/or currently unanticipated sub-
scription scenarios.

■■ Support a variety of encoding formats, including (but not limited to) SOAP 1.1 and
SOAP 1.2 Envelopes.

Download from Wow! eBook <www.wowebook.com>

622	 Windows Communication Foundation 4 Step by Step

In the current draft of the WS-Eventing specification, services that can raise events are
referred to as Event Sources, and clients that can receive these events are called Event
Sinks. The WS-Eventing specification also incorporates another actor, the Subscription
Manager, which is responsible for receiving subscribe and unsubscribe requests from
event sinks. The Subscription Manager typically stores subscription information in a data
store, and the Event Source retrieves the details of subscriptions from this data store
when an event is raised so it can send event messages (notifications) to the various
subscribers.

You should note that the WS-Eventing specification is intended to be open and flexible
and support a variety of scenarios over and above simple “publish/subscribe” interac-
tions. For example, a client can subscribe to events on behalf of another client, and this
second client will act as the event sink when the event source raises the event. Alterna-
tively, a client subscribing to notifications could actually act as an event source itself and
enable subscriptions from other clients; the first client effectively provides a forwarding
mechanism, propagating notifications as it receives them to its own set of subscribers,
implementing part of a tree-topology.

The WS-Eventing specification does not actually define how to build an eventing sys-
tem; instead, it describes the message formats and protocols that a standard eventing
solution should provide. For example, the terms Event Source, Subscription Manager,
and Event Sink refer to roles rather than physical applications or services. It is possible
for a single piece of software to fulfill any or all of these roles, as appropriate (in the event
forwarding scenario described in the previous paragraph, it is probable that the same
service acts in all three roles). As long as a service abides by the message formats and
protocols documented by the WS-Eventing specification, it will be compatible with
other services and client applications that follow the same specifications. The implemen-
tation details are left to the organizations that provide the technologies and frameworks
that developers use to build interoperable services.

Sadly, WCF does not currently support the WS-Eventing specification out of the box
(there are no bindings, binding elements, or service classes currently in the .NET Frame-
work that conform to the WS-Eventing messaging formats and protocols), although sev-
eral developers have built and published implementations based on WCF.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 16  Using a Callback Contract to Publish and Subscribe to Events	 623

Summary
This chapter showed how to use a callback contract to define operations that a client applica-
tion can expose to a service. Implementing a callback contract requires the client application
and service to connect with each other over a bidirectional channel that supports duplex
communications; this means using the NetTcpBinding binding, the NetNamedPipeBinding
binding, and the WSDualHttpBinding binding.

You can use a callback contract to help implement a publish and subscribe eventing system so
a service can register instances of client applications that wish to be notified when a particular
event occurs, and then invoke an operation in the callback contract to inform the client appli-
cation instances when the event actually happens.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

625

Chapter 17

Managing Identity with Windows
CardSpace

After completing this chapter, you will be able to:

■■ Describe the purpose of Windows CardSpace.

■■ Use Windows CardSpace with a WCF service to provide claims-based security.

■■ Summarize how you can employ claims-based security to implement a federated security
scheme.

Security is an important, if not vital, feature of most commercial Web services and applica-
tions. Throughout this book you have seen some of the mechanisms that WCF provides to
help you protect Web services and client applications. At the heart of these mechanisms is a
scheme by which a Web service identifies the user running the client application that is call-
ing into the Web service. The means of identification is frequently a user name and password,
a certificate, or possibly a Kerberos token. After a Web service has established the identity of
the user running the client application, it can then authorize or deny access to the operation
requested by the user, based on this identity. This use of identity to determine authorization
has some interesting privacy implications—for example, if all a Web service needs to know is
your age, do you really want to divulge your full identity? Consider the following real-world
situations:

■■ Being an avid cricket fan, I regularly visit the supporters club of my local county cricket
team. On match days, you have to be a member of the club to be allowed in (at other
times, anyone can enter). All members are issued with membership cards, and upon
entering the club, I am obliged to show my card to the person on the door. As long as
I have this card and can show it, I can get in. The door attendant is never actually inter-
ested in the details on the card (my name and membership number), just the fact that I
actually have one.

■■ If I pay for goods in a shop by using a credit card, the vendor does not need to know
my full name, address, age, or even my inside leg measurement. She just needs to be
confident that the credit card I am using is valid and that I have the necessary rights to
use it (she will probably also do an initial visual check, just to make sure I am not using
a credit card belonging to “Miss Jones” if I have a beard and a moustache, but on the
Internet it is not yet possible to corroborate identity in this way). This scenario is actu-
ally a little more complicated than the previous one, as the vendor does not have access
to the information needed to prove the validity of the card (strictly speaking, the door

Download from Wow! eBook <www.wowebook.com>

626	 Windows Communication Foundation 4 Step by Step

attendant at the cricket club cannot be totally sure that my membership card is not a
forgery, but the quick examination performed by the door attendant usually provides
an adequate level of security, given the circumstances). Instead, the vendor asks the
credit card company to verify my claim that this is my credit card, usually by asking me
to type my PIN number on a terminal connected to the credit card company’s comput-
ers. The vendor then waits for the credit card company to respond that, 1) the card is
genuine and valid, 2) I know the PIN for the credit card and therefore I am probably the
real card holder rather than some imposter who found it lying in the street (we all know
this is not foolproof, but it is the best mechanism that the credit card companies have at
this point), and 3) I have sufficient credit available.

These are two examples of claims-based security. A claim is simply a facet of my identity that
is relevant to the operation being performed. In the first case, the door attendant was able to
verify my claim that I was a member of the club by seeing that I had a membership card; pos-
session of the card was taken as sufficient proof of my identity. In the second case, the vendor
required my claim as the valid holder of the credit card be verified by a trusted third party.

You can apply claims-based security to Web services as well as real-world situations. In con-
trast to a traditional identity-based system, in a claims-based system, the Web service does
not necessarily need to know who I am, just that I should be allowed to use it. With WCF, you
can integrate claims-based security into client applications by using Windows CardSpace. This
is the subject of this chapter.

Using Windows CardSpace to Access a WCF Service
Windows CardSpace is an identity technology incorporated into Windows Vista and Win-
dows 7. Windows CardSpace is based on a number of WS-* standards, in particular WS-Trust,
WS-MetadataExchange, and WS-SecurityPolicy. Consequently, the security mechanism that it
implements is interoperable with Web services and client applications built using other tech-
nologies but that conform to these specifications.

Implementing Claims-Based Security
The world of claims-based security refers to three roles describing the participants involved in
accessing a protected service:

■■ The subject is the user or entity trying to access the service. The subject provides evi-
dence of suitable rights (a claim) to gain access. This must be a claim that the service
can accept. In the credit card scenario described earlier, it would be no good trying to
use my cricket supporters’ club membership card when trying to pay for goods—the
membership card might well be valid, but the vendor will not accept it, because it does
not confer the appropriate rights.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 17  Managing Identity with Windows CardSpace	 627

■■ The identity provider is the organization or entity that issues the rights to assert a par-
ticular claim (or set of claims) to the subject and verifies the authenticity of any claims to
exercise these rights made by the subject. In the credit card example, the identity pro-
vider is the credit card company issuing the card.

■■ The relying party is the organization or entity representing the protected service. The
relying party asks the identity provider to verify that the claim made by the subject to
the specified rights is valid. Again, in the credit card example, the relying party is the
vendor selling me the goods that I am attempting to purchase.

Note  From here on, I will refer to the information provided by a subject when attempting
to prove its identity simply as a “claim.” Identity providers are said to issue claims; services can
demand verified claims; and subjects can submit claims when attempting to access a service.

Windows CardSpace comprises a Windows service, a set of components, and a framework
for enabling identity providers to issue claims to users. This framework provides methods
for those users to store and retrieve information about their claims in an accessible manner
and provides assurance to a service that any claims asserted by a user are genuine. Windows
CardSpace stores information about the set of claims (called a “claimset”) issued by a provider
as metadata in an information card. Information cards are issued by identity providers, who
also take on responsibility for verifying the claims that these cards contain when requested by
a service. Windows CardSpace also provides a graphical user interface that enables users to
manage and control their information cards.

A service that uses claims-based security specifies the claims it demands as part of its security
policy. Windows CardSpace includes an identity selector component that can query this policy
and then determine which of the user’s cards have claims that match the policy. In the real
world, you could use several different forms of identity to prove a claim, such as your age—
your driver’s license or your passport, for example. Similarly, when a service demands proof
of one particular aspect of a user’s identity, the user might be able to select from among
several information cards that contain a corresponding claim. When a WCF client application
attempts to access a service, the WCF runtime can invoke the identity selector component to
determine and display the matching cards, and the user can select which information card
to use. The claims on the card then need to be verified by the identity provider before the
client application can use them to access the service.

Here’s the sequence of operations that occur when a client application calls a Web service
that uses Windows CardSpace to validate a user:

	 1.	 The client application attempts to invoke an operation or access a resource in a Web
service. The security policy for the Web service specifies the type of claims accepted by
the service user (for example, an email address or a pin number). Note that the security
policy for the service is published as part of the metadata for the service. If you use the

Download from Wow! eBook <www.wowebook.com>

628	 Windows Communication Foundation 4 Step by Step

svcutil utility or the Add Service Reference command in Visual Studio, this policy infor-
mation will be included in the information downloaded from the service and added to
the client configuration file.

	 2.	 The WCF runtime on the client invokes the identity selector component of Windows
CardSpace. The identity selector examines the user’s information cards and displays a list
of cards that contain claims of the types specified by the Web service.

	 3.	 The user selects the information card to use.

	 4.	 The identity selector contacts the identity provider that issued the information card,
passing it the metadata describing the claim on the user’s information card and the
claims demanded by the service.

	 5.	 The identity provider examines the metadata describing the claim, authenticates the
user’s identity—and if authentication is successful—it generates a token verifying that
the user’s claim is valid. The identity provider sends this token back to the identity selec-
tor running on the client computer. Note that this token is signed to prevent tampering
and to confirm its validity.

Note  The format for the token is important, because the Web service must be able to
decode and understand it. The OASIS Security Services Technical Committee has attempted
to standardize the representation of security tokens as serializable XML-based objects con-
taining authentication and authorization data. The result is the Security Assertion Markup
Language, or SAML. The SAML standards (there are currently three available—version 1.0,
version 1.1, and version 2.0, although WCF does not yet support version 2.0) define an XML-
based framework for communicating user authentication, entitlement, and attribute infor-
mation. A service can use SAML to make assertions concerning the identity, properties, and
privileges associated with a request from a client application (or other service), and make a
decision as to whether to allow the requested operation to proceed.

	 6.	 The identity selector passes the token to the WCF runtime for the client application,
which sends the token to the Web service as part of the original request made by the
client application (the token is added to the SOAP header). The Web service examines
the token to verify its validity. If the token is valid, the Web service can use the identity
information in this token to determine whether the user is authorized to invoke the
operation or access the resource.

All this sounds quite complicated. Fortunately, WCF and Windows CardSpace shield you from
much of this complexity, and it is actually quite straightforward to incorporate claims-based
security into a WCF service. You should note that the Web service no longer performs any
form of user authentication; this task is left to the identity provider for the information card
that the user selects (and that the Web service trusts). All the Web service needs to do is spec-
ify a policy that indicates the claims it will support and determine whether the authenticated
user has sufficient rights to perform the operation being requested.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 17  Managing Identity with Windows CardSpace	 629

In the following set of exercises, you will configure the ShoppingCartService service to identify
users by their email address. However, before delving into the world of Windows CardSpace,
I need to explain one more thing. In a real-world environment, you will most likely use infor-
mation cards issued by commercial, trusted, third-party identity providers (such as credit
card companies, banks, governments, or other organizations). You can also use Windows
CardSpace to create self-issued cards. A self-issued card is a one that you create by using the
Windows CardSpace user interface, often for testing purposes (they have other uses as well).
A self-issued card can contain a small but useful subset of claims, such as your name, home
address, telephone number, and email address. In this case, the Windows CardSpace service
running on your computer also acts as the identity provider. The exercises that follow use such
self-issued information cards, so you don’t need to obtain a commercial information card just
for learning purposes. However, the technique is very similar when you use an information
card issued by a trusted third party, as I will explain later.

Important  A production Web service should not rely on claims asserted by self-issued informa-
tion cards for authorizing access to sensitive data. It is very easy for a user to create a self-issued
card with whatever values they want for the claims it contains.

Configure the ShoppingCartService Service to Use Claims-based Security

	 1.	 Start Visual Studio as an Administrator and open the solution file ShoppingCart.sln
located in the Microsoft Press\WCF Step By Step\Chapter 17\ShoppingCartService folder
(within your Documents folder).

This solution contains a completed version of the ShoppingCartService service, console
host application, and test client application from Chapter 10, “Implementing Reliable
Sessions.”

Note  It is important that you run Visual Studio as Administrator because the Shopping
CartService service will require access to a certificate only available to administrators.

	 2.	 Edit the App.config file in the ShoppingCartHost project by using the Service Configura-
tion Editor.

	 3.	 In the Configuration pane, right-click the Bindings folder, and then click New Binding
Configuration. Add a new binding configuration to the Bindings folder. Select the
ws2007FederationHttpBinding binding type. Change the name of the binding configura-
tion to ShoppingCartServiceCardSpaceBindingConfig. The ShoppingCartService ser-
vice uses reliable sessions and transactions, so set the TransactionFlow property to True
and set the Enabled property in the ReliableSession Properties section to True.

Download from Wow! eBook <www.wowebook.com>

630	 Windows Communication Foundation 4 Step by Step

Note  You can also use claims-based security with the ws2007HttpBinding and wsHttpBinding
bindings, but these bindings support only a limited set of claims. Using the ws2007Federation
HttpBinding and wsFederationHttpBinding bindings, you can configure the service to specify
a more extensive range.

	 4.	 In the Configuration pane, expand the ShoppingCartServiceCardSpaceBindingConfig
node, expand the Security folder, and then click the ClaimTypes node. Click the New
button at the bottom of the ClaimTypes pane on the right.

	 5.	 In the Claim Type Element Editor dialog box, in the ClaimType property field, type
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress. Verify
that the IsOptional property is set to False, and then click OK.

The claims specified in the ClaimTypes property of the binding configuration constitute
the claims security policy for the service. Each type of claim is identified by a well-known
URI—the URI you have specified here indicates that the claim is an email address. You
can add multiple claim types if you want to identify users based on more than one piece
of information.

Note  Apart from an email address, Windows CardSpace provides support for a number
of other built-in claim types, such as a user’s name, address, telephone number, and date
of birth. For a full list of the built-in claim types and the corresponding URIs that Windows
CardSpace recognizes, see the properties of the ClaimTypes class in the Visual Studio docu-
mentation (also available online at http://msdn.microsoft.com/en-us/library/system.identity
model.claims.claimtypes.aspx). However, you are not restricted to this set of claims. A key
objective of the WCF claims-based security model was to make it extensible and interoper-
able with systems developed using other technologies. You can make use of claim types
defined and supported by identity providers other than Windows CardSpace; you just need
to know the URI that identifies the claim types you want to use.

	 6.	 In the Configuration pane, click the Security folder under the ShoppingCartService
CardSpaceBindingConfig node. In the Security pane, in the IssuedTokenType property
field, type http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#
SAMLV1.1.

A WCF service uses the IssuedTokenType property to specify the type of token it expects
to receive from the identity provider containing the claim information (identity providers
can send tokens conforming to a number of different standard formats). In this case, the
ShoppingCartService service expects a SAML 1.1 token (SAML token types are identified
by URIs, defined by the SAML standards).

A fundamental requirement of solutions based on Windows CardSpace is that client
applications must be able to verify the identity of the Web service requesting the claim,
and the Web service must be able to trust the identity provider verifying the claim.
This means that you should configure the requesting Web service with a certificate and

Download from Wow! eBook <www.wowebook.com>

	 Chapter 17  Managing Identity with Windows CardSpace	 631

provide the client application with a reference to this certificate. If you are using a third-
party identity provider, it must also supply a certificate that the client application and
Web service can use to confirm its identity (the identity provider signs tokens with its
private key, so the Web service must have access to its public key in order to verify their
signatures). Additionally, all messages must be encrypted, either at the message level or
at the transport level.

More Info  For more information about how you can use certificates to encrypt and sign
messages and verify the authenticity of a service, refer back to Chapter 5, “Protecting a WCF
Service over the Internet.”

	 7.	 Open a Visual Studio Command Prompt as Administrator. Use the makecert utility to
create a new certificate for the service, like this:

makecert –sr LocalMachine –ss My –n CN=ShoppingCartService –sky exchange

	 8.	 Leave the Visual Studio Command Prompt window open and return to the Service Con-
figuration Editor. In the Configuration pane, expand the Advanced folder, right-click the
Service Behaviors folder, and then click New Service Behavior Configuration to create a
new service behavior. In the right pane, name this behavior ShoppingCartService
Behavior.

	 9.	 In the lower part of the right pane, click Add and add a <serviceCredentials> element to
the behavior. In the Configuration pane, expand the new serviceCredentials node, and
then click the serviceCertificate node. In the right pane, in the FindValue property, type
ShoppingCartService (this is the name of the certificate you have just created) and set
the X509FindType property to FindBySubjectName.

In this exercise, you are using an unverifiable self-issued information card rather than
a card issued by a third-party identity provider. At run time, the Windows CardSpace
service running on the client application computer provides the SAML token contain-
ing the claim token. Therefore, you need to configure the Web service to accept SAML
tokens from an untrusted source (the user running the client application and who has
issued the card to herself).

	 10.	 In the Configuration pane, click the issuedTokenAuthentication node under the service
Credentials node. In the right pane, set the AllowUntrustedRsaIssuers property to True.

	 11.	 In the Configuration pane, expand the Services folder and select the ShoppingCartService.
ShoppingCartServiceImpl service. In the right pane, set the BehaviorConfiguration prop-
erty to ShoppingCartServiceBehavior.

Download from Wow! eBook <www.wowebook.com>

632	 Windows Communication Foundation 4 Step by Step

	 12.	 In the Configuration pane, expand the ShoppingCartService.ShoppingCartServiceImpl
service, right-click the Endpoints folder, and then click New Service Endpoint to create
a new endpoint based on the WS2007FederationHttpBinding binding. Set the properties
of this endpoint using the values in the following table:

Property Value

Name WS2007FederationHttpBinding_IShoppingCartService

Address http://localhost:8010/ShoppingCartService/ShoppingCartService.svc

Binding ws2007FederationHttpBinding

BindingConfiguration ShoppingCartServiceCardSpaceBindingConfig

Contract ShoppingCartService.IShoppingCartService

	 13.	 Save the configuration file, and then close the Service Configuration Editor.

The ShoppingCartService service now expects the client application to provide the user’s email
address to identify the user whenever it invokes an operation. You can use the email address
to authorize users and grant or deny them access to specific operations. You can perform this
task in a variety of ways. The most direct technique is to explicitly examine the value of the
claim in the token passed to the service, which is what you will do in the next exercise.

Amend the ShoppingCartService Service to Authorize Users Based on Their Email
Address

	 1.	 In Solution Explorer, add a reference to the System.IdentityModel assembly to the
ShoppingCartService project.

	 2.	 Open the ShoppingCartService.cs file for the ShoppingCartService project in the Code
And Text Editor window. Add the following using statements to the list at the top of the
file:

using System.Security;

using System.IdentityModel.Claims;

using System.IdentityModel.Policy;

	 3.	 Add the following private array (shown in bold) to the start of the ShoppingCart
ServiceImpl class:

public class ShoppingCartServiceImpl : IShoppingCartService

{

 // The list of authorized users

 private string[] authorizedUsers = { "Fred@Adventure-Works.com",

 "Bert@Adventure-Works.com" };

 ...

}

Download from Wow! eBook <www.wowebook.com>

	 Chapter 17  Managing Identity with Windows CardSpace	 633

This array contains the email addresses of the users to whom the service will allow
access.

Note  This code is for testing purposes only. In a production environment, you should con-
sider storing the details of authorized users in a database rather than using a hard-coded
array of strings.

	 4.	 Add the following private method to the ShoppingCartServiceImpl class to determine
whether the claimset in the token passed to the service contains an email claim with an
email address that corresponds to one of the authorized users:

public class ShoppingCartServiceImpl : IShoppingCartService

{

 ...

