

Learn C#
Includes the C# 3.0 Features

Sam A. Abolrous

Wordware Publishing, Inc.

http://www.abicomputer.net

Library of Congress Cataloging-in-Publication Data
Abolrous, Sam A.

Learn C# / by Sam A. Abolrous.
p. cm.
Includes index.
ISBN-13: 978-1-59822-035-3 (pbk.)
ISBN-10: 1-59822-035-7
1. C# (Computer program language) I. Title.
QA76.73.C154A416 2007
005.13'3--dc22 2007024261

© 2008, Wordware Publishing, Inc.

All Rights Reserved

1100 Summit Avenue, Suite 102

Plano, Texas 75074

No part of this book may be reproduced in any form or by any means

without permission in writing from Wordware Publishing, Inc.

Printed in the United States of America

ISBN-13: 978-1-59822-035-3
ISBN-10: 1-59822-035-7
10 9 8 7 6 5 4 3 2 1
0708

All brand names and product names mentioned in this book are trademarks or service marks of their
respective companies. Any omission or misuse (of any kind) of service marks or trademarks should not be
regarded as intent to infringe on the property of others. The publisher recognizes and respects all marks
used by companies, manufacturers, and developers as a means to distinguish their products.

This book is sold as is, without warranty of any kind, either express or implied, respecting the contents of
this book and any disks or programs that may accompany it, including but not limited to implied warranties
for the book’s quality, performance, merchantability, or fitness for any particular purpose. Neither
Wordware Publishing, Inc. nor its dealers or distributors shall be liable to the purchaser or any other person
or entity with respect to any liability, loss, or damage caused or alleged to have been caused directly or
indirectly by this book.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing, Inc.,

at the above address. Telephone inquiries may be made by calling:

(972) 423-0090

To Camelia, my love and my wife.

http://www.abicomputer.net

This page intentionally left blank.