 // Authorize the user if their email address is in the authorizedUsers list

 private bool authorizeUser()

 {

 bool authorized = false;

 AuthorizationContext authContext =

 OperationContext.Current.ServiceSecurityContext.AuthorizationContext;

 foreach (ClaimSet claimSet in authContext.ClaimSets)

 {

 foreach (Claim emailClaim in

 claimSet.FindClaims(ClaimTypes.Email, Rights.PossessProperty))

 {

 foreach (string validUser in authorizedUsers)

 {

 if (String.Compare(emailClaim.Resource.ToString(), validUser,

 true) == 0)

 {

 authorized = true;

 break;

 }

 }

 }

 }

 return authorized;

 }

 ...

}

When the WCF runtime for the service receives the tokenized claims from the client
application, it matches the values for these claims against the security policy that it
implements. The AuthorizationContext property of the service security context contains
the results of this match. In this case, AuthorizationContext property should contain an
email address claim with the email address sent by the client application (provided by a
CardSpace information card).

Download from Wow! eBook <www.wowebook.com>

634	 Windows Communication Foundation 4 Step by Step

Note  The AuthorizationContext property will also contain other claims resulting from the
various WS-* protocols that Windows CardSpace uses, but the details are beyond the scope
of this book.

The AuthorizationContext property comprises a collection of claimsets, and each claim-
set contains a collection of claims. This method iterates through each claimset looking
for an email claim. If it finds one, it examines the value of the claim and compares it
to each email address in the list of authorized users. Notice that the value of a claim
is available through the Resource property. The type of this property is Object, and its
contents are dependent on the type of the claim. An email claim is a string contain-
ing the authenticated email address of the user, so this method simply performs a
case-insensitive string comparison. If the email address in the claim matches one of
the authorized users, the authorizeUser method returns true, otherwise it returns false.

	 5.	 Locate the AddItemToCart method in the ShoppingCartServiceImpl class. At the start
of the method, add a block of code that calls the authorizeUser method and throws a
security exception if the user is not an authorized user, as shown in bold in the following
code example:

public bool AddItemToCart(string productNumber)

{

 // Check that the user is authorized.

 // Throw a SecurityException if not.

 if (!authorizeUser())

 {

 throw new SecurityException("Access denied");

 }

 ...

}

	 6.	 Add the same statements to the start of the RemoveItemFromCart, GetShoppingCart,
and Checkout methods.

	 7.	 Build the ShoppingCartService project.

You can now configure the client application to enable the user to select an information card
and send the SAML token containing the user’s email address to the ShoppingCartService
service.

Implementing Custom Authorization
If you need to perform more extensive authorization checks than those shown in
the exercise, the .NET Framework provides the ServiceAuthorizationManager class in the
System.ServiceModel namespace. The WCF runtime on the service calls the methods
of this class to perform authorization checks whenever it processes a client request.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 17  Managing Identity with Windows CardSpace	 635

However, this class is just a placeholder, which by default allows users to invoke all
operations without restriction. To implement a more secure policy, extend this class by
using inheritance and override its methods to perform your own custom authorization.
You then register your implementation of the class with the WCF runtime by setting the
Authorization.ServiceAuthorizationManager property of the service host object to an
instance of your class, or by creating a service behavior in the service configuration file
and specifying the name of your class in the <serviceAuthorization> element.

For a complete example, see the topic, “How To: Create a Custom AuthorizationManager
for a Service,” in the Visual Studio documentation (also available on the Microsoft Web
site at http://msdn.microsoft.com/en-us/library/ms731774.aspx).

Configure the ShoppingCartClient Application to use Windows CardSpace to Send a
Token Identifying the User

	 1.	 Open the App.config file for the ShoppingCartClient project by using the Service Con-
figuration Editor.

	 2.	 In the Configuration pane, add a new binding configuration to the Bindings folder.
Select the ws2007FederationHttpBinding binding type. Set the name of the binding
configuration to ShoppingCartClientCardSpaceBindingConfig. Set the Transaction
Flow property to True and set the Enabled property in the ReliableSession Properties
section to True, to match the binding implemented by the ShoppingCartService service.

	 3.	 Add the claim type http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
emailaddress to the ClaimTypes collection under the Security node in the Configuration
pane. Verify that the IsOptional property is set to False.

	 4.	 Set the IssuedTokenType property of the Security node to http://docs.oasis-open.org/
wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1.

	 5.	 Return to the Visual Studio Command Prompt window that you opened in an earlier
exercise and type the following command:

certmgr –put –c –n ShoppingCartService –r LocalMachine –s My ShoppingCartService.cer

This command retrieves a copy of the ShoppingCartService certificate used by the WCF
service to authenticate itself and creates a file called ShoppingCartService.cer. This file
contains a copy of the certificate including its public key but not the private key.

Type the following command to import this certificate into the trusted people certificate
store for the current user:

certmgr –add ShoppingCartService.cer –c –r CurrentUser –s TrustedPeople

Download from Wow! eBook <www.wowebook.com>

636	 Windows Communication Foundation 4 Step by Step

	 6.	 Close the Visual Studio Command Prompt window and return to the Service Con-
figuration Editor. In the Configuration pane, add a new endpoint behavior configura-
tion to the Endpoint Behaviors folder under the Advanced folder. Name this behavior
ShoppingCartClientEndpointBehavior.

	 7.	 In the lower part of the right pane, click Add, and add a <clientCredentials> element
to the behavior. In the Configuration pane, expand the clientCredentials node, expand
the serviceCertificate node, and then click the authentication node. In the right pane, set
the CertificateValidationMode property to PeerTrust and the RevocationMode property
to NoCheck.

Note  You are using a test certificate issued by the certmgr tool rather than a recognized
certification authority. You placed the certificate in the TrustedPeople store; setting the vali-
dation mode to PeerTrust bypasses validation for certificates placed in this store.

	 8.	 In the Configuration pane, add a new client endpoint to the Endpoints folder under the
Client folder. Set the properties of this endpoint using the values in the following table:

Property Value

Name WS2007FederationHttpBinding_IShoppingCartService

Address http://localhost:8010/ShoppingCartService/ShoppingCartService.svc

BehaviorConfiguration ShoppingCartClientEndpointBehavior

Binding ws2007FederationHttpBinding

BindingConfiguration ShoppingCartClientCardSpaceBindingConfig

Contract ShoppingCartClient.ShoppingCartService.ShoppingCartService

	 9.	 In the Client Endpoint pane, click the Identity tab. In the CertificateReference Properties
section, type ShoppingCartService in the FindValue property and set the X509FindType
property to FindBySubjectName.

	 10.	 Save the configuration file, and then close the Service Configuration Editor.

	 11.	 In Solution Explorer, open the Program.cs file for the ShoppingCartClient project in the
Code And Text Editor window. In the Main method in the Program class, change the
statement that creates the proxy to use the WS2007FederationHttpBinding_IShopping
CartService endpoint, as follows:

// Connect to the ShoppingCartService service

ShoppingCartServiceClient proxy =

 new ShoppingCartServiceClient("WS2007FederationHttpBinding_IShoppingCartService");

Download from Wow! eBook <www.wowebook.com>

	 Chapter 17  Managing Identity with Windows CardSpace	 637

The next stage is to create some information cards that you can use to test the Shopping
CartService service. You can do this with the Windows CardSpace application in the Control
Panel.

Create Information Cards for Testing the ShoppingCartService Service

	 1.	 From the Windows Start menu, select Control Panel, click User Accounts And Family
Safety, and then click Windows CardSpace.

The Windows CardSpace console starts and displays the Windows CardSpace–Welcome
dialog box. Click Don’t Show Me This Page Again, and then click OK.

If you have not yet created or installed any cards, the list of information cards will be
empty, apart from the Add A Card icon.

	 2.	 Click the Add A Card icon, and then in the Add A Card window, click Create A Personal
Card.

	 3.	 In the Edit A New Card window, type Valid ShoppingCartService Test Card for the
Card Name property, type Fred@Adventure-Works.com in the Email Address prop-
erty, and then click Save. The details for the information card are shown in the following
image.

Download from Wow! eBook <www.wowebook.com>

638	 Windows Communication Foundation 4 Step by Step

The new information card should appear in the list of cards in the Windows CardSpace
console. The email address for this card represents a user that is authorized to access the
operations in the ShoppingCartService service.

	 4.	 Add another personal card. In the Edit A New Card window, specify Invalid Shopping
CartService Test Card for the Card Name property, Sid@Adventure-Works.com for
the Email Address property, and then click Save. The email address for this card repre-
sents a user that is not authorized to invoke the operations in the ShoppingCartService
service.

	 5.	 Close the Windows CardSpace console.

Test the ShoppingCartService Service

	 1.	 In Visual Studio, start the solution without debugging. Wait for the service to start and
display the message “Service running.” In the client application console window display-
ing the message “Press ENTER when the service has started,” press Enter.

Note  The ProductsServiceHost application assumes that you still have port 8010 reserved.
If this is not the case, then open a Visual Studio Command Prompt window as Administrator
and run the following command, replacing UserName with your Windows user name:

netsh http add urlacl url=http://+:8010/ user=UserName

When the client application invokes the first operation in the ShoppingCartService ser-
vice, the Windows CardSpace service intervenes and displays the Windows CardSpace
console.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 17  Managing Identity with Windows CardSpace	 639

Note  The Windows CardSpace identity selector runs in a separate desktop session from
the user to prevent other applications from being able to interfere with it. For this reason,
whenever the Windows CardSpace console appears, the user’s desktop is dimmed and
inaccessible.

Notice that Windows CardSpace recognizes that the certificate used by the Shopping
CartService service is not fully verified and displays the following warning:

Click Yes, Choose A Card To Send.

Important  If Windows CardSpace displays this message when you access a commercial
Web service, you should be very careful because it indicates that the Web service’s certifi-
cate might not have originated from a recognized certification authority. In this situation,
you should probably click No and decline to send your credentials to the site.

	 2.	 Windows CardSpace displays a list of cards that contain email addresses and so match
the claims required by the service. Select the Valid ShoppingCartService Test Card, and
then click Send.

The client application resumes and runs as it has done in previous chapters. The selected
card contains an email address identifying a user that the ShoppingCartService service
allows to invoke the various operations it implements. Notice that although the client
application makes several calls to the service, Windows CardSpace intervenes only on
the first call in the session.

Download from Wow! eBook <www.wowebook.com>

640	 Windows Communication Foundation 4 Step by Step

Note  If you take more than one minute to select and send the card, the client application
stops with the exception “The operation is not valid for the state of the transaction.” This is
because the AddItemToCart operation is part of a transaction initiated by the client applica-
tion, and the transaction timeout specified by the client application is one minute. If this
happens, stop the client application and service, restart the solution, and select the Valid
ShoppingCartService Test Card when prompted by Windows CardSpace.

Generally, it is not good practice to gather user input during a transaction. For situations
such as this, you can programmatically request a token for a specific card in advance of the
transaction starting and then supply this token when the first operation occurs. Note that
the API that Windows CardSpace currently provides for performing these tasks is unmanaged
and requires that you are familiar with C++.

	 3.	 Press Enter to close the client application console window, but leave the service running.

	 4.	 In Visual Studio, in Solution Explorer, right-click the ShoppingCartClient project, point to
Debug, and then click Start new instance. This action starts a new instance of the client
application.

	 5.	 In the client application console window, press Enter. The Windows CardSpace console
appears again. This time, however, you don’t get the warning that the Web service
is using a suspect certificate—this warning only appears the first time you access the
service. Windows CardSpace also organizes the list of matching cards and informs you
which cards you have previously sent to the Web service:

	 6.	 Select the Invalid ShoppingCartService Test Card, and then click Send.

This time the client application stops and reports the exception, “Access is denied.”
The email address in this card identifies a user (Sid@Adventure-Works.com) to which
the ShoppingCartService service has not granted access.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 17  Managing Identity with Windows CardSpace	 641

	 7.	 Press Enter to close the client application console. Press Enter to close the service appli-
cation console.

One important point that you should have learned from this exercise is that incorporating
CardSpace into a client application reduces the need to provide custom code that gathers
credentials from the user, authenticates them, and transmits them to the service. The binding
configuration enables the WCF runtime and CardSpace to perform these tasks for you. This
decoupling of the authentication mechanism from the application lets you concentrate on the
business logic of the application. If a service decides it wants to identify users in a different
way, you can update the security policy on the client accordingly and specify the details; the
client application code should not need to change.

Using an Identity Provider
In the previous exercises, Windows CardSpace acted as its own identity provider, verifying the
claim made by the user before sending a SAML token containing the claim information to the
service. I mentioned earlier that you might not want to rely on the veracity of self-issued cards
in a commercial environment. Instead, you should use information cards issued by trusted
third-party identity providers, such as banks, credit card companies, government agencies,
and so forth. It is important to realize that the claims on an information card are simply a rep-
resentation of a set of rights. The rights themselves are retained by the identity provider, and
the identity provider can withdraw these rights at any time, rendering the user’s information
card invalid. Additionally, the service must be prepared to trust the identity provider, as the
identity provider authenticates requests on behalf of the service.

Note  The System.IdentityModel.Claims.ClaimSet class that you used in the authorizeUser method
in the previous exercise contains a property called Issuer. You can examine this property to obtain
information about the identity provider that issued the claims in the claimset and reject them if
you do not wish to trust this particular provider. Additionally, rather than letting the WCF runtime
determine which identity provider to use, a service can explicitly specify the address of an identity
provider as part of its security policy; you can configure this information as part of the security set-
tings for a binding.

A user can request an information card from a third party as an out-of-band operation. If the
third party approves the request, it can create an information card file and send it to the user.
This file is a signed XML file, containing data in a format that Windows CardSpace recognizes.
The user can then install this file into Windows CardSpace using the “Install A Managed Card”
feature of the Windows CardSpace console (this is on the same page in the Windows CardSpace
console that you use to create self-issued cards). If the user tries to create a card with a forged
set of claims, the third party will not be able to verify those claims. Consequently, it will not
issue a token when the user attempts to use the card.

Download from Wow! eBook <www.wowebook.com>

642	 Windows Communication Foundation 4 Step by Step

More Info  Remember that Windows CardSpace is built on accepted WS-* protocols. Microsoft
provides documentation on how Windows CardSpace uses these protocols and how to build non-
WCF services that can interact with Windows CardSpace for issuing cards and verifying claims. For
more information, see the document, “A Guide to Interoperating with the Information Card Profile
V1.0,” available online at http://msdn.microsoft.com/en-us/library/bb298803.aspx.

The Microsoft Web site also provides an article called “Creating Managed Cards,” which shows
how to build an application that can create a signed XML file containing claims that a user can
import into Windows CardSpace. This sample is available online at http://msdn.microsoft.com/
en-us/library/aa967567.aspx.

Configuring a WCF Client Application and Service to Use an Identity
Provider
You have seen that an identity provider actually needs to perform two related tasks: it issues
claims, and it verifies that the claims submitted by a client application are genuine and issues
a security token. The component of the identity provider that performs claims verification
and issues tokens is usually referred to as a Security Token Service, or STS. In the exercises you
performed earlier, Windows CardSpace provided the STS itself. For a production environment,
you could consider deploying Active Directory Federation Services 2.0. This is a server role
that runs on Windows Server 2008. It provides an STS that can issue, authenticate, and trans-
form claims.

Alternatively, you can also build your own STS. The details are beyond the scope of this
book, but the Visual Studio documentation includes a description of the process in the article,
“How To: Create a Security Token Service” (also available on the Microsoft Web site at http://
msdn.microsoft.com/en-us/library/ms733095.aspx).

When you use an STS other than that provided with Windows CardSpace, you must configure
the client application with the address of this STS. The identity selector on the client com-
puter uses this information to contact the STS and obtain a security token. You can provide
this information programmatically or in the application configuration file. If you use the WCF
Configuration Editor to edit the application configuration file, the key properties are in the
Issuer page of the binding security configuration, as shown in Figure 17-1.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 17  Managing Identity with Windows CardSpace	 643

Figure 17-1  Configuring the Issuer properties for a WCF client application.

Specify the URI of the STS in the Address property. You can optionally provide a binding con-
figuration if the STS has particular communications requirements, such as reliable sessions.
You can use the Identity tab to indicate a certificate in the local certificate store to use for vali-
dating the identity of the STS.

The token issued by an STS can be in one of several formats. By default, the client application
requests a token that conforms to the SAML 1.1 specification. However, if the WCF service
expects a token in a different format, you can specify the token type in the IssuedTokenType
property on the Security page. The STS should respond with a token of this type.

More Info  For more information about these properties and how to set them programmatically
rather than using an application configuration file, see the topic “How To: Create a WSFederation
HttpBinding,” in the Visual Studio documentation (also available online at http://msdn.microsoft.
com/en-us/library/aa347982.aspx).

Claims-Based Authentication in a Federated Environment
Claims-based authentication is an extremely powerful and flexible mechanism that you
can use in a variety of scenarios. For example, suppose the Fabrikam organization wants
to make one of its Web services available to users belonging to other partner companies,
such as AdventureWorks, but not to the general public. One way to authenticate users from

Download from Wow! eBook <www.wowebook.com>

644	 Windows Communication Foundation 4 Step by Step

AdventureWorks who are attempting to access the Fabrikam service would be for Fabrikam
to implement an STS and issue information cards for each employee of AdventureWorks.
However, if AdventureWorks has a large number of employees, then maintaining a list of valid
users in the Fabrikam system can quickly become an unmanageable task. If Fabrikam has sev-
eral other partner organizations besides AdventureWorks, whose employees should also be
able to access the Fabrikam service, then the scope of the problem multiplies. Furthermore,
should Fabrikam really be concerned with the details of who works for AdventureWorks? All
the Fabrikam service requires is that the user is a verified employee of AdventureWorks but
not any other details.

To solve this problem, it can help to think of an STS as a service that converts claims of one
type into claims of another. The WS-Trust specification on which the concept of an STS is
based defines a “language” for requesting and issuing claims. An organization can implement
an STS that verifies its employees’ claims, and outputs tokens that can be used as claims for
another STS belonging to another organization (the exact details of the WS-Trust specifica-
tion are beyond the scope of this book). What does this mean, and how does it help? Look at
the following possible solution to the problem of Fabrikam authenticating AdventureWorks
employees.

■■ The Fabrikam organization has an STS that issues a single claim to AdventureWorks,
effectively stating that it recognizes any employee that AdventureWorks authenticates
as an employee as being a valid user of the Fabrikam Web service.

■■ AdventureWorks implements its own STS. Users inside AdventureWorks have informa-
tion cards issued by the AdventureWorks STS containing a claim asserting that they are
valid employees of AdventureWorks (the “employee claim”).

■■ An application run by a user within AdventureWorks that requires access to the Fab-
rikam Web service actually sends the “employee claim” of the user to the Adventure-
Works STS. This STS verifies that the user really is an employee and returns a token
containing a verified “the user is an employee of AdventureWorks” claim.

■■ The application then sends this new claim to the STS inside the Fabrikam organization.
The Fabrikam STS verifies the authenticity of this claim to establish that it is genuine and
was issued by a recognized partner organization, and then issues another token con-
taining an authenticated claim that the client application uses to access the Fabrikam
Web service.

Figure 17-2 depicts the flow of claims and security tokens described by this scenario.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 17  Managing Identity with Windows CardSpace	 645

4

3

2

1

5

Fabrikam Security
Token Service

Fabrikam STS issues
claim to Adventure-Works
out of band

Fabrikam STS responds with token
for accessing Web service

Fabrikam
Web

Service

Application sends “employee
of Adventure-Works” claim
to Fabrikam STS

Adventure-Works
Security Token

Service

Claim issued by
Fabrikam to
Adventure-Works

STS responds with “employee
of Adventure-Works” claim

Application sends
“employee claim”
to STS

Claim issued by
Adventure-Works

to employee

Application sends
token for accessing
Web service

Figure 17-2  Cooperating Security Token Services.

Note  This is a somewhat simplified view of the process, and there are other security aspects that
a scheme like this requires you to implement, such as authenticating and protecting the physical
communications between organizations.

The Fabrikam organization can issue similar claims to other partner companies so that their
employees can access the Fabrikam service as well. If Fabrikam wishes to withdraw the rights
of a partner company, it needs to rescind only a single claim. Of course, Fabrikam can issue
individual claims to its own employees as well.

This mechanism is generally referred to as federated security. Each user is authenticated, but
the authentication is the responsibility of the individual organizations to which they belong.
Internally, each organization operates in an autonomous manner, implementing its own secu-
rity policies and authenticating users in its own way.

A key aspect of federated security is the confidence that different organizations have with
each other’s authentication mechanisms. As long as an organization implements a strong
security policy, partner organizations can trust that if the organization maintains that “user x
is valid,” then that user is genuinely valid. Security is always a matter of confidence and trust.
In the past, different organizations have tried to protect their systems from unauthorized

Download from Wow! eBook <www.wowebook.com>

646	 Windows Communication Foundation 4 Step by Step

access by using a wide variety of techniques, often based on proprietary protocols. This fre-
quently becomes a problem as soon as organizations need to share information with each
other, using ad hoc solutions that often open holes in the security infrastructure of these
organizations. The increasing use of STSs and the adoption of the various WS-* protocols can
help to standardize the way in which organizations protect their communications and their
users, making their security mechanisms more interoperable.

Implementing federated security is a non-trivial exercise, but to assist you Microsoft has
released Windows Identity Foundation (WIF). This is the new identity model framework for
Windows, and it provides many of the features needed to build claims-based applications and
services, configuring federated security, and supporting CardSpace information cards. WIF
also includes a class called SecurityTokenService that you can extend to build your own custom
STSs (WIF provides a Visual Studio template, “WCF Security Token Service,” which generates a
class and configuration based on the SecurityTokenService class).

WIF is a large framework in its own right, and the details of how to use it are beyond the
bounds of this book, but for more information, visit the Microsoft Windows Identity Founda-
tion page at http://msdn.microsoft.com/en-us/security/aa570351.aspx. Together with Card-
Space and WCF, WIF provides an important set of tools for helping to implement identity
management and federated security in a simple-to-use but robust manner.

Summary
In this chapter, you have seen how to use Windows CardSpace to implement claims-based
security. You have learned how to configure a WCF client application and service to interact
with Windows CardSpace and how to use a self-issued card to send a claim to a service. You
have seen how a service can query the values of claims it receives to authorize access to oper-
ations. You have also looked at how to configure a client application and service to use an
STS for authenticating claims. Finally, you have seen how organizations can use claims-based
authentication and STSs to implement federated security.

Download from Wow! eBook <www.wowebook.com>

647

Chapter 18

Integrating with ASP.NET Clients and
Enterprise Services Components

After completing this chapter, you will be able to:

■■ Create a WCF service that can interoperate with an ASP.NET client application.

■■ Integrate a COM+ application into a WCF solution.

A key feature of WCF is the ability to use it to build heterogeneous solutions, protecting
your existing investment in existing components and software. WCF is based on commonly
accepted WS-* standards and protocols. This means that you can create services that can
communicate with client applications running on platforms other than Microsoft Windows
and developed using other technologies (such as Java), as long as they conform to the same
WS-* standards and use the same protocols. If you publish the metadata for your WCF ser-
vice, many Java tools vendors provide utilities that can query this metadata and generate Java
proxy classes, in much the same way that svcutil does. The converse situation is also true. You
can use WCF to build client applications that connect to Java Web services—again, as long as
those Java Web services conform to the same WS-* standards and protocols as WCF. If these
services publish their metadata, you can use the svcutil utility to generate proxy classes for
these services.

You may also have a number of components, services, and applications created by using
Microsoft technologies that predate WCF, such as COM+ and ASP.NET. Again, WCF protects
your investment in these technologies by letting you to integrate these items into a WCF
solution.

This chapter describes two common scenarios. First, you will see how to configure a WCF
service to enable interoperability with a legacy ASP.NET Web client application. Then you will
learn how to integrate a legacy COM+ application into a WCF solution by exposing it as a
WCF service.

Creating a WCF Service That Supports an ASP.NET Client
Microsoft developed ASP.NET as a framework for building Web applications. It includes a large
number of components that developers can incorporate into interactive Web pages, and a
structure for processing requests and generating Web pages in response to those requests.
Part of the ASP.NET framework is concerned with building Web services. However, the Web
services model implemented by ASP.NET now seems quite primitive, as it does not provide

Download from Wow! eBook <www.wowebook.com>

648	 Windows Communication Foundation 4 Step by Step

support for many of the WS-* protocols that have emerged in recent years. Consequently,
ASP.NET Web services and client applications cannot easily make use of the WS-* specifications
that cover features such as reliable sessions, transactions, or even message-level security (ASP.
NET provides its own implementation of some of these features, and you can use transport-
level security over the HTTPS transport to protect messages).

Microsoft subsequently released the Web Services Enhancements (WSE) as an add-on to ASP.
NET. WSE included support for some selected WS-* standards; however, WSE was just a tem-
porary solution, and you should consider using WCF for all new Web service development.
However, it is probably not feasible for your organization to suddenly stop using your exist-
ing ASP.NET services and applications while you build new versions with WCF. Furthermore, if
your ASP.NET Web services and client applications are functioning perfectly, why should you
replace them? You are far more likely to migrate Web services to WCF in a piecemeal fashion,
either as you need to add new features to a specific Web service or as you retire a service and
replace it with a Web service that implements new functionality. Additionally, it might not
be feasible or desirable to migrate existing ASP.NET Web client applications to WCF. Conse-
quently, you might have a large number of ASP.NET Web client applications in everyday use
in your organization that need to be able to connect to ASP.NET and WCF Web services. It is
therefore important to understand how to support existing ASP.NET Web client applications in
a WCF service.

In the following exercise, you will see how to build a WCF service that an ASP.NET Web client
application can access (WCF client applications can also access it, of course).

Examine an Existing ASP.NET Web Service and Client Application

	 1.	 Using Visual Studio, open the solution file ASPNETProductsService.sln located in the
Microsoft Press\WCF Step By Step\Chapter 18\ASPNETService folder (within your Docu-
ments folder).

This solution contains an ASP.NET Web service called ASPNETProductsService and a
client application that connects to this service. Both applications are legacy applications
that were constructed by using the .NET Framework version 2.0.

Note  In this exercise, assume that the ASPNETProductsService Web service is a copy of a
production Web service deployed elsewhere in your organization by using IIS and imple-
menting transport-level security. For ease of testing and configuration, this copy of the Web
service executes using the ASP.NET Development Web Server supplied with Visual Studio
and consequently does not support SSL and the HTTPS protocol. However, the Web client
application can be configured to connect to the Web service over an HTTPS connection,
and you will provide transport-level security when you implement the WCF version of the
Web service.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 18  Integrating with ASP.NET Clients and Enterprise Services Components	 649

	 2.	 Using Solution Explorer, open the ASPNETProductsService.cs file in the App_Code folder
of the C:\...\ASPNETProductsService project and examine its contents in the Code And
Text Editor window.

This Web service is a legacy ASP.NET version of the ProductsService service, providing
the ListProducts, GetProduct, CurrentStockLevel, and ChangeStockLevel Web methods.
However, the Web methods use ADO.NET rather than the Entity Framework to access
the AdventureWorks database (the Web service was created before the Entity Frame-
work was available). Also, because some of the Web methods construct raw SQL state-
ments from the parameters passed in, they check that these parameters do not contain
character sequences or strings that are indicative of a possible SQL injection attack.

The web.config file contains the connection string that the application uses to connect
to the database.

Important  If you are not running a local instance of SQL Server Express, you will need to
modify the value property of the configuration setting in this file to connect to the correct
server.

The ASPNETProductsService.cs file provides an implementation of the Product class,
tagged with the Serializable attribute to enable the ASP.NET runtime to transfer instances
back to the ASP.NET client application.

Notice the namespace and name of the Web service (the ASPNETProductsService class).
The namespace dates back to 2005, when the service was built; the WCF version of the
Web service will use this same namespace to remain compatible with existing ASP.NET
client applications, as shown in the following code example:

[WebService(Namespace = "http://adventure-works.com/2005/01/01",

 Name = "ProductsService")]

public class ASPNETProductsService : System.Web.Services.WebService,

 IProductsService

{

 ...

}

	 3.	 In the C:\...\ASPNETProductsService project, right-click the ASPNETProductsService.asmx
file, and then select View In Browser.

Internet Explorer starts and displays the list of Web methods implemented by the service.
Display the WSDL description of the Web service by clicking the Service Description link
displayed on this page.

Download from Wow! eBook <www.wowebook.com>

650	 Windows Communication Foundation 4 Step by Step

In the WSDL document displayed by Internet Explorer, note the following points:

❏❏ The return type of the ListProducts Web method (List<string>) is serialized as a
sequence of strings in a type named ArrayOfString in the http://adventure-works/
2005/01/01 schema.

❏❏ The Product type is also in the http://adventure-works/2005/01/01 schema. It has
four elements named, in order: Name, ProductNumber, Color, and ListPrice.

❏❏ The SOAP action for the ListProducts Web method is http://adventure-works/
2005/01/01/ListProducts.

❏❏ The SOAP action for the GetProduct Web method is http://adventure-works/
2005/01/01/GetProduct.

❏❏ The SOAP action for the CurrentStockLevel Web method is http://adventure-works/
2005/01/01/CurrentStockLevel.

❏❏ The SOAP action for the ChangeStockLevel Web method is http://adventure-works
/2005/01/01/ChangeStockLevel.

Close Internet Explorer when you have finished browsing the WSDL document and
return to Visual Studio.

	 4.	 In Solution Explorer, open the Program.cs file for the ASPNETProductsClient project
in the Code And Text Editor window. You should recognize much of the code in this
application. It connects to the ASP.NET Web service and tests each of the Web methods
in turn.

The client application makes use of a Web service proxy generated by Visual Studio
using the Add Web Reference command. You will use this same proxy to connect to the
WCF service later.

Note  In the production environment, the Web service uses the ASPNETProductsService
certificate to protect communications with the client application (this version of the Web
service currently does not use this level of protection because it runs using the ASP.NET
Development Server in this exercise). In a subsequent exercise, you will use a test certificate
generated by using the makecert utility, so the client application contains code that invokes
the Enact method of the PermissiveCertificatePolicy class to bypass certificate verification
(you saw this class in Chapter 4, “Protecting an Enterprise WCF Service”). Once again, it is
worth emphasizing that the PermissiveCertificatePolicy class is provided for testing purposes
only because we do not have access to a genuine certificate; you should never include it in a
production environment.

	 5.	 Open the app.config file in the ASPNETProductsClient project by using the Code And
Text Editor. This configuration file contains the ASPNETProductsClient_ProductsService_
ProductsService setting. This setting was generated by the Add Web Reference command
in Visual Studio (the Add Web Reference command generates a proxy and configuration

Download from Wow! eBook <www.wowebook.com>

	 Chapter 18  Integrating with ASP.NET Clients and Enterprise Services Components	 651

file for accessing an ASP.NET Web service, in the same way that the Add Service Reference
commands generates a proxy for a WCF service). It specifies the address of the ASP.NET
Web service.

	 6.	 Start the solution without debugging. The ASP.NET Development Server starts, and
the client application runs. The client application console generates a list of all product
numbers, displays the details of a water bottle, displays the stock level of water bottles,
and then updates this stock level.

Press Enter to close the client application console when the application has finished.

You have now seen the existing ASP.NET Web service and client application. Your next task is
to implement a WCF service that provides the same functionality. Other than making minor
modifications to the configuration file to refer to the new service, the ASP.NET client application
must be able to connect to the WCF service and run unchanged using the .NET Framework 2.0.

Implement a WCF Service to Replace the ASP.NET Web Service

	 1.	 Add a new project to the solution by using the WCF Service Library template, which
is located in the WCF folder, in the list of installed templates in the Add New Project
dialog box. Name the project WCFProductsService and save it in the Microsoft Press\
WCF Step By Step\Chapter 18\ASPNETService folder (within your Documents folder).

	 2.	 In Solution Explorer, rename the file IService1.cs to IProductsService.cs. Allow Visual
Studio to change references to the IService1 types to IProductsService.

	 3.	 Open the IProductsService.cs file in the Code And Text Editor and remove all comments
and code except for the using statements at the top of the file.

	 4.	 Copy the code for the Product class, and the IProductsService interface from the ASPNET
ProductsService.cs file in the App_Code folder in the C:\...\ASPNETProductsService project
to the IProductsService.cs file.

	 5.	 In the IProductsService.cs file, modify the definition of the Product class as follows:

❏❏ Replace the Serializable attribute for the Product class with the DataContract
attribute.

❏❏ Set the Namespace property of the DataContract attribute to http://adventure-
works.com/2005/01/01. This is the namespace expected by the legacy ASP.NET
client application. If you specify a different namespace, the ASP.NET client applica-
tion will not be able to connect to it without making changes to the code.

❏❏ Tag each member of the Product class with a DataMember attribute to ensure that
the members are serialized in the same order in which they appear in the class,
and that they have the correct names in the serialization stream.

Download from Wow! eBook <www.wowebook.com>

652	 Windows Communication Foundation 4 Step by Step

The Product class should now look like this (the new additions are shown in bold):

// Data contract describing the details of a product

[DataContract (Namespace="http://adventure-works.com/2005/01/01")]

public class Product

{

 [DataMember(Order=0, Name="Name")]

 public string Name;

 [DataMember(Order=1, Name="ProductNumber")]

 public string ProductNumber;

 [DataMember(Order=2, Name="Color")]

 public string Color;

 [DataMember(Order=3, Name="ListPrice")]

 public decimal ListPrice;

}

	 6.	 By default, the WCF service will serialize the List<string> value returned by the ListProducts
operation using a different type and schema from that expected by the ASP.NET client
application, which expects an ArrayOfString type in the http://adventure-works.com/
2005/01/01 namespace. Add the following class to the IProductsService.cs file under-
neath the Product class:

// Data contract for seralizing a list of strings

// using the same schema as the ASP.NET Web service

[CollectionDataContract(Namespace = "http://adventure-works.com/2005/01/01")]

public class ArrayOfString : List<string>

{

}

The CollectionDataContract attribute indicates that the class is a collection and that it
will be serialized appropriately as a series of elements.

	 7.	 Make the following modification to the IProductsService interface:

❏❏ Add the ServiceContract attribute shown in bold in the code that follows. In this
attribute, specify the namespace (http://adventure-works.com/2005/01/01)
and name (ProductsService) expected by the ASP.NET client application.

❏❏ Specify that the service should support sessions (SessionMode.Allowed).

❏❏ Mark each method with an OperationContract attribute that explicitly specifies the
names of the Action and ReplyAction messages.

❏❏ Change the return type of the ListProducts operation to ArrayOfString.

The IProductsService interface should look like this (the new additions are shown in bold):

// ASP.NET compatible version of the service contract

[ServiceContract(Namespace = "http://adventure-works.com/2005/01/01",

 Name = "ProductsService",

 SessionMode = SessionMode.Allowed)]

Download from Wow! eBook <www.wowebook.com>

	 Chapter 18  Integrating with ASP.NET Clients and Enterprise Services Components	 653

public interface IProductsService

{

 // Get the product number of selected products

 [OperationContract(

 Action = "http://adventure-works.com/2005/01/01/ListProducts",

 ReplyAction = "http://adventure-works.com/2005/01/01/ListProductsResponse")]

 [TransactionFlow(TransactionFlowOption.Allowed)]

 ArrayOfString ListProducts();

 // Get the details of a single product

 [OperationContract(

 Action = "http://adventure-works.com/2005/01/01/GetProduct",

 ReplyAction = "http://adventure-works.com/2005/01/01/GetProductResponse")]

 [TransactionFlow(TransactionFlowOption.Allowed)]

 Product GetProduct(string productNumber);

 // Get the current stock level for a product

 [OperationContract(

 Action = "http://adventure-works.com/2005/01/01/CurrentStockLevel",

 ReplyAction =

 "http://adventure-works.com/2005/01/01/CurrentStockLevelResponse")]

 [TransactionFlow(TransactionFlowOption.Allowed)]

 int CurrentStockLevel(string productNumber);

 // Change the stock level for a product

 [OperationContract(

 Action = "http://adventure-works.com/2005/01/01/ChangeStockLevel",

 ReplyAction =

 "http://adventure-works.com/2005/01/01/ChangeStockLevelResponse")]

 [TransactionFlow(TransactionFlowOption.Allowed)]

 bool ChangeStockLevel(string productNumber, int newStockLevel,

string shelf, int bin);

}

Note  WCF can automatically generate names for the Action and ReplyAction messages,
based on the namespace and name properties of the service contract, but it is better to
be explicit in this case. Additionally, WCF includes the name of the service contract when
it generates message names, whereas the ASP.NET client application only expects the mes-
sages to be named after the namespace. For example, the default message name gener-
ated by WCF for the action for the ListProducts operation would be http://adventure-works.
com/2005/01/01/ProductsService/ListProducts. However, the ASP.NET client application
expects the action message to be named http://adventure-works.com/2005/01/01/
ListProducts.

	 8.	 In Solution Explorer, delete the Service1.cs file from the WCFProductsService project
and add the ProductsService.cs file located in the Microsoft Press\WCF Step By Step\
Chapter 18 folder.

This file contains an implementation of the ProductsService service similar to that shown
in previous chapters. The code uses the Entity Framework to access the AdventureWorks

Download from Wow! eBook <www.wowebook.com>

654	 Windows Communication Foundation 4 Step by Step

database rather than building SQL statements and executing them by using ADO.NET.
The principal differences are:

❏❏ The ListProducts method returns an ArrayOfString object rather than a List<string>
collection.

❏❏ The newStockLevel parameter to the ChangeStockLevel operation is an int rather
than a short.

	 9.	 Add a reference to the ProductsEntityModel assembly to the WCFProductsService proj-
ect. This assembly is located in the Microsoft Press\WCF Step By Step\Chapter 18 folder.
Add a reference to the System.Data.Entity assembly as well.

	 10.	 In Solution Explorer, remove the C:\...\ASPNETProductsService project from the solution,
and then build the WCFProductsService project.

You will use the familiar WPF application to host the WCF service. In doing so, you can imple-
ment transport-level security for testing purposes.

Configure the WCF Host Application and Service

	 1.	 Add the ProductsServiceHost project located in the Microsoft Press\WCF Step By Step\
Chapter 18\ProjectsServiceHost folder to the solution.

	 2.	 Add a reference to the WCFProductsService project to the ProductsServiceHost project.

	 3.	 Open the App.config file for the ProductsServiceHost project in the Code And Text Editor
window.

The configuration file defines a single service endpoint with an address of https://
localhost:8040/ProductsService/Service.svc. The binding this endpoint uses is basicHttp
Binding. The basicHttpBinding binding is designed for maximum interoperability with
Web services and client applications that do not make use of any WS-* standards, such
as ASP.NET client applications.

	 4.	 Build the solution.

	 5.	 Open a Visual Studio Command Prompt window as Administrator. Type the following
command to create and install the certificate for the ASPNETProductsService service
(refer back to Chapter 4 for a detailed explanation of using certificates to provide
transport-level security):

makecert –sr LocalMachine –ss My –n CN=ASPNETProductsService –sky exchange

	 6.	 Using the Certificates snap-in in the Microsoft Management Console, retrieve the
thumbprint for the ASPNETProductsService service from the Personal certificates store
for the local computer (refer back to the exercise, “Configure the WCF HTTP Endpoint
with an SSL Certificate” in Chapter 4 for a detailed description of how to do this).

Download from Wow! eBook <www.wowebook.com>

	 Chapter 18  Integrating with ASP.NET Clients and Enterprise Services Components	 655

	 7.	 In the Visual Studio Command Prompt window, type the following command to asso-
ciate the certificate with port 8040 (the port used by the WCF service), replacing the
string of digits specified by the certhash argument with the thumbprint of your certifi-
cate (note that you should enter the command on a single line):

netsh http add sslcert ipport=0.0.0.0:8040

 certhash=cf60efed47ae63d73005c6cfa5807b3673176e98

 appid={00112233-4455-6677-8899-AABBCCDDEEFF}

	 8.	 Type the following command to add a new HTTPS reservation for port 8000 (replace
UserName with the name of your Windows account and make sure that you specify
https in the URL):

netsh http add urlacl url=https://+:8040/ user=UserName

	 9.	 Leave the Visual Studio Command Prompt window open and return to Visual Studio.

Test the ASP.NET Client Application

	 1.	 In Solution Explorer, open the app.config file ASPNETProductsClient project by using
the Code And Text Editor window. In the <applicationSettings> section of this file,
change the value of the ASPNETProductsClient_ProductsService_ProductsService setting
to https://localhost:8040/ProductsService/Service.svc. This is the URL of the WCF
service exposed by the ProductsServiceHost application. Save the file.