Contents

Foreword. xiii

Preface . xv

Acknowledgments . xvii

Conventions . xviii

Chapter 1 Introduction to C# and .NET . 1

1-1 Object-Oriented Programming . 1

1-2 C#: The OOP Language. 2

1-3 The .NET Framework. 3

1-3-1 CLR and Managed Code. 3

1-3-2 MSIL and JIT . 4

1-3-3 Metadata . 4

1-3-4 Assemblies. 4

1-3-5 Garbage Collection . 5

1-3-6 Putting Things Together . 5

1-3-7 ILASM and ILDASM . 6

1-4 A First Look at the C# Code . 6

1-4-1 The C# Code. 6

1-4-2 The IL Code . 7

1-4-3 The Manifest. 8

1-4-4 Using the Library File . 9

1-5 How to Get a Free C# Compiler . 10

1-5-1 Compiling Programs in the Command-Line Environment 11

1-5-1-1 If You Have the Compiler without the IDE 11

1-5-1-2 If You Have the Visual Studio IDE 12

1-6 Comparison of C# and C++ . 13

1-7 The Features of C# 2005 . 14

1-8 The New Features of C# 3.0 . 15

Summary . 15

Chapter 2 Your First Go at C# Programming 17

2-1 The “Hello, World!” C# Program . 17

2-1-1 Compiling and Running the Program. 18

2-1-2 Comments . 18

2-1-3 Class Declaration . 19

2-1-4 The Main Method . 19

2-1-5 Using the .NET Methods for Displaying Results 20

v

http://www.abicomputer.net

2-2 Using Directives . 21

2-3 Using Local Variables . 22

2-4 The Program Architecture . 24

2-5 Qualifying Names . 25

2-6 Common Conventions for Writing Code 27

2-7 Code Documentation . 28

Summary . 29

Chapter 3 C# Data Types . 31

3-1 Data Types. 31

3-2 Built-in Data Types . 32

3-3 Value Types . 33

3-3-1 Variable Initialization. 33

3-3-2 Default Values . 34

3-4 Reference Types . 35

3-4-1 The C# Reference Types . 35

3-4-2 Boxing and Unboxing . 35

3-5 Simple Data Types. 38

3-6 Creating and Manipulating Arithmetic Expressions 39

3-6-1 The Basic Arithmetic Operators (+, –, *, /) 39

3-6-2 The Modulus Operator (%) . 39

3-6-3 The Assignment Operators . 40

3-6-4 Increment and Decrement Operators (++, ––) 40

3-6-5 Operator Associativity . 41

3-6-6 How to Get the Type Name. 43

3-6-7 Evaluating Expressions with Mixed Types 43

3-6-8 Adding a Suffix to Numeric Data. 44

3-6-8-1 Real Types . 44

3-6-8-2 Integral Types . 45

3-6-9 Conversion between Types . 46

3-7 The char Type . 47

3-8 Formatting Results. 49

3-8-1 The Currency Format . 49

3-8-2 The Decimal Format . 49

3-8-3 The Fixed-point Format . 49

3-8-4 The General Format . 50

3-8-5 The Numeric Format . 50

3-8-6 The Scientific Format. 50

3-8-7 The Hexadecimal Format . 50

3-9 The Nullable Types . 53

3-9-1 Using the Nullable Structure Properties 54

3-9-2 Using the ?? Operator . 54

3-10 The string Type . 56

3-10-1 String Expressions . 56

3-10-2 String Operators . 57

vi | Contents

3-10-2-1 String Concatenation (+, +=) 57

3-10-2-2 Using the StringBuilder Class. 58

3-10-2-3 The Equality Operator (==) . 58

3-10-2-4 The [] Operator . 58

3-10-2-5 The @ Symbol . 59

3-11 Reading the Keyboard Input . 61

3-12 Converting Strings to Numbers . 62

3-12-1 Using the Convert Class . 62

3-12-2 Using the Parse Method . 63

Summary . 64

Chapter 4 Building the Program Logic . 65

4-1 Using Conditions . 65

4-1-1 Relational Operators . 65

4-1-2 Logical Operators . 67

4-1-2-1 The Logical AND Operators (&&, &) 67

4-1-2-2 The Logical OR Operators (||, |) 67

4-1-2-3 The Logical NOT Operator (!) 68

4-1-2-4 The Bitwise Operators . 68

4-2 The if-else Construct . 68

4-2-1 Manipulating Characters . 70

4-2-2 Nested if-else Statements . 71

4-3 The switch Construct . 71

4-4 The Conditional Expression . 74

4-5 Using Libraries . 76

4-6 Repetition Loops . 77

4-6-1 The for Loop . 77

4-6-1-1 Using continue and break . 78

4-6-1-2 Available Options in the for Loop 78

4-6-1-3 Nesting Loops . 79

4-6-2 The while Loop. 80

4-6-3 The do-while Loop . 82

4-6-4 Branching Statements. 84

4-7 Arrays . 84

4-7-1 One-Dimensional Arrays . 85

4-7-2 Declaring and Initializing Arrays . 85

4-7-3 Multi-Dimensional Arrays . 86

4-7-4 Jagged Arrays . 86

4-7-5 Accessing Array Elements . 87

4-8 Using Program Arguments . 89

4-9 Using .NET Properties and Methods with Arrays 90

4-9-1 Array’s Length (Length) . 91

4-9-2 Array’s Rank (Rank) . 91

4-9-3 Sorting an Array (Array.Sort) . 91

4-9-4 Reversing an Array (Array.Reverse) 91

Contents | vii

http://www.abicomputer.net

4-9-5 Resizing an Array (Array.Resize) . 93

4-10 The foreach Loop. 94

Summary . 96

Chapter 5 Using Classes. 97

5-1 Classes. 97

5-1-1 Class Declaration . 98

5-1-2 Field Initialization . 98

5-1-3 Class Instantiation . 98

5-2 Namespaces . 100

5-2-1 Nesting Namespaces . 100

5-2-2 The Namespace Alias Qualifier . 102

5-3 Access Levels . 103

5-4 Properties. 106

5-4-1 Using Properties. 107

5-4-2 Read-only Properties . 108

5-4-3 Accessor Accessibility . 110

5-5 Static Members and Static Classes . 110

5-6 Constants . 112

5-7 Constructors . 113

5-7-1 Instance Constructors . 114

5-7-1-1 Declaring Constructors . 115

5-7-1-2 Using this . 115

5-7-2 Private Constructors . 116

5-7-3 Static Constructors . 116

5-8 Read-only Fields . 117

5-9 Inheritance . 119

5-10 Destructors . 121

5-11 Partial Classes . 123

Summary . 126

Chapter 6 Function Members . 129

6-1 Function Members . 129

6-2 Polymorphism . 130

6-2-1 Virtual and Override Methods. 130

6-2-2 Calling Members of the Base Class 131

6-2-3 Overriding Virtual Methods on the Base Class 132

6-3 Abstract Classes and Methods . 136

6-4 Method Overloading . 138

6-5 Passing Parameters to Methods. 140

6-6 Various Ways to Pass Parameters to Methods 143

6-6-1 Using ref . 143

6-6-2 Using out . 144

6-6-3 Using params . 145

6-7 Indexers . 148

6-8 User-defined Operators. 150

viii | Contents

6-9 Overriding the ToString Method . 152

Summary . 154

Chapter 7 Structs, Enums, and Attributes 155

7-1 Structs vs. Classes . 155

7-2 Declaring and Using Structs . 156

7-3 Passing Structs and Classes to Methods 160

7-4 Enumerations. 162

7-4-1 Declaring Enumerations. 162

7-4-2 Using Enumerations. 163

7-4-3 Using .NET Methods with enums . 164

7-5 Attributes. 166

7-5-1 Attribute Parameters . 168

7-5-2 The Conditional Attribute . 168

7-5-3 Combining Attributes . 169

7-5-4 Calling Native Functions . 170

7-5-5 Emulating Unions . 172

Summary . 174

Chapter 8 Interfaces . 175

8-1 What Is an Interface?. 175

8-2 Declaring an Interface . 176

8-3 Interface Implementation. 177

8-4 Explicit Interface Implementation . 179

8-5 Using is to Test Types . 182

8-6 Using as to Test Types . 184

8-7 Hiding Members of the Base Class. 185

8-8 Versioning . 186

8-9 Hiding Interface Members . 189

Summary . 192

Chapter 9 Exceptions. 193

9-1 Errors and Exceptions . 193

9-2 Throwing an Exception . 194

9-3 Catching an Exception . 197

9-3-1 Organizing the Handlers. 199

9-3-2 Sequence of Events in Handling Exceptions 201

9-4 Expected Exceptions in File Processing 205

9-4-1 Reading Text Files . 205

9-4-2 Writing and Appending Text Files 206

9-4-3 Expected Exceptions . 206

9-5 The finally Block. 208

9-5-1 The try-finally Statement . 208

9-5-2 The try-catch-finally Statement . 210

9-6 User-defined Exceptions . 212

9-7 Rethrowing Exceptions. 214

Contents | ix

http://www.abicomputer.net

9-7-1 Rethrowing the Exception Back to Main 214

9-7-2 Rethrowing by the Handler Block. 216

9-8 Using the StackTrace Property . 217

Summary . 219

Chapter 10 Delegates and Events. 221

10-1 What Is a Delegate? . 221

10-2 Declaring Delegates . 221

10-3 Creating a Delegate . 222

10-4 Invoking the Delegate . 222

10-5 Associating a Delegate with More Than One Method. 224

10-6 Adding and Removing Delegates . 226

10-6-1 Using .NET Methods to Add and Remove Delegates 228

10-7 Anonymous Methods . 228

10-7-1 Outer Variables . 229

10-7-2 Restrictions on Using Anonymous Methods 231

10-8 Covariance . 231

10-9 Contravariance . 233

10-10 Events . 234

10-10-1 Using Events in Applications . 235

Summary . 239

Chapter 11 Collections and Iterators . 241

11-1 Collections Classes . 241

11-2 The Stack Collection . 242

11-2-1 Stack Members . 243

11-3 The Queue Collection . 246

11-3-1 Queue Members . 247

11-4 The ArrayList Collection . 250

11-4-1 ArrayList Members . 250

11-5 The SortedList Collection . 254

11-5-1 SortedList Members . 254

11-6 The Hashtable Collection . 257

11-6-1 Hashtable Members . 258

11-7 Specialized Collections . 261

11-7-1 The ListDictionary Collection . 261

11-7-2 ListDictionary Members . 261

11-8 The Linked List Collection . 264

11-9 Using Enumerators . 265

11-10 Iterators . 269

11-10-1 The Iterator Blocks . 270

11-10-2 The yield Statement . 271

Summary . 273

x | Contents

Chapter 12 Generics . 275

12-1 What Are Generics? . 275

12-2 Using Generic Collections . 277

12-3 List<T> . 277

12-3-1 List<T> Members . 278

12-4 Dictionary<TKey, TValue> . 282

12-4-1 Dictionary<TKey, TValue> Members 283

12-5 LinkedList<T> . 286

12-5-1 LinkedList<T> Members. 287

12-5-2 LinkedListNode<T> Members . 288

12-6 ICollection<T> . 290

12-6-1 ICollection Members . 290

12-7 IDictionary<TKey, TValue>. 291

12-7-1 IDictionary Members. 291

12-8 Creating Your Own Generic Classes . 292

12-9 Generic Methods . 294

12-9-1 Generic Methods inside Generic Classes 294

12-9-2 Overloading Generic Methods . 295