Important  Make sure that you specify the https scheme in this URL; otherwise, the client
application will hang when it attempts to connect to the WCF service.

Note  In a production environment, an administrator would not have access to the source
code and Visual Studio project files for the ASPNETProductsClient project. Consequently,
the administrator would simply edit the ASPNETProductsClient.exe.config file deployed
with the ASPNETProductsClient application and make this same change.

	 2.	 Set the ProductsServiceHost project as the startup project for the solution.

	 3. 	Rebuild the solution and start without debugging. In the Products Service Host window,
click Start.

	 4.	 Using Windows Explorer, move to the Microsoft Press\WCF Step By Step\Chapter 18
\ASPNETService\ASPNETProductsClient\bin\Debug folder within your Documents folder.
This folder contains the compiled executable for the ASP.NET client application.

	 5.	 In Windows Explorer, double-click the file ASPNETProductsClient.exe to start the ASP.NET
client application.

Download from Wow! eBook <www.wowebook.com>

656	 Windows Communication Foundation 4 Step by Step

The client application runs exactly as before, except this time it connects to the WCF
service rather than the ASP.NET Web service. You can verify this if you stop the
WCF service and run the ASP.NET client application again; it should fail with the mes-
sage “Exception: Unable to connect to the remote server.”

	 6.	 When you have finished, in the Products Service Host window, click Stop, and then close
the application.

	 7.	 Close Visual Studio.

The key to building a WCF service that can be accessed by applications created using other
technologies is interoperability. You have seen throughout this book how WCF implements
many of the standard WS-* standards and protocols, making it compatible with applications
and services that adhere to these standards and protocols. To provide connectivity to older
applications, like those created by using ASP.NET, you must ensure that you provide a bind-
ing that conforms to the limited functionality available to these applications. For maximum
interoperability, you should supply a binding that is compatible with the WS-I Basic Profile.
When you are building a WCF service, this essentially means using the BasicHttpBinding bind-
ing and not mandating the use of message-level security, transactions, or reliable messaging.
However, there is nothing to stop you from adding further bindings that do enable these fea-
tures for other capable client applications to use.

The WS-I Basic Profile and WCF Services
The WS-I Basic Profile constitutes a set of recommendations for building interoperable
Web services. It was defined by the Web Services Interoperability Organization and
describes how a Web service should apply many of the core Web services specifications
that are not covered by the WS-* specifications, such as the SOAP messaging format,
generating a WSDL description of a Web service, and defining the metadata to enable
Web service discovery using Universal Description, Discovery, and Integration (UDDI).
The WS-I Basic Profile essentially describes the lowest common denominator for fea-
tures that a Web service must provide and remain useful. Web services that conform to
the WS-I Basic Profile will be interoperable with client applications and other Web ser-
vices that also conform to the WS-I Basic Profile. (Web services that implement the WS-*
specifications are only interoperable with other Web services that implement the same
WS-*specifications.)

You can use the WCF BasicHttpBinding binding to configure and expose endpoints that
the service can use to communicate with client applications and services that conform
to the WS-I Basic Profile 1.1, including ASP.NET Web client applications.

You can download the specification for the WS-I Basic Profile 1.1 from the WS-I Web site
at http://www.ws-i.org/Profiles/BasicProfile-1.1.html.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 18  Integrating with ASP.NET Clients and Enterprise Services Components	 657

Exposing a COM+ Application as a WCF Service
Any reasonably-sized organization that has been using the Microsoft Windows platform for
any length of time as the basis for their applications will doubtless have systems that make
use of COM+ services and components. Indeed, COM+ provides a fundamental underpinning
of many parts of the .NET Framework. The good news is that with WCF, you can leverage this
technology and reuse your existing COM+ components by building a WCF service wrapper
around them. The .NET Framework 4.0 includes a useful tool called ComSvcConfig, which you
can use to integrate COM+ applications into the WCF service model (you can find this tool
in the C:\WINDOWS\Microsoft.NET\Framework\v4.0.30319 folder, although this location will
change as new versions and updates to the .NET Framework are released). Additionally, the
WCF Service Configuration Editor provides a graphical user interface to many of the features
available in the ComSvcConfig utility.

In the final set of exercises, you will use the WCF Service Configuration Editor and the Com
SvcConfig utility to configure a legacy COM+ application so client applications can access it in
the same way as they access a WCF service. The COM+ application provides an interface that
is very similar to the ProductsService service you examined in the previous exercise. You will
start by examining the code for this component, then you will deploy it by using the COM+
Services Console.

Deploy the Products COM+ Application to the COM+ Catalog

	 1.	 Start Visual Studio as Administrator and open the solution file Products.sln located in
the Microsoft Press\WCF Step By Step\Chapter 18\Products folder within your Docu-
ments folder.

This solution contains a COM+ version of the ProductsService service. It was built by
using the .NET Framework 2.0.

Note  If you are interested in how this COM+ application has been structured, follow steps
2–4 below. However, this understanding is not crucial to the exercise, and if you have never
implemented a COM+ application you can safely skip to step 5.

	 2.	 In Solution Explorer, open the Products.cs file in the Code And Text Editor window.
Examine the Product class in the Products namespace. Notice that this class is very simi-
lar to the Product data contract you implemented in the WCF service. As with the
ASP.NET Web service implementation, this class has been tagged with the Serializable
attribute, as shown in the following:

[Serializable]
public class Product
{
 public string Name;
 public string ProductNumber;

Download from Wow! eBook <www.wowebook.com>

658	 Windows Communication Foundation 4 Step by Step

 public string Color;
 public decimal ListPrice;
}

	 3.	 Inspect the IProductsService interface. This interface defines the methods that the ser-
vice exposes through COM+, in a manner very similar to a WCF service contract:

[ComVisible(true)]

[Guid("A04ED9CA-D61C-984B-AE4D-A164BDC90FD5")]

public interface IProductsService

{

 // Get the product number of selected products

 ICollection ListProducts();

 // Get the details of a single product

 Product GetProduct(string productNumber);

 // Get the current stock level for a product

 int CurrentStockLevel(string productNumber);

 // Change the stock level for a product

 bool ChangeStockLevel(string productNumber, int newStockLevel,

 string shelf, int bin);

 }

Apart from the attributes required by COM+ to identify the component, the most
important difference between this and the WCF version of the interface is the return
type of the ListProducts method. In the WCF service contract, the corresponding opera-
tion returns a List<string> type. COM+ does not support generics, so this version of the
method returns an untyped ICollection object.

	 4.	 Examine the ProductsService class.

This class implements the IProductsService interface and is the equivalent of the service
class in the WCF service. Additionally, this class inherits from the ServicedComponent
class—this is the base class for COM+ serviced components. Notice that this COM+
component does not expose a class interface (the only functionality available is that
specified in the IProductsService interface), but it supports transactions (this is common
practice for COM+ applications):

[ClassInterface(ClassInterfaceType.None)]

[Transaction(TransactionOption.Supported)]

public class ProductsService : ServicedComponent, IProductsService

{

 ...

}

	 5.	 Open the app.config file in the Code And Text Editor window.

Like the ASP.NET Web service in the previous set of exercises, the Products COM+ appli-
cation uses ADO.NET rather than the Entity Framework for accessing the Adventure
Works database. The app.config file contains the connection string that the application
uses to connect to the database.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 18  Integrating with ASP.NET Clients and Enterprise Services Components	 659

	 6.	 Build the solution.

The project compiles into an assembly called Products.dll. This assembly is signed
because you will deploy it to the .NET Framework Global Assembly Cache. (The file
holding the strong name key used for signing the assembly is called ProductsService.snk,
visible in Solution Explorer.)

	 7.	 Open a Visual Studio Command Prompt window as Administrator and move to the
Microsoft Press\WCF Step By Step\Chapter 18\Products\Products\bin\Debug folder
within your Documents folder.

	 8.	 Type the following command to deploy the Products.dll assembly to the Global Assembly
Cache:

gacutil /i Products.dll

	 9.	 On the Windows Start menu click Control Panel, click System And Security, click Admin-
istrative Tools, and then double-click Component Services to start the Component
Services console.

	 10.	 In the Component Services Console, in the left pane, expand the Component Service
node, expand the Computers folder, expand My Computer, right-click the COM+
Applications folder, point to New, and then click Application.

The COM+ Application Install Wizard starts.

	 11.	 On the Welcome To The COM+ Application Install Wizard page, click Next.

	 12.	 On the Install Or Create A New Application page, click Create An Empty Application.

	 13.	 On the Create An Empty Application page, type ProductsService for the name of the
application, ensure that the Activation Type is set to Server Application, and then click
Next.

	 14.	 On the Set Application Identity page, accept the default settings (Interactive User), and
then click Next.

	 15.	 On the Add Application Roles page, click Next.

	 16.	 On the Add Users To Roles page, click Next.

	 17.	 On the Thank You For Using The COM+ Application Install Wizard page, click Finish.

The ProductsService application should appear in the list of COM+ applications, as
shown in the image that follows.

Download from Wow! eBook <www.wowebook.com>

660	 Windows Communication Foundation 4 Step by Step

	 18.	 Expand the ProductsService application, right-click the Components folder, point to
New, and then click Component.

The COM+ Component Install Wizard starts.

	 19.	 On the Welcome To The COM+ Component Install Wizard page, click Next.

	 20.	 On the Import Or Install A Component page, click Install New Component(s).

	 21.	 In the Select Files To Install dialog box, move to the Microsoft Press\WCF Step By Step\
Chapter 18\Products\Products\bin\Debug folder within your Documents folder. Click
the Products.dll assembly, and then click Open.

	 22.	 On the Install New Components page, verify that the Products.ProductsService compo-
nent is correctly identified, as shown in the following image, and then click Next:

	 23.	 On the Thank You For Using The COM+ Component Install Wizard page, click Finish.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 18  Integrating with ASP.NET Clients and Enterprise Services Components	 661

	 24.	 Refresh and expand the Components folder under the ProductsService application in
the Component Services console. After a short delay, the Products.ProductsService com-
ponent should appear:

	 25.	 Leave the Component Services console open and return to Visual Studio.

You can now configure the COM+ application to make it available like a WCF service. The
simplest way to do this is to create a new WCF application configuration file and use the
Integrate command in the WCF Service Configuration Editor. This command provides similar
functionality to using the ComSvcConfig utility from the command line.

Configure the Products COM+ Application as a WCF Service

	 1.	 In Visual Studio, on the Tools menu, click WCF Service Configuration Editor.

	 2.	 In the WCF Service Configuration Editor, on the File menu, point to Integrate, and then
select COM+ Application.

The COM+ Integration Wizard starts.

	 3.	 On the Which Component Interface Would You Like To Integrate? page, expand the
ProductsService node, expand the Components folder, expand the Products.Products
Service component, expand the Interfaces folder, select the IProductsService interface,
and then click Next.

Download from Wow! eBook <www.wowebook.com>

662	 Windows Communication Foundation 4 Step by Step

	 4.	 On the Which Methods Do You Want To Integrate? page, make sure that all four meth-
ods are selected, and then click Next.

	 5.	 On the Which Hosting Mode Would You Like To Use? page, select COM+ Hosted, and
then click Next.

Note that by default, the wizard also creates an endpoint for metadata exchange. Leave
this option enabled.

	 6.	 On the What Communication Mode Do You Want To Use? page, select HTTP, and then
click Next.

	 7.	 On the What Is The Base Address Of Your Service? page, in the Address field, type
http://localhost:9090/COMProductsService, and then click Next.

Note that this is the base address of the service and not its URI. The wizard will gener-
ate an endpoint URI based on the name of the interface and append it to this base
address. In this example, the URI of the service will actually be http://localhost:9090/
COMProductsService/IProductsService.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 18  Integrating with ASP.NET Clients and Enterprise Services Components	 663

	 8.	 On the The Wizard Is Ready To Create A Service Configuration page, click Next.

	 9.	 Verify that the wizard completes without reporting any errors, and then click Finish.

Note that when the wizard finishes, the configuration is not displayed in the WCF
Service Configuration Editor.

	 10.	 In the WCF Service Configuration Editor, on the File menu, point to Open, and select
COM+ Service.

A list of all COM+ applications configured as WCF services appears (just the Products
Service application in this case).

Click the ProductsService application, and then click Select.

The configuration for this service is loaded and displayed in the WCF Service Configura-
tion Editor.

Download from Wow! eBook <www.wowebook.com>

664	 Windows Communication Foundation 4 Step by Step

The service is named using the same globally unique identifiers (GUIDs) that COM+ uses
to identify the COM+ application and class. Make a note of the first GUID in the service
name.

	 11.	 Expand the service and verify that it has two endpoints. One is based on the wsHttp
Binding binding and is the endpoint that client applications connect to. The other is the
metadata exchange endpoint.

The COM+ component supports transactions, so the configuration file also includes
transactional and nontransactional binding configurations for the wsHttpBinding and
netNamedPipeBinding bindings. The binding configuration referenced by the HTTP
endpoint refers to the binding that enables transactions by default.

	 12.	 In the left pane, expand the COM Contracts folder. This folder appears only for COM+
applications configured as WCF services. Expand the child folder named after a GUID,
and then click the exposedMethods node.

The right pane displays the four methods available through this configuration. You can
hide methods from client applications by clicking the Remove button in this pane. Do
not change anything.

	 13.	 Close the WCF Service Configuration Editor. Do not save any changes if you are prompted
(the configuration was saved earlier by the COM+ Integration Wizard).

	 14.	 Start Notepad as an Administrator. On the File menu click Open and move to the C:\
Program Files\ComPlus Applications folder. This folder contains folders for each config-
ured COM+ application. Move to the folder with the same GUID as the application ID of
the COM+ application (this is the GUID that you noted in step 10).

Download from Wow! eBook <www.wowebook.com>

	 Chapter 18  Integrating with ASP.NET Clients and Enterprise Services Components	 665

This folder contains two files: a manifest file, and an application configuration file. The
application configuration file is the file you have just created using the COM+ Integration
Wizard in the WCF Service Configuration Editor.

Note  You will need to select All Files (*.*) in the drop-down list adjacent to the File Name
text box to see these files.

Select the application.config file, and then click Open.

	 15.	 Leave Notepad open and return to Visual Studio. In Solution Explorer, open the app.config
file for the Products project in the Code And Text Editor window.

Copy the <appSettings> section of this file to the Windows clipboard. This section con-
tains the connect string that the component requires to connect to the AdventureWorks
database.

Return to Notepad and paste the contents of the Windows clipboard immediately after
the opening <configuration> tag and before the <system.ServiceModel> tag, as shown
in bold in the following:

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <appSettings>

 <add key="AdventureWorksConnection" value=

 "Database=AdventureWorks;Server=(local)\SQLEXPRESS;IntegratedSecurity=SSPI;"/>

 </appSettings>

 <system.serviceModel>

 ...

 </system.serviceModel>

</configuration>

	 16.	 Save the application.config file, and then close Notepad.

You should now be able to connect to this COM+ application from a client application, just
like it was any other type of WCF service.

Test the Products COM+ Application

	 1.	 Return to the Visual Studio Command Prompt window running as Administrator and
type the following command (replace UserName with your Windows user name):

netsh http add urlacl url=http://+:9000/ user=UserName

	 2.	 Switch to the Component Services console, right-click the ProductsService application in
the COM+ Applications folder, and then click Start.

Download from Wow! eBook <www.wowebook.com>

666	 Windows Communication Foundation 4 Step by Step

	 3.	 Start Internet Explorer and move to the URL http://localhost:9090/COMProductsService.

Internet Explorer displays the page describing how to create a client application for the
WCF service:

	 4.	 Click the link http://localhost:9090/COMProductsService?wsdl. The WSDL description of
the service appears.

	 5.	 Close Internet Explorer.

	 6.	 In Visual Studio, open the solution file ProductsClient.sln located in the Microsoft Press\
WCF Step By Step\Chapter 18\ProductsClient folder.

This solution contains a copy of the client application for testing the ProductsService
service. This code is not quite complete; you will add a statement to create the proxy
object in a later step.

	 7.	 Open the Program.cs file. There is one small change to this code compared with the
program you saw in previous chapters: the statement in the Main method that invokes
the ListProducts operation returns the result into an ICollection object rather than a
List<string>, for the reasons described earlier:

ICollection productNumbers = proxy.ListProducts();

	 8.	 In the Project menu, click Add Service Reference. In the Add Service Reference dialog
box, enter http://localhost:9090/COMProductsService?wsdl for the service URI in the
Address field, and then click Go. In the Namespace field enter ProductsService for the
service reference name, and then click OK.

Download from Wow! eBook <www.wowebook.com>

	 Chapter 18  Integrating with ASP.NET Clients and Enterprise Services Components	 667

Note  If the Add Service Reference Wizard fails to download the metadata for the service
successfully, it is probably because the component has stopped running (it stops if it is inactive
for a while). In this case, return to the Component Services console, right-click the Products
Service application in the COM+ Applications folder, click Start, and then try again.

Visual Studio generates a proxy class for the service and adds it to the Services Refer-
ences folder in Solution Explorer. It also creates an application configuration file.

	 9.	 Open the app.config file by using the Service Configuration Editor. In the Configuration
pane, expand the Client folder, expand the Endpoints folder, and then click the WSHttp
Binding_IProductsService endpoint.

This is the endpoint that the client application uses for accessing the COMProducts
Service service. It is based on the wsHttpBinding binding.

	 10.	 In the Configuration pane, expand the Bindings folder, and then click the WSHttp
Binding_IProductsService binding configuration. The date format employed by the
COM+ application is not as compact as that used by a native WCF service, so you must
increase the MaxReceivedMessageSize property to prevent the ListProducts method
from causing an exception in the WCF runtime for the client. Change the value of this
property to 100000.

	 11. 	Save the configuration file, and then close the Service Configuration Editor.

	 12.	 Add the following using statement to the list at the top of the Program.cs file:

using ProductsClient.ProductsService;

The proxy class you just generated is in this namespace.

	 13.	 In the Main method, add the following statement (shown in bold) before the try block
to create the proxy object:

static void Main(string[] args)

{

 // Create a proxy object and connect to the service

 ProductsServiceClient proxy =

 new ProductsServiceClient("WSHttpBinding_IProductsService");

 // Test the operations in the service

 try

 {

 ...

 }

 ...

}

	 14.	 Start the solution without debugging.

Download from Wow! eBook <www.wowebook.com>

668	 Windows Communication Foundation 4 Step by Step

The client application functions as it has done in previous chapters, generating a list of
bicycle frames, displaying the details of a water bottle, and displaying the stock level
of water bottles and then modifying this stock level.

Tip  If the client application console displays the error, “There was no endpoint listen-
ing at http://localhost:9090/COMProductsService/IProductsService that could accept the
message,” then the COM+ application has again probably shutdown due to inactivity. To
restart the application, return to the Component Services console, right-click the Products
Service application in the COM+ Applications folder, and then click Start.

	 15.	 Press Enter to close the client application console window.

As far as the client application is concerned, there is little discernable difference between this
implementation of the service and previous versions constructed using WCF. The fact that it is
a COM+ component is mostly transparent to the client application.

Summary
In this chapter, you have seen how to build WCF services that can interoperate with legacy
ASP.NET Web client applications and how to integrate COM+ applications into a WCF solution.
WCF also supports a number of other integration and interoperability scenarios. For example,
you can register and configure a WCF service with a COM moniker, so you can access it from
a COM environment such as Microsoft Office VBA, Visual Basic 6.0, or native Visual C++ COM
components. You can also integrate WCF services with .NET Framework Remoting, and you
can build WCF services that can interoperate with applications and services constructed using
WSE. For more information, see the topic “Interoperability and Integration” in the Microsoft
Windows SDK documentation. You can also find this topic online on the Microsoft Web site at
http://msdn.microsoft.com/en-us/library/ms730017.aspx.

Download from Wow! eBook <www.wowebook.com>

	 	 669

Index

A

aborting transaction  357
Abort method of ServiceHost object  114
“Access is denied” message  158
access rights  583
AcknowledgementRange element  386
acknowledgment message

from WCF runtime  386
<AckRequested> block in SOAP header  385
ActionMessageFilter class  526
ActionMessageFilter object  532, 544

for ChannelDispatcher object  527
Action property for OperationContract at-

tribute  428, 532
activation for WCF service

configuring  171–174
Active Directory  123

for storing user roles  153
Active Directory Certificate Services  138
Active Directory Federation Services 2.0  642
activities

passing information from workflow
into  303

returning value from Execute method
of  303

Activity Designer  307
Add Application dialog box  196
AddBindingParameters method  411, 412
AddDefaultEndpoints method of Service-

Host class  82
Adding Behavior Element Extension Sec-

tions dialog box  153, 179, 493
Adding Binding Element Extension Sections

dialog box  392, 394
AddItemToCart activity  342
AddItemToCart message  385
AddItemToCart method  265, 357–358, 468

implementing  247–248
OperationBehavior attribute  354–355

AddItemToCart.xaml file  341

Add New Web Site dialog box  13
address-based routing  523
AddressFilter property of EndpointDispatcher

object  526
Add Service Reference dialog box  30, 441,

588, 666
Add Service Reference Wizard  203, 314,

419, 446, 588
Add Web Reference command  650
ad hoc discovery  492–499

disadvantages  499–546
administrator, running as Visual Studio  39
ADO.NET Entity Framework  10

entity model  579
Advanced Encryption Standard (AES) 128-bit

algorithm  128
Advanced Settings dialog box  51
AdventureWorksAdminHost project  458
AdventureWorks Administrative Operations

service
adding asynchronous operation  448–452
CalculateTotalValueOfStock opera-

tion  447–457
client applications for testing  440
creating  436–440

AdventureWorksAdmin queue, creating
and testing  462–463

AdventureWorksAdminTestClient project  458
AdventureWorks database

Internet Explorer for data display
from  585–587

script to query  368
AdventureWorksEntities class  582
AdventureWorks OLTP sample database  9–10
AfterReceiveRequest method  409
AJAX (Asynchronous JavaScript and XML)  5
AlgorithmSuite property  145
AllowedImpersonationLevel property  161–

162
announcementEndpoint endpoint  519
Announcement Endpoints folder  501

Download from Wow! eBook <www.wowebook.com>

670	 announcement messages

announcement messages
client application modification to cap-

ture  501
ProductsService service configuring to

send to discovery proxy  519
announcement requests, caching in dic-

tionary collection  517
announcements

ProductsService service configuration to
send  500–501

AnnouncementService class  500
Anonymous value for AllowedImperson-

ationLevel property  162
App.config file  32

<client> section  71
<connectionStrings> section  26, 97
contract for client endpoints  107
<endpoint> configuration section  41
for ShoppingCartHost project  418
for ProductsClient application  81
<protocolMapping> section  83
<serviceBehaviors> section  85, 112
<service> section  70

endpoint added  73–74
for ShoppingCartClient application  254
for ShoppingCartHost project  529

<system.serviceModel> section  252
AppFabric. See Windows Server AppFabric
appid parameter  140
application configuration file. See also App.

config file
certificate details in  194
from Entity Data Model wizard  12
for service host application  110

application-defined endpoints, or system-
defined  518

application pool  40
amending identity used by  180

Application Pool property  498–546
applications. See also client applications

building to host WCF service  58–76
ApplyDispatcherBehavior method  411, 412
array length in messages

WCF runtime limits on  485

arrays
data contracts allowing user to send  241

ASP.NET  50
ASP.NET client application

testing  655–656
WCF service to support  647–656

ASPNETDB.MDF database  175
failure when accessing  180

ASP.NET Development Server  24, 27, 439, 493
and discovery  498
port  436
stopping  481

ASP.NET Empty Web Site template  580–584
ASP.NET Membership provider  166–183

configuring WCF service to use  179–180
ASP.NET PasswordRecovery control  177
ASPNETProductsService.cs file  649
ASP.NET Role Provider  124, 166–183

configuring WCF service to use  179–180
ASP.NET Web application

submitting HTTP DELETE request  576
ASP.NET Web service

examining  648–651
replacing WCF service with  651–654

ASP.NET Web Site Administration Tool  166,
174, 192

ASP.NET Web site, creating to host WCF
service  170, 196

Assign activity  321
AsymmetricSecurityBindingElement

class  77, 404
AsyncCallback object  448, 507
asynchronous messaging pattern  333, 337
asynchronous methods  433
asynchronous operations  446–457

in AdventureWorks administrative ser-
vice  448–452

invoking in client application  446–447
in WCF service  447–457
MSMQ for implementing  463
preventing proxy close during  455

Asynchronous Programming design pat-
tern  507

Download from Wow! eBook <www.wowebook.com>

	 bindings	 671

AsyncPattern property of OperationContract
attribute  447, 448

AsyncResult class  448
AsyncResult.cs file  508
Atom Publishing Protocol  585, 587
authenticated user, identifier for  191
authentication  7, 121, 165

with ASP.NET Membership Provider and
Role Provider  166–183

claims-based, in federated environ-
ment  643–646

for NetTcpBinding binding  151–152
service messages with certificate  195–202
transport-level  125
users with certificates  184–202
in Windows environment  123–124
of Windows users  146–152

authority, verifying  124
authorization  122–123, 165

identity to determine  625
implementing custom  634
testing for WCF service  158–163
of users  152–160

AuthorizationContext property of service
security context  633–634

Authorization.ServiceAuthorizationManager
property  635

Authorization Store Role Provider  124
autonomy of services  42

B

backward compatibility  238
Base64 encoded string  477
base address  56
Basic256 encryption algorithm  128
Basic authentication  150

configuring BasicHttpBinding binding to
implement  147–148

BasicHttpBinding binding  78, 79, 83, 135,
360, 478, 530, 543, 656

and client callbacks  606
configuring

for message-level security  142–143
for WCF service  147–148
for Windows authentication use  150–

151

default  33
properties  82
and sessions  278
SOAP messaging format for  429
TransferMode property of  490
transport-level security

for WCF client  136–137
for WCF service  136–137

BasicHttpContextBinding binding  79, 536,
540, 543

for ChannelFactory object  534
and sessions  278

BeforeSendReply method  409
BeginCalculateTotalValueOfStock meth-

od  448
BeginOpen method  57
behavior extension element

defining  414–419
BehaviorExtensionElement class  414
behaviors

creating custom  411–414
creating for ShoppingCartService ser-

vice  412–414
in WCF Service Model  401–403

BehaviorType property  414
bidirectional communications  606
“big-endian” 32-bit processor  4
binary data, converting for transmission  477
binary encoding  46, 466
binary encoding channel  401
BinaryMessageEncodingBinaryElement

class  77
BindingConfiguration property  136, 439
binding elements  33, 77
bindings  46, 400

client callbacks and  606
for COM+ component  664
composing channels into  403–408
configuring  81–82

IIS to support SSL  167–169
for WCF service  171–174

custom  403
for ShoppingCartClient applica-

tion  395–397
for ShoppingCartService service  392

Download from Wow! eBook <www.wowebook.com>

672	 blocking problems, one-way request for resolving

programmatically creating and us-
ing  405–409

default maximum received message
size  490

and endpoints  76–84
order of elements  403–404
predefined  77–80
properties for message queues  459
SendTimeout property of client  435
and sessions  278
and transaction support  360
and WS-ReliableMessaging protocol  389

blocking problems, one-way request for
resolving  443–447

Body property of TransactedReceiveScope
activity  373

boundaries  42
Breakpoint command for workflow activ-

ity  312
broadcasting shutdown message  500
broker model for publishing and subscrib-

ing  620
Browse And Select A .Net Type dialog

box  306
Buffered value for TransferMode prop-

erty  382, 487
BufferRemaining element  387
buffers

memory for  487
for messages  387

Build Deployment Package wizard  325
business analyst  295
business logic of operations, amend-

ing  212–215
business processes  295
business-to-business solutions  376

C

caching announcement requests in dic-
tionary collection  517

Caching Service, AppFabric  55
CalculateTotalValueOfStock operation

in AdventureWorksAdmin service  447–
457

invoking asynchronously  454–457
invoking in client application  452–454

CallbackBehavior attribute  606
CallbackContract property of ServiceCon-

tract attribute  600
callback contracts

adding to ProductsService service  607
defining  600–601
eventing mechanism implemented

with  614–622
implementing operation in  601–604
invoking operation in  604–605
for publication and subscription ser-

vice  620
to notify client of one-way operation

outcome  606–614
callback method  434, 448
callbacks  333. See also client callbacks
CancellationHandler property  376
CanCreateInstance property  279, 286, 340,

346
of Receive activity  333

catch handlers, in client application  108
certificates

authenticating service messages
with  195–202

client application required to authenti-
cate using  186–187

client applications modified to authenti-
cate with  187–188

code for WCF client to override validation
checking  141–142

creating to identify users  188
exporting  188–189
importing to Client Certificate

Store  198–199
importing to Trusted People store  188
investigating identifiers of users authenti-

cated with  190–191
scripts for managing  189
thumbprint of  138
updating client applications to send  190
for user authentication  184–202
WCF runtime determination of valid-

ity  141
Certificates dialog box  193
CertificateValidationMode property  186
certification authority (CA)  138, 184, 185

Download from Wow! eBook <www.wowebook.com>

	 client applications	 673

certmgr console
vs. certmgr utility  189

certmgr utility  188, 193, 200, 635
ChainTrust  186
ChangePrice operation  600
ChangeStockLevel custom activity  375
ChangeStockLevel method  183

testing  36
ChannelDispatcher object  401, 408,

524–526
ServiceThrottle property of  466, 467, 469
and timing of servicing session  473

channel factory, for ShoppingCartSer-
viceRouter service  534

ChannelFactory object  401, 419
BasicHttpContextBinding object for  534
for connecting to ProductsService ser-

vice  420–424
creating client-side  428

ChannelListener object  400, 408
channels  47

basing type on service contract  422
composing into bindings  403–408
for transactions and reliable sessions  394
in WCF Service Model  400–401

channel shapes  428
channel stack  47, 77, 204, 392, 400, 524–

546
constructing  428
instantiating  419
interaction with service instance  48

channel variable, invoking methods
through  422

checkout_Click method  292
Checkout method of ShoppingCartServiceImpl

class  250
Choose Data Source dialog box  11
claims-based security  626

configuring ShoppingCartService service
for  629–632

implementing  626–641
claimset  627
Claim Type Element Editor dialog box  630
class

Entity Framework generation of  12
for implementing service contract  45

Class Library template  10

client applications
ASP.NET, testing  655–656
authentication

with certificates  186–187
authentication of service  122
binding configuration for  33
building  30–38
callback contract for notification of one-way

operation outcome  606–614
certificate for authenticating of service

to  185
communication with service  5, 49
configuring

to authenticate WCF service  199–200
to connect with TCP  52
to use identity provider  642–643
transaction flow to ShoppingCartService

service  364
connecting to service programmati-

cally  419–426
correlating with service instances  346–

347
data formatting by  203
disconnecting  425
endpoints for  81
fault information use  99
for ASP.NET Web services

examining  648–651
invoking asynchronous operation  446–447
invoking CalculateTotalValueOfStock

operation  452–454
modifying

to authenticate with WCF service by
using certificate  187–188

to capture announcement messag-
es  501

to catch SOAP faults  96
to connect to updated WCF ser-

vice  181–182
to discover ProductsService ser-

vice  495–498
to send probe requests to discovery

proxy  519–521
platforms for  647
for ProductsSales REST Web service  565–

570
proxy class regenerated for  103–107

Download from Wow! eBook <www.wowebook.com>

674	 ClientBase abstract class

reconfiguring  41
reconfiguring to connect to HTTP end-

point  74–75
regenerating proxy class and updat-

ing  229–231
reliable messaging in  382
reliable sessions enabled  381
request processing  47–49
running  38
for SalesData service testing  588–592
sending large binary data objects

to  478–484
sending message and processing re-

sponse in  427–431
sending messages to message queue

from  460–461
service availability by host application  46
ShoppingCartService service configured

to flow transactions from  360
streaming data  487–488
testing  424–431
for testing AdventureWorks Administrative

Operations service  440
for testing ShoppingCardService ser-

vice  253–257
trace messages from  383–390
transaction creation in  361–364
trustworthiness  165
unexpected messages from  116–118
updating

after breaking change to service con-
tract  223

to send certificate to WCF service  190
to subscribe to event  618

verifying authentication of WCF ser-
vice  200–201

for WCF Data service
exception handlers  597–598

WCF data service consumption  587–595
WCF service configuration to authenticate

with to Localhost certificate  196–198
for workflow service

creating  313–316
testing  317

ClientBase abstract class  425–426

client binding, SendTimeout property
of  435

client callbacks  599, 600–606
bindings and duplex channels  606
reentrancy and threading in  605–606

Client Certificate Store, importing certifi-
cate to  198–199

client communications, controlling  419–431
ClientCredentials property  151

of proxy object  149
ClientCredentials.UserName property of

proxy object  182, 190
clientEndpointName variable  345
client endpoint, vs. service endpoint  71
client library, WCF Data Services  587
client/server model of processing  599
client-side ChannelFactory object, creat-

ing  428
Closed event of ServiceHost class  57
Closed state of ServiceHost object  114
Close method

of proxy object  36
of ServiceHost object  57

Closing event of ServiceHost class  57
closing service host console window  350
Closing state of ServiceHost object  114
cloud computing platform  8
CodeActivity class  302
code activity, generating for operation  314
COM+  2
COM+ Application Install Wizard  659
COM+ applications

as WCF service  657–668
configuring  661–665

testing  665–668
COM+ catalog, deploying Products COM+

application to  657–661
COM+ Component Install Wizard  660
COM+ Integration Wizard  661
CommittableTransaction object  362
communications

bidirectional  606
channel stack and  204
inter-process  2–9

compatibility  43
CompensableActivity activity  376

Download from Wow! eBook <www.wowebook.com>

	 Custom Demux sample	 675

compensating transactions  376
Complete method of TransactionScope

object  363, 366
CompletesInstance property  280, 286
Component Object Model (COM)  2
Component Services console, WS-Atomic-

Transaction configuration tab  370
CompositeType class  16
computer, global configuration settings  83
Computer Management console  154
ComSvcConfig tool  657
ConcurrencyMode property  258, 445

of ServiceBehavior attribute  443
ConcurrentDictionary class  502
concurrent sessions, restricting maximum

number of  257
concurrent users, and data changes  353
confidentiality of communications  122
Configuration-Based Activation  29
configuration files

for completing tasks  399
support for configuring behavior  414

ConfigurationName property, of workflow
service  298

Connection Properties dialog box  11
connection string

for persistence database  349
for ProductsEntityModel assembly  310
for ShoppingCartHost project  286

<connectionStrings> element, in Web.config
file  27

consistency, transactions for  351–377
Contact entity  551
content-based routing  523
Content Definition dialog box  299, 321,

340
context-based correlation  336
ContractFilter property, of EndpointDispatcher

object  526
contract-first development  16
contracts

defining  16–18
sharing by services  42

Contract Type Browser  73
cookies  243
correlation handle  335

Correlation Initializers property, of Receive
activity  335

corruption of messages
preventing  122

Create A New Binding dialog box  127, 129,
172, 181, 360, 392

Create A New Service Wizard  458
Create A New Standard Endpoint dialog

box  494
CreateBehavior method  414
CreateBufferedCopy method  410
CreateChannel method  422
CreateCustomer method  571
Created state, of ServiceHost object  114
CreateMessage method of Message

class  429
Create New Role page  178
Create New SQL Server Database dialog

box  283
CreateSecureConversationBindingElement

method  407
Create Self-Signed Certificate dialog

box  167
CreateSequence message  384
CreateSequenceResponse message  384
Create User page  176–177
credentials of user  172
C# source file, generating  106
Current.PrimaryIdentity.Name property, of

ServiceSecurityContext object  191
Current.PrimaryIdentity property  183
Current property, of OperationContext

class  367
CurrentStockLevel method  22, 22–23

testing  35
custom activity  341
custom application, hosting workflow ser-

vice in  328–332
custom AuthorizationManager  635
custom behaviors  402

creating  411–414
CustomBinding object  403
custom bindings, programmatically creat-

ing and using  405–409
custom channels  400
Custom Demux sample  527

Download from Wow! eBook <www.wowebook.com>

676	 database

D

database
custom code activities for querying  301
verifying updates  368

database deadlock  357
DatabaseFault object  102

Visual Basic for creating  321
database management system  2
Database property

of FindProduct activity  308
of ProductExists activity  307

data contract  16
adding class  17
defining for WCF service  16–17
serialization and security  241–242

DataContract attribute  17, 224
Namespace property  228

data contracts  203
adding field and examining default val-

ue  237–238
adding new members  231
adding WCF service operation for investi-

gating serialization  234–236
appearance  224
changing namespace for  228–229
compatibility of versions  238–242
data member name change impact

on  227
modifying  224–242
sequence of members  232

changing  225–228
versioning strategy  231

data contract serializer  233
data format for file sharing  4
data members, name change impact on

data contract  227
data queries, with REST Web service imple-

mentation  549–570
DataServiceConfiguration class  582

SetEntitySetAccessRule method  582
DataServiceContext class  589

HTTP message generation  596
SaveChanges method  595

DataServiceException exception  598
DataServiceQueryException exception  598

DataServiceQuery properties  589
DataServiceRequestException excep-

tion  598
DataServices class  584
data store for durable service  279
DataSvcUtil utility  588
data transmission. See Message Trans-

mission Optimization Mechanism
(MTOM)

data variable, workflow problems from
renaming  298

db_owner role, in AdventureWorks data-
base  41

DCOM (distributed COM)  2
deactivating service instance, selectively

controlling  270–271
deadlocked database  357
debugging

output messages for  438
workflow service  312

decrementStockLevel method  356
decryption, and performance  465
DefaultAlgorithmSuite property  77
default basicHttpBinding binding  33
default endpoints  82–84
default service, code for  14
default value

of field added to data contract  237–238
for service throttling  472

Delegation value for AllowedImperson-
ationLevel property  162

DeleteCustomer method in ProductsSales
class  575–576

DeleteCustomer operation  572
DELETE requests (HTTP)  570, 576
delivery models for publishing and sub-

scribing  620
delivery of messages, verifiable  122
DeliveryRequirements attribute  390
Denial of Service attacks  241, 484, 486,

490
one-way operations and  446

deploying WCF service
in IIS without .svc file  29
to IIS  39–41

Download from Wow! eBook <www.wowebook.com>

	 EndpointDispatcher objects	 677

Description property of ServiceHost ob-
ject  413

deserialization  14
developer  295
dictionary collection, caching announce-

ment requests  517
digital signature  122
Direct Internet Message Encapsulation

protocol (DIME)  478, 484
disconnecting client applications  425
disconnecting from WCF service  36
DiscoverableProductsService Web applica-

tion  498–546
discovery  491–522

ad hoc  492–499
configuring services to support  492
handling service announcements  499–506
multicast message from service support-

ing  500
DiscoveryClient class  496

Find method  496–497
instantiating object  520

discovery endpoint
creating  517
for listening for Probe requests  493

discovery proxy  507–522
configuring ProductsService service

to send announcement messages
to  519

implementing  508–517
modifying client application to send

probe requests to  519–521
testing  521–522

DiscoveryProxy class  507
DispatchRuntime object, OperationSelector

property of  527
distributed environment, security in  6
distributed transaction  351–377
Distributed Transaction Coordinator

(DTC)  352
DivideByZeroException  111
DNS servers

hacker’s rerouting of messages  195
doClientWork method, in ShoppingCart-

Client project  468
Documents folder  11
DoWork method  604

duplex channels  428
client callbacks and  606

DurableOperation attribute  279, 285
Durable property, for message queue  459
durable service

ShoppingCartService service reconfigura-
tion as  284–288

state maintenance with  279–294
testing  292–294, 349–350
workflow  347–350

DurableService attribute  279, 285, 529
Duration property

of FindCriteria object  497
Dynamic Ports property  436

E

Edit WCF Configuration command  68
EmitDefaultValue property of DataMember

attribute  238
encoding channel  392, 400

in channel stack  48
encoding format of messages  46
encoding mechanism, and performance  466
encrypted message, sender authentica-

tion  184
encryption  122, 125

message-level or transport-level  170
and performance  465

EndAsyncSleep method  452
EndCalculateTotalValueOfStock method  448
EndOpen method  57
EndpointAddressFilterMessage object

for ChannelDispatcher object  527
EndpointAddressMessageFilter class  526
EndpointAddress objects

code creating  428
collection of  496–497

“An endpoint configuration for contract...
could not be loaded” message  53

EndpointConfiguration property  314
EndpointDiscoveryMetadata object for dis-

covery proxy  507
EndpointDiscoveryMetadata property  503
EndpointDispatcher objects  401, 524–526

and filters  526–546
for channel stack  525

Download from Wow! eBook <www.wowebook.com>

678	 EndpointNotFoundException exception

EndpointNotFoundException exception  90
endpoints

associating multiple with same URI  401
and bindings  76–84
for client application  81
contents  32
default  82–84
discovery, for listening for Probe re-

quests  493
for client application for REST service  569
HTTP, reconfiguring client application to

connect to  74–75
listening to  333
metadata, for service  30
reconfiguring service to support mul-

tiple  72–76
specifying for service listening  26
system-defined or application-defined  518
TCP address specified  53
testing  76
WCF runtime determination of default

values  68
Enter key, code to wait for  71
Enterprise Services  3, 8
Entity Data Model Wizard  11

application configuration file from  12
Entity Framework  10

and data on demand  21
model  547, 551

error checking in methods  555
error messages, from message processing

failure  48
eventing mechanism, callback contract to

implement  614–622
Event Sinks  622
Event Sources  622
ExactlyOnce property

for message queue  459
exception handlers  20

exceptions ignored in  95
in client application for WCF Data ser-

vice  597–598
order of  108

Exception object, InnerException property  95
exceptions

client application failure with  41
detecting and handling  93

in service host applications  114–118
lack of details for security  111
reporting unanticipated  110–113
thrown by WCF runtime  272
WCF configuration to send details  112

Execute method of activity
return value from  303

exporting
certificates  188–189
WCF service certificate  198–199

eXtensible Markup Language. See XML
(eXtensible Markup Language)

Extension Configuration Element Editor
dialog box  416, 545

<extensions> element in ShoppingCartHost
App.config file  418

F

“Failed to generate a user instance of SQL
Server due to a failure...” message  180

FaultContract attribute  318
adding or removing  223
in service contract  100–101

Faulted event, of ServiceHost class  57
Faulted state

for ServiceHost object  115
method to attempt to determine

cause  115
FaultException class  94
FaultException<> exception  318
FaultException handler

testing  97–99
FaultException object  110

based on SystemFault object  103
catch handler for  96
limitations  99

fault handling
in host application  115–116
in ProductsWorkflowService service

adding  318–323
testing  324

in workflow service  317–325
federated environment

claims-based authentication in  643–646
Fielding, Roy  547
file format for file sharing  4

Download from Wow! eBook <www.wowebook.com>

	 HostController class	 679

file name, changing for file with service
contract  17

filters
defining rules for routing messages  544
EndpointDispatcher object and  526–546

filter table, for RoutingService class  539
FindCriteria class, IsMatch method  504
FindItem activity  338, 341
Find method, of DiscoveryClient

class  496–500
FindPrivateKey utility  197
FindProduct activity  307–308

Database property  308
implementing  301–305
ProductNumber property  308

FindProduct class  304
FindResponse object  496
FindService method, adding to ProductsSer-

viceProxy class  510
forwarding messages  523
“Four Tenets of Service Orientation”  42
front-end service, routing message by  523

G

garbage collector  257, 425
GenerateDailySalesReport operation  458
GetAllCustomers method in ProductsSales

class  557, 566
GetAllOrders method  552
GetBody<> method  410
GetCallbackChannel method  604
GetCustomerForOrder method in Products-

Sales class  553, 556, 566
GetCustomer method in ProductsSales

class  558, 566
GetData method  15, 16
GetDataUsingDataContract method  15, 16
GetItemFromDatabase activity  339
GetOrder method  553, 566
GetOrdersForCustomer method in Products-

Sales class  558, 566
GetPhoto operation, in ShoppingCartPhoto-

Service service  478
GetProduct operation  21, 22, 299–301,

315, 323

implementing logic  305–309
workflow defining  309

GetShoppingCart method  250, 267, 359
global configuration settings for computer  83
global environment, security and privacy

in  6–7
groups

adding user account  424
creating  154–155

H

hackers  122, 165, 195
and replay attacks  390

handle variable, workflow use of  298
handshaking mechanism, for security con-

text token  407
hard-coding user certificate details  194
hash  184
help page for WCF service  28
hijacking shopping cart  262
host applications

building  63
configuring for WCF Service to support

TCP  51–52
fault handling  115–116
for ProductsSales REST Web service  559–

561
for ProductsServiceHost application  70
for ProductsServiceProxy service  517–518
service availability to client applications  46
service configuration information for  24
for ShoppingCartService service  251–253
for ShoppingCartService workflow ser-

vice  343–345
tasks required by  45
unexpected message handling  116–118
for Web services  49
for workflow service

in custom application  328–332
in IIS  325–328

HostController class
adding variable  65
handleException method  65–66
start_Click method  66
stop_Click method  67

Download from Wow! eBook <www.wowebook.com>

680	 HTTP

HTTP
default binding for transport  83
for listening to port  75
reserving port  75–76
transport channel  401
verifying non-use  54

HTTP DELETE requests  570
submitting  576

HTTP endpoint  205
adding to WCF service  72–74
configuring  135
configuring with SSL certificate  137–141
reconfiguring client application to con-

nect to  74–75
httpGetEnabled property

of serviceMetadata behavior  85, 118
HTTP GET requests, REST operation re-

sponse to  552
HttpGetUrl property, of serviceMetadata

element  56
HTTP MERGE message  596
HTTP POST requests  570
HTTP PUT requests  570, 596
HTTP service protection  142–145

at transport level  135–142
HttpsGetEnabled property  172
HttpsGetUrl property

of serviceMetadata element  56
HTTPS protocol  125, 195

and transport-level security  137, 172
HttpStatusCode enumeration  555
HttpsTransportBindingElement class  77
HTTPS transport channel  401
HTTPS transport, configuring  370

I

IAdventureWorksAdmin interface  437
IAsyncResult design pattern  57, 446, 447
IAsyncResult object  507
IChannelFactory object  534
IContextManager object  290, 291
IContractBehavior interface  411
identification of users  625
identifying service  201–202
<identity> element  201
identity, proof of  121. See also authentication

identity provider
client application configuration to

use  642–643
for Windows CardSpace  641–643

Identity value for AllowedImpersonation-
Level property  162

IDispatchMessageInspector interface  409
IDispatchOperationSelector interface  527
IDisposable interface  36, 604
IDuplexSessionRouter interface  541
IEndpointBehavior interface  411
IExtensibleDataObject interface  240
IInstanceProvider interface  474
IIS DefaultAppPool  40
ImpersonateCallerForAllOperations attri-

bute  161
Impersonate value for AllowedImpersonation-

Level property  162
impersonation

of services, preventing  122
to access resources  160–162

Import Application Package wizard  326
importing

certificates to Trusted People store  188
certificate to Client Certificate Store  198–

199
WCF service code into IIS Web site  170

InactivityTimeout property  381, 383
IncludeExceptionDetailInFaults proper-

ty  112, 439
information cards for Windows Card-

Space  627, 628
creating  637

InitData property, for trace information  132
InitializeService method  580
InnerChannel property  290
InnerException property of exception  95,

320
input argument  303
input channel  428
inspecting messages  408–419
installing

Windows Process Activation Service
(WAS)  50

Windows service  88–89
“instance context” for services  602

Download from Wow! eBook <www.wowebook.com>

	 Localhost certificate	 681

InstanceContextMode property  48
of ServiceBehavior attribute  258–261,

267
InstanceContext object  48, 603
InstanceData table  293
instance pooling  474
integrity, message-level  126
Internet  3

as hostile environment  166
Internet Explorer

data display from AdventureWorks data-
base  585–587

HTTP GET requests submitted from  561
testing WCF service with  27–30
turning off feed-reading view  585

Internet Information Services (IIS)  49
configuring bindings to support

SSL  167–169
default port for HTTP protocol  73
deploying ProductsService service  498–500
deploying WCF service  39–41

without .svc file  29
importing WCF service code into Web

site  170–171
stopping and restarting  197
workflow service hosting  325–328

Internet Information Services Manager  40,
51, 506

InternetProductsService Web application,
creating  169

inter-process communications  2–9
InvalidOperationException exception  53,

605
IOperationBehavior interface  411
IProductService.cs file  420, 651
IProductsService interface  652, 658
IRequestChannel class

Request method of  536
IRequestReply interface  541
IRequestReplyRouter interface  542
IServiceBehavior interface  411
IService.cs file  15–16
IService interface  15–16
IShoppingCartPhotoService interface  478
IShoppingCartService.cs file

TransactionFlow attributes  355

IShoppingCartService interface  468
ISimpleProductsService.cs file  427
ISimpleProductsService interface  427
ISimplexDatagramRouter interface  541
ISimplexSessionRouter interface  541
IsInitiating property of OperationContract

attribute  272
IsInRole method  157

of System.Web.Security.Roles class  183
IsMatch method of FindCriteria class  504
IsolationLevel property  376
isolation levels for transactions  354, 362
IsRequired property of DataMember at-

tribute  238
IssuedTokenType property  630
IsSystemendpoint property  518
IsTerminating property of OperationContract

attribute  272

J

JavaScript  5
JavaScript Object Notation (JSON)  6, 548, 552
Java Web services  647

K

“keep alive” message  383
Kerberos protocol  123
Kind property  494

L

large binary data objects, sending to client
application  478–484

LastMessage message  388
listener object  132
Listener Settings dialog box  207, 593
ListProducts method  20, 118, 208

in ProductsServiceImpl class  95
testing  34

load-balancing  465, 523
algorithm  535
for router  528

Load method, of XamlServices class  330
Localhost certificate

removing from certificate store  200

Download from Wow! eBook <www.wowebook.com>

682	 LocalMachine certificate store, removing certificate from

WCF service configuration to authenti-
cate to client applications with  196–
198

LocalMachine certificate store, removing
certificate from  200

locked resources, transactions and  376
locks, for data-modification transactions  354
LogEntireMessage property  131, 382
LogMalformedMessages property  382
LogMessagesAtServiceLevel property  131
LogMessagesAtTransportLevel property  131
logs

for exceptions and errors from service
failure  89

minimizing overhead  207
long-running transactions  376–377
lost messages  380

M

machine.config file  83
MainWindow class  345
MainWindow.xaml.cs file  345
makecert command  654
makecert utility  138, 188, 196, 631
mapping client certificates to Windows ac-

counts  194
MatchAllMessageFilter object  532
Match method  526, 527
MaxArrayLength property  485, 486
MaxBufferSize property  486
MaxBytesPerRead property  485, 486
MaxClockSkew property  393
MaxConcurrentCalls property, for service-

Throttling  466, 471, 473
MaxConcurrentInstances property, for

serviceThrottling  466, 471
MaxConcurrentSessions property, for

serviceThrottling  467, 471, 473
MaxConnections property of binding con-

figuration  257
MaxDepth property  485, 486
MaxNameTableCharCount property  485,

486
MaxReceivedMessageSize property  486,

490

MaxResponseDelay property  494
MaxResults property of FindCriteria ob-

ject  497
MaxStringContentLength property  485,

486
membership provider  180
memory, service requirements  475
MERGE message (HTTP)  596
MessageBox class  437
Message class, CreateMessage method

of  429
MessageClientCredentialType property  152,

181, 186
MessageEncoding property of binding

configuration  478, 482, 483
MessageFilter abstract class  526
MessageFilter class  539
message headers, and routing to other

services  528
message-level encryption  170

for NetTcpBinding binding
for WCF service  127
in WCF client  129–131

message-level security  126, 421
BasicHttpBinding binding configured

for  142–143
message queue support for  460
and streaming  490
Web site to host WCF service implement-

ing  196
message patterns

for workflow service  332–337
message queues  433, 457–463

sending messages from client applica-
tion  460–461

WCF service use of  458–460
message queuing URI, format for  459
messages. See also reliable messaging;

routing
buffers for  387
configuring tracing for WCF service  131–

132
displaying in WCF service  235
display of announcement  506

Download from Wow! eBook <www.wowebook.com>

	. NET Framework	 683

host application handling of unexpect-
ed  116–118

inspecting  408–419
“keep alive”  383
preventing corruption  122
routing based on contents  539
sending programmatically  427–431
sending to client display  214
sequence order  379
transactions and  372
verifying sender identity  195
volatile  457

MessageSecurityException exception  148
Message security mode for binding  142
message sequence number  385
Message Transmission Optimization Mech-

anism (MTOM)  400, 466, 476–487
configuring ShoppingCartPhotoService

service to transmit messages  482–
484

controlling message size  484–487
messaging pattern

interfaces specifying  428
metadata

adding to services collection  509
publishing  56
for WCF service description  29
Web service publishing of  26

metadata endpoint
for service  30

methods, overloading  219
Microsoft

Component Object Model (COM)  2
Microsoft Authorization Manager  124
Microsoft Message Queue (MSMQ)  8, 49,

457
asynchronous operations implementa-

tion  463
Microsoft .NET Framework 3.51. See .NET

Framework
Microsoft Silverlight  5
Microsoft Transaction Server  2
Microsoft Windows Network Monitor  484
minFreeMemoryPercentageToActivateService

attribute  475

MsmqIntegrationBinding binding  80
and reliable messaging  389
and sessions  278

MTOM. See Message Transmission Optimi-
zation Mechanism (MTOM)

multicast message, from service supporting
discovery  500

MultipleFilterMatchesException exception  527
multiple replies to the client  337
multipleSiteBindingsEnabled property  173,

439
Multipurpose Internet Mail Extension

(MIME) specification  477
multi-threading

vs. reliable sessions  445
transactions and  372

N

named pipes  2, 49, 85, 125
restricting maximum number of concur-

rent sessions  257
Name property

of OperationContract attribute  219
names

for bindings  128
for interface  611
for operations, changing  222

namespace parameter  106
Namespace property of DataContract at-

tribute  228
namespaces

changing for data contract  228–229
statements referencing  14
for WCF service class  25, 27

NegotiateServiceCredential property  186
nested data, data contracts allowing user

to send  241
nested TransactionScope object  363
.NET Framework  3, 37, 50

assembly  47
common language runtime (CLR)

exceptions  94–113
XML serialization features  224

Download from Wow! eBook <www.wowebook.com>

684	. NET Framework garbage collector

.NET Framework garbage collector  257,
425

.NET Framework Global Assembly
Cache  659

NetMsmqBinding binding  80, 360, 459,
463

and reliable messaging  389
and sessions  278

NetNamedPipeBinding binding  80, 369,
382

and client callbacks  606
creating  87
and sessions  278

NetPeerTcpBinding binding  80, 360, 599
and sessions  278

netsh utility  75, 205, 256, 655
for SSL configuration  138

NetTcpBinding binding  78, 80, 369, 381,
382

authentication mechanism for  151–152
and client callbacks  606
configuration  82
configuring to require Username authen-

tication  150
message-level encryption  127

for WCF service  127–129
in WCF client  129–131

and reliable messaging  389
and sessions  278

NetTcpContextBinding binding  80, 344,
346, 369, 536

and sessions  278
network analyzers  122, 484
network operating systems (NOS)  2
network resource

account access to  75
NETWORKSERVICE account  180, 197
networks, reliability issues  47, 379
New Client Element Wizard  254
New Group dialog box  154
New Private Queue dialog box  462
New Project dialog box  58
New Service Element Wizard  68, 251, 330,

438

New User dialog box  154
New Web Site dialog box  170
nonces  391
Notepad, to view XML file  268

O

OASIS (Organization for the Advancement
of Structured Information Standards)  7,
380

ObjectContext class  580
OfflineAnnouncementReceived event  503
OLE transactions, implementing  352–369
OnBeginFind method  508

overriding  515
OnBeginOfflineAnnouncement method  508

overriding  514–515
OnBeginOnlineAnnouncement method  507

overriding  513–514
OnBeginResolve method  508

overriding  516
OnEndFind method  508, 515
OnEndOfflineAnnouncement method  508–

509
overriding  514–515

OnEndOnlineAnnouncement method  507
overriding  513

OnEndResolve method  508
overriding  516

one-way messaging  336
one-way operations  433, 434–446

callback contract for client notification of
outcome  606–614

and Denial of Service attacks  446
effects  434–435
implementing  436–445
recommendations  445–446
and timeouts  435–436
and transactions  435

one-way request, for resolving blocking
problem  443–447

OnlineAnnouncementReceived event  500
subscribing to  503

OnPriceChanged operation  600
Opened event, of ServiceHost class  57

Download from Wow! eBook <www.wowebook.com>

	 platforms for client applications	 685

Opened state, of ServiceHost object  114
Opening event, of ServiceHost class  57
Opening state, of ServiceHost object  114
Open method

to listen for requests  56
of WorkflowServiceHost class  330

OperationBehavior attribute  270
Impersonation property  160
TransactionAutoComplete property

of  371, 372
TransactionScopeRequired attribute

of  362
OperationContext class

Current property  367
OperationContext.Current property  604
OperationContract attribute  18, 47, 272,

552
Action property of  532
AsyncPattern property  447, 448
Name property  219
properties  428
ProtectionLevel property  206, 208

operations
adding to service contracts  222
adding to WCF service  218–222
asynchronous  446–457

in AdventureWorks administrative ser-
vice  448–452

invoking in client application  446–447
in WCF service  447–457
preventing proxy close during  455

removing from service contract  222
OperationSelector property of Dis-

patchRuntime object  527
operations in ShoppingCartService service

controlling sequence  273–274
testing  274–294

Ordered property  390
Organization for the Advancement of

Structured Information Standards
(OASIS)  7, 380

output channel  428
Output.config file  106

output messages, for testing or debug-
ging  438

overloaded constructor, for ProductsSer-
viceClient class  34

overloading methods  219

P

parameters
adding to existing operation in service

contract  216–218
changing in operation  223
for service contract methods  224

passwords  177, 182, 625
query of Active Directory to verify  123
risks in using  184
Windows Integrated Security and  151

Peer Channel  599
PeerOrChainTrust  187
peer-to-peer networking  599
PeerTrust  186
PerCall instance context mode  259, 260,

474
maintaining state with  262–270

PerCall service instance context mode  389,
445

performance  465
of network, multiple endpoints for  72

PermissiveCertificatePolicy.Enact method  181
PerSession instance context mode  258,

371, 379, 389, 468, 474, 529
as default  262
ReleaseInstanceMode property and  271

PersistBeforeSend property  347
Persistence Provider Arguments Editor dia-

log box  287
persistence store

creating for SQL Persistence Provid-
er  283–284

session state persisting to  290
personal computers, early applications  1–2
Pick activity  340
“Plain Old XML” (POX)  548
platforms for client applications  647

Download from Wow! eBook <www.wowebook.com>

686	 pool of service instance objects

pool of service instance objects  474
ports

for ASP.NET Development Web Server  436
binding certificate with thumbprint

to  140
HTTP protocol for listening to  75
removing HTTP reservation for  140

POST requests (HTTP)  570
“The primary signature must be encrypted”

exception  208
PrincipalPermission attribute  156, 182
privacy

in global environment  6–7
message-level  126
XML files and  269

private key  184
protecting  201

private message queue  459
ProbeMatch message  492
Probe message  491

address for sending  519
services responding to  496–497

Probe requests
discovery endpoint for listening for  493
modifying client application to send to

discovery proxy  519–521
ProcessMessage method  531, 535

signature of  532
Product class, modifying definition  651
ProductExists activity

Database property of  307
implementing  301–305
ProductNumber property  307

ProductNumber property
of FindProduct activity  308
of ProductExists activity  307

Products.cs file  106
ProductsEntityModel assembly  301
Products property  21
ProductsSales class

DeleteCustomer method  575–576
GetAllCustomers method  557
GetCustomerForOrder method  556
GetCustomer method  558
GetOrdersForCustomer method  558

ProductsSalesModel.edmx file  551
ProductsSalesProxy class

creating instance  568
ProductsSales REST Web service

client application for  565–570
extending to support data updates  571–

576
hosting  559–561
implementing  554–559
testing  561–565, 577–579

ProductsSales REST Web service con-
tract  550

ProductsServiceClient class  34
ProductsServiceClient proxy, creating in-

stance  497–498
ProductsServiceHost application  70
ProductsServiceImpl class

ListProducts method  95
ProductsServiceProxy class

adding FindService method  510
adding ResolveService method  511
adding WaitForAsyncResult utility meth-

od  512
ProductsServiceProxy service, host

for  517–518
ProductsService service

callback contract added to  607
ChannelFactory object for connecting

to  420–424
configuring

for ad hoc discovery  492–495
to send announcement messages to

discovery proxy  519
to send announcements  500–501

deploying to IIS  498–500
modifying client application to discov-

er  495–498
rebuilding as WCF Service Library  58–59
subscribe and unsubscribe operations

in  615–618
testing  505–506, 619

ProductsWorkflowClient project, adding
service reference  314

ProductsWorkflowService namespace
FindProduct class  304

Download from Wow! eBook <www.wowebook.com>

	 reliable sessions binding element	 687

ProductData class  302
ProductsWorkflowService service

adding item to  301
contents  327
creating  296
custom application for hosting  329–331
fault handling

adding  318–323
testing  324

hosting by IIS, testing  328
ProductsService.xamlx file  323
testing  310–312
testing host  331–332
WCF service in  309

Products.xsd file  104
Program.cs file  71

using statement  33
protection level of operation, changing  223
ProtectionLevel property

of Receive activity  333
ProtectionLevel property of Operation-

Contract attribute  206, 208
proxy class

for client application
for callback contract  610–612

for client application
to test ShoppingCartService service  253

creating for service  419
for communicating with WCF service  49
generating  30
regenerating  31

for client application  103–107, 233
and updating client application  229–231

viewing code  31
proxy object

ClientCredentials property  149
ClientCredentials.UserName property  182,

190
Close method  36
code to wait for Enter key before creat-

ing  71
configuring  36
creating  53, 290
creating instance  34
generating  220
opening  77

preventing close during asynchronous
operation  455

regeneration after service contract
changes  208

public key cryptography  125
public key infrastructure (PKI)  184
public message queues  459
publishing, delivery models for  620
Publish Web Site dialog box  39, 498–546
pull delivery model  620
push delivery model  620
PUT requests (HTTP)  570, 596

R

ReadCommitted isolation level  354
ReaderQuota properties of bindings  241–

242, 485
ReadUncommitted isolation level  354
Receive activity  333, 335

Correlation Initializers property  335
ReceiveAndSendReply activity  334, 336
ReceiveReply activity  334
ReceiveRequest activity  297–298, 321
reentrancy in callback operation  605–606
reference, adding to WCF service  19
regasm command  370
registering callback  259
relativeAddress element  29
ReleaseInstanceMode property  270
ReleaseServiceInstanceOnTransaction-

Complete property  371, 372
reliability of communications  47
reliable message protocol  122
reliable messaging  380–390

implementing  389
in client applications, timeout from  382
vs. reliable sessions  379, 389
and streaming  490

ReliableSessionBindingElement class  77
reliableSession binding extension ele-

ment  394
reliable sessions  444

implementing with WCF  381–390
vs. multiple-threading  445
and replay attacks  390

reliable sessions binding element  406

Download from Wow! eBook <www.wowebook.com>

688	 RemoveItemFromCart method

RemoveItemFromCart method  266, 359
as durable operation  286

RemoveItemFromCart method of Shopping-
CartServiceImpl class  249

RepeatableRead isolation level  354
replay attacks  122, 379, 390–397
ReplayCacheSize property  393
ReplayWindow property  393
ReplyAction property for OperationContract

attribute  428
reply channel  428
reply messages, correlating with request

messages in workflow instance  335–
336

Representational State Transfer model
(REST)  14

request channel  428
request messages  46

activity to send  334
correlating with reply messages in work-

flow instance  335–336
Request method of IRequestChannel

class  536
Request property

of TransactedReceiveScope activity  373
request/response messaging pattern  433
ResolveService method

adding to ProductsServiceProxy
class  511

resources
availability  475
impersonation to access  160–162
locked by transactions  376
and performance  465
service throttling to control use  466–475

response messages  46
response streaming  488
response time of WCF service  467
restoreShoppingCart method  269
REST (Representational State Transfer)

model  14, 547–549
REST Web service

for data updates  570–579
querying data by implementing  549–570
service contract for  550

Result property, of ProductExists activity  307

return type of operation
changing  218, 223

return values
from Execute method of activity  303
for service contract methods  224

RevocationMode property  187
Rich Internet Applications (RIAs)  5–6
role provider  180
RoleProviderName property  179
role providers  124
roles  124

for WCF service
defining  174–179
specifying  156–158

round-tripping  238
by WCF runtime  239–242

RouteOnHeadersOnly property  542
Router class

private fields  533
ProcessMessage method  535
ServiceBehavior attribute  533
static constructor for  534

routing  523–539
filters defining rules for  544

routing behavior, SoapProcessingEnabled
property of  542

RoutingService class  523, 539–546
RoutingService service

hosting and configuring  540–545
testing  545–546

RunClients.cmd command  619
runtime environment  45

S

SalesData service  587
testing  593

client application for  588–592
SalesDataService class  581–582
SalesData WCF Data Service, testing  584–

587
SalesOrderHeader entity  551
sample database, AdventureWorks

OLTP  9–10
SaveChanges method of DataServiceContext

object  595
saveShoppingCart method  263, 269

Download from Wow! eBook <www.wowebook.com>

	 serialization	 689

scalability
controlling  467
of workflow services  347

Schemas.microsoft.com.2003.10.Serialization.
Arrays.xsd file  105

Schemas.microsoft.com.2003.10.Serialization.
xsd file  105

schemas, sharing by services  42
scope for behaviors  402
scripts

for certificate management  189
to query AdventureWorks database  368

SecureConversationBindingElement ele-
ment  406

Secure Sockets Layer (SSL)  125, 167
configuring  136
configuring IIS bindings to support  167–

169
HTTP endpoint configuration with certifi-

cate  137–141
security. See also Windows CardSpace

basics  121–126
configuring  424–431
data contract serialization and  241–242
federated  645
for HTTP service  142–145
in global environment  6–7
implementing in Windows domain  127–

162
lack of exception detail and  111
message-level  126
and performance  465
replay attacks  379
requirements of service  46
specifying requirements for WCF service

operations  205–207
SQL Server database for information  175
transport-level  125
WCF Data Services template and  582

SecurityAction.Demand parameter  156
SecurityAction.Deny parameter  156
Security Assertion Markup Language

(SAML)  628
SecurityBindingElement class  404, 406
security context token

handshaking mechanism for  407
security risk

hijacking shopping cart  262
on HTTP connection  75

security token in Windows CardSpace  628
SecurityTokenService class  646
Security Token Service (STS)  642–643
SelectOperation method  527
self-issued cards  641

for Windows CardSpace  629
self-signed certificate  167
Send activity  334
SendAndReceiveReply activity  334, 336
Send GetShoppingCart Response activity

PersistBeforeSend property  347
sending messages programmatically  427–

431
Send RemoveItemFromCart Response

activity
PersistBeforeSend property  347

SendReply activity  321, 334, 335, 336
SendReplyToReceiveRequest activity  321,

322
SendResponse activity  297–298, 308
Send SystemFault activity  322
SendTimeout property of client binding  435
<SequenceAcknowledgement> block in

messages  387
Sequence activity  321

for TransactedReceiveScope activity  374
sequence of messages

need for order  379
numbering for  384

“sequence terminated” SOAP fault mes-
sage  381

sequencing operations  243, 271–294
Sequential Service activity  305, 306
serializable class  224

for SQL Persistence Provider  285
Serializable isolation level  354
serialization  14

adding WCF service operation for investi-
gating serialization  234–236

of data contract, and security  241
of publicly accessible classes  263

Download from Wow! eBook <www.wowebook.com>

690	 Server Certificates

Server Certificates  167
service

certification for authenticating to client
application  185

client application communication
with  49

identifying  201–202
implementing successful  8
memory requirements for  475
preventing impersonation  122
response to client requests  47
versioning  211–222
in WCF Service Model  400–401

Service Activation Editor dialog box  171
ServiceActivationException exception  475
service address  46
service announcements

handling  499–506
serviceAuthorization behavior  153
ServiceAuthorizationManager class  634
serviceAuthorization service behavior ele-

ment  161
ServiceBehavior attribute

of Router class  533
ServiceBehavior property  48, 113, 353–377

ConcurrencyMode property of  443
InstanceContextMode property of  258–

261, 267
investigating  260–262

and ReleaseInstanceMode proper-
ty  270–271

ReleaseServiceInstanceOnTransaction-
Complete property  372

of ShoppingCartServiceImpl class  468
TransactionAutoCompleteOnSession-

Close property  372
<serviceBehaviors> section in Shopping-

CartHost App.config file  418
Service Configuration Editor  68
service contract

for generalized WCF service to accept
messages  528

for router service  531
sending Probe request  496

ServiceContract attribute  18, 47
CallbackContract property  600

service contracts  16, 45, 203
adding parameters to existing opera-

tion  216–218
breaking and nonbreaking changes

to  222–223
changes, and proxy regeneration  208
channel type based on  422
defining synchronous and asynchronous

versions of operation  456
FaultContract attribute in  100–101
information on potential faults  99
in ShoppingCartService namespace  245–

246
ISimpleProductsService interface defin-

ing  427
modifying  204–223
multiple  220
for REST Web service  550
selective protection of operations  205–211
SessionMode property of  272
updating  211
for WCF service  18

serviceDebug behavior element  402
service definition file  73
serviceDiscovery behavior element  493, 501
service endpoints  46–47

vs. client endpoint  71
service host applications

application configuration file  110
console window, closing  350
exception management  114–118

ServiceHost class  55–57
AddDefaultEndpoints method  82
events  57
to host WCF service in Windows applica-

tion  58–76
ServiceHost object  407

Description property of  413
opening  57
specifying addresses to be listened to  55
states and transitions  114–115

service instance
correlating clients with  346–347
ID for session  279
interaction with channel stack  48

Download from Wow! eBook <www.wowebook.com>

	 ShoppingCartService.Activities.cs file	 691

selectively controlling deactivation  270–
271

service instance context modes  257–262
service instance pooling  474
service messages, authenticating with cer-

tificate  195–202
serviceMetadata element

httpGetEnabled property  85, 118
Service-Oriented Application (SOA), trans-

actions in  351–377
Service-Oriented Architecture (SOA)  7–9,

42–43, 203
service-oriented wrappers  295
service reference, adding to ProductsWork-

flowClient project  314
Service Reference Settings dialog box  446
services

configuring to support discovery  492
“instance context” for  602

services collection
adding metadata  509

service security context, Authorization-
Context property of  633–634

ServiceSecurityContext class  183
Current.PrimaryIdentity.Name prop-

erty  191
Service.svc file  25
ServiceThrottle class

properties  466–467
service throttling  465, 466–475

configuring  467–474
default values for  472
purpose of  474

serviceThrottling behavior element  471–
472

Service Trace Viewer  396, 481, 483, 594
Service Trace Viewer utility  145
SessionMode property of service con-

tract  272
sessions  445

bindings and  278
disabling  443
for durable service  279
reliability

implementing with WCF  381–390
vs. reliable messaging  379

tables for storing information  293
transactions and  372
in workflow service  337–350

session state, persisting to persistence
store  290

SetEntitySetAccessRule method of DataSer-
viceConfiguration class  582

SetEntitySetPageSize method  583
SetTransactionComplete method  367
shopping cart  243–244, 337

hijacking  262
ShoppingCartBehavior behavior

creating behavior extension element
for  415

ShoppingCartService configuration to
use  416–419

ShoppingCartClient application
configuring to use Windows CardSpace

to send token  635–637
custom binding for  395–397
doClientWork method  468

ShoppingCartGUIClient application  345
addItem_Click method  282
examining  280
poor practices in initial version  283
updating  288–292
user interface code  281–282
version using streaming  489

ShoppingCartHost application
App.config file  529
configuring to host ShoppingCartRout-

erService service  537–538
ShoppingCartInspector.cs file  409
ShoppingCartItem class  245, 285, 338
ShoppingCartPhotoService service  478

configuring to transmit MTOM-encoded
messages  482–484

default process for sending messages  482
GetPhoto operation  478
version using streaming  489

ShoppingCartRouter service
creating  530–537
ShoppingCartHost application configura-

tion to host  537–538
testing  538–539

ShoppingCartService.Activities.cs file  338

Download from Wow! eBook <www.wowebook.com>

692	 ShoppingCartServiceImpl class

ShoppingCartServiceImpl class
AddItemToCart method  265

OperationBehavior attribute  354–355
code to check stock levels  356
GetShoppingCart method  267
InstanceContextMode property of the

ServiceBehavior attribute  267
RemoveItemFromCart method  266

as durable operation  286
restoreShoppingCart method  264, 269
ServiceBehavior attribute of  468

ShoppingCartService service  529–530
applying throttling  468–474
change to authorize users based on

email address  632–634
channels for transactions and reliable

sessions  394
client application for testing  253–257
configuring for claims-based secu-

rity  629–632
configuring to use ShoppingCartBehavior

behavior  416–419
creating  244
creating behavior  412–414
custom binding for  392
host application  251–253
message inspector for  409–411
operations sequence  271–272

controlling  273–274
testing  274–294

programmatically creating and using cus-
tom binding  405–409

reconfiguring as durable service  284–288
reliable sessions enabled  381
state management  262

testing capabilities  267–270
testing  638–641

information cards for  637
transactions  353

configuring client applications for
flow  364

configuring service to flow from client
applications  360

modifications for indicating suc-
cess  366

testing  365–369

using block  361
workflow  338–342

configuring as durable service  347
ShoppingCartService workflow service

hosting  343–345
testing  345–346

shutdown message, broadcasting by ser-
vice  500

signature  185
for MTOM messages  478

Silverlight. See Microsoft Silverlight
Simple Object Access Protocol (SOAP)  547
Single instance context mode  259, 261
Site Bindings dialog box  51, 168
“small-endian” 32-bit processor  4
SOAP (Simple Object Access Protocol)  5,

219
SOAP fault messages

one-way operation and  434
“sequence terminated”  381

SOAP faults  94
modifying client applications to catch  96
strongly-typed  99–110

modifying WCF service to throw  101–
103

WCF client modified to catch  108–110
throwing and catching  94–99

SOAP header, <AckRequested> block  385
SOAP messages  204, 400

for client parameters passed into opera-
tion  532

in Message object  410
MTOM for sending and receiving  476
raw format  484

SoapProcessingEnabled property of rout-
ing behavior  542

SOAP serialization  231
SOAP specification  94, 429
sockets  2
Solution ‘ProductsServiceLibrary’ Property

Pages dialog box  72
“A specified logon session does not exist...”

message  140
spoofing  122
spoof service  185
SQL Persistence Provider  279, 287, 293

Download from Wow! eBook <www.wowebook.com>

	 System.ServiceModel.FaultException object	 693

persistence store for  283–284
serializable class for  285

SqlPersistenceProvider
Factory class  287

SQL Server
adding default accounts for application

pools  41
updating user information in data-

base  192
SQL Server persistence provider  529
SslStreamSecurityBindingElement

class  404
standard endpoints  492

configuration  494
starting

Internet Information Services (IIS)  197
WCF service, code for  65–67
Windows service  85–87

startup projects, multiple projects set
as  256

state information, maintaining between
operations  243

stateless, REST model as  549
state maintenance

with durable service  279–294
with PerCall instance context mode  262–

270
testing capabilities of ShoppingCartSer-

vice service  267–270
in WCF service  244–271
in workflow service  337–350

stopping
Internet Information Services (IIS)  197
WCF service, code for  65–67
Windows service  85–87

StreamedRequest value for TransferMode
property  487

StreamedResponse value for TransferMode
property  488

Streamed value for TransferMode prop-
erty  488

streaming data  487–490
and client application  487–488
message-level security and  490
operation design to support  488–490

ShoppingCartPhotoService version us-
ing  489

stream upgrades  404
strongly-typed SOAP faults  99–110

WCF client modified to catch  108–110
WCF service modified to throw  101–103

subscribe operations in ProductsService
service  615–618

subscribing, delivery models for  620
Subscription Manager  622
svcutil utility  49, 103, 106, 203, 220, 229,

419
/async flag  446

SymmetricSecurityBindingElement
class  404

System.Collections.Concurrent
namespace  502

System.Data.Entity assembly  245
System.Data.Services.EntitySetRights enu-

meration  583
system-defined endpoints

or application-defined  518
SystemFault object

creating  322
FaultException based on  103

System.IdentityModel.Claims.ClaimSet
class  641

System.Net.PeerToPeer namespace  599
System.Runtime.Serialization

namespace  14
System.ServiceModel.Activities

namespace  328
System.ServiceModel assembly, adding

reference to  34
System.ServiceModel.Channels

namespace  405
System.ServiceModel.ClientBase generic

abstract class  425
System.ServiceModel.Discovery.FindCriteria

object  496–546
System.ServiceModel.Discovery

namespace  500, 507
System.ServiceModel.DuplexClientBase

class  601
System.ServiceModel.FaultException ob-

ject  95

Download from Wow! eBook <www.wowebook.com>

694	 System.ServiceModel namespace

System.ServiceModel namespace  14
predefined bindings in  78
WorkflowServiceHost class  328

System.ServiceModel.Routing
namespace  523

System.ServiceModel.Web assembly  549
System.ServiceModel.Web namespace  14,

559
System.TimeoutException  435
System.Transactions namespace  352
System.Web.Security.Roles class

IsInRole method  183
System.Xml namespace  410

T

TCP endpoint, creating for discovery proxy
connection  520

TCP protocol  49, 72
configuring client application to connect

with  52
configuring host environment for WCF

Service to support  51–52
for discovery  517
protecting at message level  127–135
restricting maximum number of concurrent

sessions  257
TCP transport channel

binding elements to implement  407
templates

Class Library  10
for WCF service  9, 13
for WCF Service Library template  58

Tempuri.org.wsdl file  105
Tempuri.org.xsd file  104
TerminateSequence message  388
testing

AdventureWorks Administrative Operations
service, client applications for  440

AdventureWorksAdmin queue  462–463
ASP.NET client application  655–656
authorization for WCF service  158–163
ChangeStockLevel method  36
client applications  424–431

for workflow service  317
COM+ applications  665–668

CurrentStockLevel method  35
discovery proxy  521–522
durable service  292–294, 349–350
endpoints  76
FaultException handler  97–99
fault handling

in ProductsWorkflowService service  324
ListProducts method  34
output messages for  438
ProductsSales REST Web service  561–

565, 577–579
ProductsService service  505–506
ProductsService service event  619
ProductsWorkflowService service  310–312

host for  331–332
IIS host  328

RoutingService service  545–546
SalesData service  593

client application for  588–592
SalesData WCF Data Service  584–587
ShoppingCartRouter service  538–539
ShoppingCartService service  638–641

client application for  253–257
information cards for  637
operation sequencing  274–294
state management capabilities  267–270
transactions  365–369

ShoppingCartService workflow ser-
vice  345–346

WCF service  41, 182–185
with Internet Explorer  27–30

Windows host environment  70
Windows service  89–90

TestProductsService method  607, 611, 612
text encoding channel  401

binding elements to implement  407
Thawte  138
“There is a problem with the website’s se-

curity certificate” error  174
“This operation would deadlock because...”

message  605
threads

in callback operation  605–606
and service instance lifetime  259

throughput  467, 475

Download from Wow! eBook <www.wowebook.com>

	 Trusted People store	 695

thumbprint of certificate  138
timeouts

one-way operations and  435–436
from reliable messaging in client applica-

tions  382
time-stamped identifier

for replay detection  391
time-stamp in message  122
token in Windows CardSpace  628

specifying type expected  630
trace messages from client applica-

tions  383–390
trace output

examining  133–135
running WCF client and service to exam-

ine  145–146
TraceOutputOptions property

for trace information  132
tracing

configuring  382, 593–595
information for WCF  131
WriteLine statement for  468

TransactedReceiveScope activity  374
properties  373

transactional requirements of service  46
TransactionAutoCompleteOnSessionClose

property  371
of ServiceBehavior property  372

TransactionAutoComplete property  359
of OperationBehavior attribute  355, 371,

372
transaction channels  47
transaction flow binding element  406
transactionFlow binding extension ele-

ment  394
TransactionFlow property  360
TransactionIsolationLevel property  353–377
TransactionProtocol property  360, 369
transactions

aborted client requests impact  474
aborting  357
and multi-threading  372
COM+ component support for  664
configuring client applications for flow to

ShoppingCartService service  364
creating in client application  361–364

enabling in ShoppingCartService ser-
vice  353

for internal consistency  351–377
in ShoppingCartService service, test-

ing  365
in workflow service  373–377
isolation levels for  354
long-running  376–377
and messaging  372
one-way operations and  435
ShoppingCartService service configured

to flow from client applications  360
in WCF service  352–371

TransactionScope activity
workflow client using  375

TransactionScope object
Complete method  363, 366
nested  363

TransactionScopeOption parameter  362
TransactionScopeRequired property  359–

360
of OperationBehavior attribute  355, 362

TransferMode property
of BasicHttpBinding binding  490
of binding configurations  487–488
Buffered setting  382

transport channels  47, 392, 400
in channel stack  48

TransportClientCredentialType proper-
ty  136, 148, 150

Transport Layer Security (TLS)  125, 127
transport-level encryption  170
transport-level security  125, 381, 391, 444,

529
advantages and disadvantages  126
for BasicHttpBinding binding

for WCF client  136–137
for WCF service  136–137

implementing for testing  654
message queue support for  460

transport protocol  46
TransportSecurityBindingElement

class  404
TransportWithMessageCredential

mode  128, 143
Trusted People store  186

importing certificates to  188

Download from Wow! eBook <www.wowebook.com>

696	 TrustedStoreLocation property

TrustedStoreLocation property  187
trust relationships between separate do-

mains  124
trustworthiness

of client applications  165
of client certificates, verifying  186–187

TryCatch activity  323
Catches section  320

types of parameters
changing  218, 223

U

udpAnnouncementEndpoint endpoint  501
udpDiscoveryEndpoint endpoint  492, 494
uninstalling Windows service  90
Universal Description, Discovery, and Inte-

gration (UDDI)  656
UnknownMessageReceived event  57, 118
“Unreachable code detected” warning  191
“An unsecured or incorrectly secured fault

as received from the other party”
message  180

unsubscribe operations in ProductsService
service  615–618

UpdateCustomer method  572, 573–574,
577

UpdateProductDetails method
adding implementation  234

Update Service Reference feature  33
UriTemplate property  552, 571
“URL reservation successfully added”

message  141
user account, adding to group  424
User Account Control dialog box  39
user application

hosting service in  54–57
hosting WCF Service in  84

username Properties dialog box  424
user names  625
usernames  182

Active Directory query to verify  123
Windows Integrated Security and  151

UserName token  172
users. See also authentication

authorization  152–160
concurrent, and data changes  353

creating certificates to identify  188
displaying name when calling operation

in WCF service  146–147
for WCF service, defining  174–179
investigating identifiers authenticated

with certificates  190–191
modifying WCF client to supply creden-

tials  148–150
service authentication of  123
updating information in SQL Server data-

base  192–195
using statement  19, 20, 33

in ShoppingCartService service  361

V

Validate method  411, 412
validating users with Windows CardSpace  627
validation of parameters  555
variables, setting type  315
VeriSign  138
versioning

and data contract compatibility  238–242
services  211–222

Version Tolerant Serialization  238
Visual Basic

for creating DatabaseFault object  321
for workflow activities  299

Visual Studio  3
for building WCF service  9–30
installing ASP.NET for .NET Frame-

work  50
running as administrator  39
Web deployment Tool  326

void methods, one-way methods as  437
volatile messages  457
vulnerability of messages on network  379

W

WaitForAsyncResult utility method  512
WCF Data Services  579–598

client application
exception handlers  597–598

client library  587
consuming in client application  587–595
for modifying data  595–597

Download from Wow! eBook <www.wowebook.com>

	 WCF Service Model	 697

WCF Data Services template  547
WCF framework

flexibility  48
predefined bindings  77–80

WCFPersistence database  529
WCF runtime

acknowledgment message from  386
built-in channels  47
client application connection to ser-

vice  419–426
determination of certificate validity  141
endpoint default values  68
exception for exceeded message

size  490
exception thrown by  272
limits on array length in messages  485
mappings for converting between XML

and .NET Framework types  37
round-tripping by  239–242
selective control of service instance de-

activation  270
single channel stack created by  525
WCF service startup and  204

WCF service
adding HTTP endpoint  72–74
adding method  212–215
adding operation  218–222
adding reference  19
asynchronous operations  447–457
building  9–30
building application to host  58–76
client application connection settings  32
code to start and stop  65–67
COM+ application as  657–668
configuring

activation and binding  171–174
host environment to support TCP  51–

52
to send exception details  112–113
and testing  24–30
to use ASP.NET Role Provider and ASP.

NET Membership provider  179–180
to use WSDualHttpBinding binding  613–

614
configuring COM+ application as  661–665
creating  13–16

defining data contract for  16–17
deploying in IIS  39–41

without .svc file  29
disconnecting from  36
displaying messages in  235
entity model  10–13
exporting certificate  198–199
hosting

with ASP.NET Web site  170
in user application  54–57
with Windows application  63
with Windows Process Activation Ser-

vice  49–54
in Windows service  84–90

how it works  45–49
implementing  18–24
importing code into IIS Web site  170–171
message queuing use in  458–460
modifying

to throw SOAP faults  94–96
to throw strongly-typed SOAP

faults  101–103
to throw unanticipated exception  111

in ProductsWorkflowService project  309
replacing ASP.NET Web service

with  651–654
response time and throughput  467
sequencing operations in  271–294
service contract  18, 203
testing  182–185, 207–211

with Internet Explorer  27–30
timeout  383
to support ASP.NET client  647–656
transactions  371–372
verifying client application authentica-

tion  200–201
WCF Service Configuration Editor  68, 663

and binding configuration  127
WCF service contract  47
WCF Service Library  58

testing with WcfTestClient applica-
tion  59–63

WCF Service Model  399–419, 524
behaviors  401–403
composing channels into bindings  403–

408

Download from Wow! eBook <www.wowebook.com>

D
o
w

n
lo

a
d
 f

ro
m

 W
o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

698	 WCF service wrapper, for COM+ components

inspecting messages  408–419
services and channels  400–401

WCF service wrapper, for COM+ compo-
nents  657

WcfSvcHost utility  59
displaying  61

WcfTestClient application  62
testing WCF Service Library with  59–63

WCF Test Client window
displaying  62

Web applications  3
creating  169

Web browser, for testing ProductsSales
REST Web service  561–565

Web.config file  25–26, 649
<connectionStrings> element  27
<protocolMapping> section  83
<serviceHostingEnvironment> ele-

ment  173
<system.serviceModel> section  26
<system.Web> section

<authentication> element  179
<roleManager> element  179

Web deployment Tool  326
WebFaultException exception  555, 573,

575
WebGet attribute  552, 570
WebGet send response messages format-

ting  552
WebHttpBehavior endpoint behavior  559
WebHttpBinding binding  80, 360

and sessions  278
WebInvoke attribute  570, 571
Web resources

custom AuthorizationManager  635
on custom channels  400
Custom Demux sample  527
data contracts, versioning strategy  231
FindPrivateKey utility  197
on JSON  6
Kerberos protocol  123
makecert utility  138
on Microsoft Authorization Manager  124
OASIS security standards  7
on peer-to-peer applications  599
public key cryptography  125

on Security Token Service  642
on SOAP  5
Version Tolerant Serialization  238
on Windows Azure  9
on Windows CardSpace  642
on WSDL  5
WS-I Basic Profile specification  656
WS-Policy framework  43
XML.org  4

Web service environment
maintaining state  243

WebServiceHost class  559
Web services  3, 49

REST model and  548
sending and receiving requests  5
technical standards and  78

Web Services Atomic Transaction (WS-
AtomicTransaction) specification  351–
352

Web Services Description Language
(WSDL)

document  5
schema  29

Web Services Enhancements (WSE)  7, 648
Web sites

default protocol bindings for  51
user access to  175

well-known address, for discovery interme-
diary service  507

While activity  337, 339
Windows 7, “There is a problem with the

website’s security certificate” error  174
Windows application, creating to host WCF

service  63
Windows Application Event log  89
Windows authentication

BasicHttpBinding binding configuration
to use  150–151

Windows Azure  8
Windows CardSpace  626–646

identity provider for  641–643
information cards for  627, 628
self-issued cards for  629
validating users with  627

Windows CardSpace console  637–638
Windows Communication Foundation

Download from Wow! eBook <www.wowebook.com>

	 WS2007HttpBinding class	 699

Service-Oriented Architecture and  7–9,
42–43

Windows domain, security implementa-
tion  127–162

Windows environment, authentication
in  123–124

Windows Features dialog box  50
Windows Firewall  72
Windows host application

configuring  67
Windows host environment

testing  70
Windows Identity Foundation (WIF)  646
Windows Integrated Security  124, 143, 262

and user names and password transmis-
sion  151

Windows operating system
and SOA platform  8

WindowsPrincipal object  157
Windows Process Activation Service (WAS)

installing and configuring  50
WCF service hosting with  49–54

Windows Security Alert message box  97
Windows Server AppFabric  54–55, 347

and durable service  279
Windows service

creating installer  87
hosting WCF service in  84–90
installing  88–89
starting and stopping  85–87
testing  89–90
uninstalling  90

WindowsStreamSecurityBindingElement
class  404

Windows Token Role Provider  124
configuring WCF service to use  153–154

Windows users, authentication of  146–152
workflow

as durable service  347–350
for ShoppingCartService service  338–

342
workflow activities

Visual Basic syntax for  299
WorkflowInvoker class  329

workflow service
client application for  313–317

creating  313–316
testing  317

ConfigurationName property  298
correlating request and reply messages

in instance  335–336
debugging  312
handling faults  317–325
hosting

in custom application  328–332
in IIS  325–328

implementing  296–312
implementing common message pat-

terns  332–337
passing information into activity  303
session management  337–350
state maintenance  337–350
transactions in  373–377

WorkflowServiceHost class  328–329
WorkflowServiceHost object, creating  330
Workflow Toolbox

Messaging section  333–335
World Wide Web  3

REST model and  548
WriteLine statement  315

for tracing  468
ws2007FederationHttpBinding binding  629
WS2007FederationHttpBinding binding  80

and sessions  278
WS2007HttpBinding binding  79, 171, 206,

421, 444, 478, 490
and client callbacks  606
configuring to require Username authen-

tication  150
encryption algorithm  145
and sessions  278
SOAP messaging format for  429
WCF client configuration to connect

to  144
WCF service configuration with endpoint

based on  143
WS2007HttpBinding class  421

Download from Wow! eBook <www.wowebook.com>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

700	 WS2007HttpBinding_IProductsService client endpoint

WS2007HttpBinding_IProductsService client
endpoint  492

WS2007HttpBinding_IShoppingCartService
endpoint  254

wsatConfig.exe utility  370
WS-AtomicTransaction protocol

implementing  369–371
WS-Discovery specification  491

versions  494
WSDL. See Web Services Description Lan-

guage (WSDL)
WSDL (Web Services Description Lan-

guage)
disabling metadata publishing  561

WSDualHttpBinding binding  79, 478, 606
and reliable messaging  389
and sessions  278
WCF Service configuration to use  613–

614
WS-Eventing specification  621–622
WSFederationHttpBinding binding  80, 478

and reliable messaging  389
and sessions  278

WSHttpBinding binding  79, 382
and client callbacks  606
and reliable messaging  389
and sessions  278

WSHttpContextBinding binding  79, 288,
536

and sessions  278
WS-I Basic Profile  78, 656
WS-Policy framework  43
WS-ReliableMessaging protocol  78, 379,

380, 381
bindings and  389
message organization in conversation  384

WS-SecureConversation specification  395
WS-Security specification  78, 126
WS-* specifications

ASP.NET Web services and  648
WS-* Specifications  78
WS-Transactions specification  78

X

XAML files, reading  330
XamlServices class, Load method  330
.xamlx file extension  297
XmlDictionaryReader object  486
XML (eXtensible Markup Language)  4, 46,

548
for SOAP messages  476

XML files
Notepad to view  268
and privacy  269

XML schema  4
for messages to and from Web ser-

vice  37
XML serializer  263
XmlSerializer object  264, 268

Download from Wow! eBook <www.wowebook.com>

About the Author
John Sharp is a Principal Technologist at Content Master Ltd, a technical authoring com-
pany based in the United Kingdom. There he researches and develops technical content for
technical training courses, seminars, and white papers. Throughout his development career,
John has been active in training, developing, and delivering courses. He has conducted
training on subjects ranging from UNIX Systems Programming, to SQL Server Administra-
tion, to Enterprise Java Development.

John is deeply involved with .NET development, writing courses, building tutorials, and
delivering conference presentations covering Visual C#, WCF, SQL Server, Visual J#, ASP.NET,
and Windows Server AppFabric. Apart from Windows Communication Foundation Step By
Step, John has also authored five editions of Microsoft Visual C# Step By Step, and Microsoft
Visual J# .NET, all published by Microsoft Press.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Stay in touch!
To subscribe to the Microsoft Press® Book Connection Newsletter—for news on upcoming
books, events, and special offers—please visit:

What do
you think of
this book?
We want to hear from you!

To participate in a brief online survey, please visit:

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

microsoft.com/learning/books/newsletter

Download from Wow! eBook <www.wowebook.com>

	Table of Contents
	Acknowledgments
	Introduction
	Introducing Windows Communication Foundation
	Chapter 1. What Is Windows Communication Foundation?
	The Early Days of Personal Computer Applications
	Inter-Process Communications Technologies
	The Web and Web Services
	Using XML as a Common Data Format
	Sending and Receiving Web Service Requests
	JavaScript Object Notation and Rich Internet Applications
	Handling Security and Privacy in a Global Environment
	Service-Oriented Architectures and Windows Communication Foundation

	Building a WCF Service
	Defining the Contracts
	Implementing the Service
	Configuring and Testing the Service

	Building a WCF Client Application
	Deploying a WCF Service to Internet Information Services
	WCF and the Principles of SOA
	Summary

	Chapter 2. Hosting a WCF Service
	How Does a WCF Service Work?
	Service Endpoints
	Processing a Client Request

	Hosting a WCF Service by Using Windows Process Activation Service
	Hosting a Service in a User Application
	Using the ServiceHost Class

	Building a Windows Presentation Foundation Application to Host a WCF Service
	Reconfiguring the Service to Support Multiple Endpoints

	Understanding Endpoints and Bindings
	The WCF Predefined Bindings
	Configuring Bindings
	Default Endpoints

	Hosting a WCF Service in a Windows Service
	Summary

	Chapter 3. Making Applications and Services Robust
	CLR Exceptions and SOAP Faults
	Throwing and Catching a SOAP Fault
	Using Strongly Typed Faults
	Reporting Unanticipated Exceptions

	Managing Exceptions in Service Host Applications
	ServiceHost States and Transitions
	Handling Faults in a Host Application
	Handling Unexpected Messages in a Host Application

	Summary

	Chapter 4. Protecting an Enterprise WCF Service
	What Is Security?
	Authentication and Authorization in a Windows Environment
	Transport-Level and Message-Level Security

	Implementing Security in a Windows Domain
	Protecting a TCP Service at the Message Level
	Protecting an HTTP Service at the Transport Level
	Protecting an HTTP Service at the Message Level
	Authenticating Windows Users
	Authorizing Users
	Using Impersonation to Access Resources

	Summary

	Chapter 5. Protecting a WCF Service over the Internet
	Authenticating Users and Services in an Internet Environment
	Authenticating and Authorizing Users by Using the ASP.NET Membership Provider and the ASP.NET Role Provider
	Authenticating and Authorizing Users by Using Certificates
	Authenticating Service Messages by Using a Certificate

	Summary

	Chapter 6. Maintaining Service Contracts and Data Contracts
	Modifying a Service Contract
	Selectively Protecting Operations
	Versioning a Service
	Making Breaking and Nonbreaking Changes to a Service Contract

	Modifying a Data Contract
	Data Contract and Data Member Attributes
	Data Contract Compatibility

	Summary

	Chapter 7. Maintaining State and
	Managing State in a WCF Service
	Service Instance Context Modes
	Maintaining State with the PerCall Instance Context Mode
	Selectively Controlling Service Instance Deactivation

	Sequencing Operations in a WCF Service
	Maintaining State by Using a Durable Service
	Summary

	Chapter 8. Implementing Services by Using Workflows
	Building a Simple Workflow Service and Client Application
	Implementing a Workflow Service
	Implementing a Client Application for a Workflow Service

	Handling Faults in a Workflow Service
	Hosting a Workflow Service
	Hosting a Workflow Service in IIS
	Hosting a Workflow Service in a Custom Application

	Implementing Common Messaging Patterns in a Workflow Service
	Messaging Activities
	Correlating Request and Reply Messages in a Workflow Service Instance
	Using Messaging Activities to Implement Messaging
Patterns

	Managing Sessions and Maintaining State in a Workflow Service
	Building Durable Workflow Services

	Summary

	Chapter 9. Supporting Transactions
	Using Transactions in a WCF Service
	Implementing OLE Transactions
	Implementing the WS-AtomicTransaction Protocol

	Designing a WCF Service to Support Transactions
	Transactions, Sessions, and Service Instance Context Modes
	Transactions and Messaging
	Transactions and Multi-Threading

	Implementing Transactions in a Workflow Service
	Long-Running Transactions

	Summary

	Chapter 10. Implementing Reliable Sessions
	Using Reliable Messaging
	Implementing Reliable Sessions with WCF

	Detecting and Handling Replay Attacks
	Configuring Replay Detection with WCF

	Summary

	Chapter 11. Programmatically Controlling
	The WCF Service Model
	Services and Channels
	Behaviors
	Composing Channels into Bindings
	Inspecting Messages

	Controlling Client Communications
	Connecting to a Service Programmatically
	Sending Messages Programmatically

	Summary

	Chapter 12. Implementing One-Way and Asynchronous Operations
	Implementing One-Way Operations
	The Effects of a One-Way Operation
	One-Way Operations and Transactions
	One-Way Operations and Timeouts
	Implementing a One-Way Operation
	Recommendations for Using One-Way Operations

	Invoking and Implementing Operations Asynchronously
	Invoking an Operation Asynchronously in a Client Application
	Implementing an Operation Asynchronously in a WCF Service

	Using Message Queues
	Summary

	Chapter 13. Implementing a WCF Service for Good Performance
	Using Service Throttling to Control Resource Use
	Configuring Service Throttling
	Specifying Memory Requirements

	Transmitting Data by Using MTOM
	Sending Large Binary Data Objects to a Client Application
	Controlling the Size of Messages

	Streaming Data from a WCF Service
	Enabling Streaming in a WCF Service and Client Application
	Designing Operations to Support Streaming
	Security Implications of Streaming

	Summary

	Chapter 14. Discovering Services and Routing Messages
	Implementing Discovery
	Configuring Ad Hoc Discovery
	Handling Service Announcements
	Using a Discovery Proxy

	Implementing Routing
	Routing Messages Manually

	Using the RoutingService Class
	Summary

	Chapter 15. Building REST Services
	Understanding the REST Model
	Querying Data by Implementing a REST Web Service
	Updating Data Through a REST Web Service
	Using WCF Data Services
	Consuming a WCF Data Service in a Client Application
	Modifying Data by Using a WCF Data Service
	Handling Exceptions in a Client Application

	Summary

	Chapter 16. Using a Callback Contract to Publish and Subscribe to Events
	Implementing and Invoking a Client Callback
	Defining a Callback Contract
	Implementing an Operation in a Callback Contract
	Invoking an Operation in a Callback Contract
	Reentrancy and Threading in a Callback Operation
	Bindings and Duplex Channels

	Using a Callback Contract to Notify a Client of the Outcome of a One-Way Operation
	Using a Callback Contract to Implement an Eventing Mechanism
	Delivery Models for Publishing and Subscribing

	Summary

	Chapter 17. Managing Identity with Windows CardSpace
	Using Windows CardSpace to Access a WCF Service
	Implementing Claims-Based Security
	Using an Identity Provider
	Claims-Based Authentication in a Federated Environment

	Summary

	Chapter 18. Integrating with ASP.NET Clients and Enterprise Services Components
	Creating a WCF Service That Supports an ASP.NET Client
	Exposing a COM+ Application as a WCF Service
	Summary

	Index