12-10 Using the default Keyword. 297

12-11 Using Constraints . 297

12-11-1 Types of Constraints. 298

12-11-2 When to Use Constraints . 298

12-12 Generic Delegates . 300

12-13 Generic Interfaces . 301

12-14 Benefits of Using Generics . 304

12-15 Limitations of Using Generics . 304

Summary . 304

Chapter 13 Visual Studio Essentials . 305

13-1 Using the Integrated Development Environment 305

13-2 Starting a New Application . 306

13-3 Creating and Using Console Applications. 307

13-4 The Main Features of the IDE. 309

13-4-1 The Solution Explorer . 309

13-4-2 The Properties Window . 311

13-4-3 The Error List Window. 311

13-5 Compiling and Running Projects . 312

13-6 Using an Existing Application . 313

13-7 Creating and Using Library Projects . 314

13-8 Windows Application Projects . 316

13-8-1 Switching between Design and Code Views 318

13-8-2 Creating a Simple Windows Application. 318

13-8-3 Using More Than One Form in the Windows Application 319

13-9 Web Site Applications. 320

13-9-1 Creating a Simple Web Site Application 321

Contents | xi

http://www.abicomputer.net

13-10 Other Project Templates . 323

13-11 Features of the Code Editor . 323

13-11-1 IntelliSense . 323

13-11-2 Code Snippets . 325

13-11-2-1 Insert Snippet . 325

13-11-2-2 Surround With . 326

13-11-2-3 Refactor . 326

Summary . 328

Chapter 14 C# 3.0 Features . 329

14-1 Installing C# 3.0. 329

14-1-1 Using the Command Line . 331

14-1-2 Installing Visual Studio (Orcas) . 331

14-2 Implicitly Typed Local Variables . 331

14-2-1 Examine the Assembly . 333

14-3 Object Initializers . 334

14-3-1 Initializing Collections . 336

14-4 Extension Methods . 339

14-5 Anonymous Types. 340

14-5-1 Using Multiple Anonymous Types 343

14-6 Implicitly Typed Arrays . 344

14-7 Lambda Expressions . 346

14-7-1 Using Anonymous Methods in C# 2.0 346

14-7-2 Using Lambda Expressions in C# 3.0 346

14-7-3 Using Two Arguments in a Lambda Expression 348

14-8 Func Delegate Types . 348

14-9 Query Expressions . 350

14-10 Expression Trees . 351

Summary . 352

Appendix Answers to Drills . 353

Index . 399

xii | Contents

Foreword

Some people express themselves by speaking loudly and waving their arms

about. If you don’t understand, they just yell at you louder and louder until

you give in and pretend to understand.

Then there are people like Sam, who takes the opposite approach.

When I worked with Sam on the Microsoft Visual Studio C# documen-

tation team, there was always an aura of calm and concentration emanating

from his office. Calm, concentration, and about 90° F heat, because Sam

liked to keep his office hotter than a sauna in a desert. Of course, when I

sat in his office and asked him to explain some subtle point of a C# appli-

cation to me, it’s possible that I just imagined his superior intellect because

the heat made me stupid and drowsy, but I doubt it. Sam knows C#, and

that’s all there is to it.

While I was working on the documentation, the refrain “Ask Sam” was

something I heard a lot. The good news is that now, thanks to this book,

you too can ask Sam anything you like about C#, and you’ll find the

answers here. Just remember to bring some water.

John Kennedy

Senior Content Project Manager, Microsoft

xiii

http://www.abicomputer.net

This page intentionally left blank.

Preface

When the first version of the C# programming language was released with

the .NET Framework in 2002, it achieved great success and became the

preferred programming language for many programmers around the world.

C#, as an evolution of C++, simplified many features of C++ but retained

the power of C++. In fact, the power of C# and the easy-to-learn syntax

persuaded many developers to switch to it from C++ or Java.

The C# 2005 version (also referred to as C# 2.0) added even more pow-

erful features to the language such as generics, partial classes, and much

more. The new features of C# 3.0 that were released in the Technology

Preview introduced programmers to a new era called functional program-

ming. C# 3.0 focused on bridging the gap between programming languages

and databases.

This book covers all the language features from the first version through

C# 3.0. It also provides you with the essentials of using Visual Studio 2005

to let you enjoy its capabilities and save you time by using features such as

IntelliSense.

Target Audience

This book targets:

� Beginners with no prior programming experience

� C++ programmers who want to switch to C#

� Advanced C# programmers

Beginners can start with the basics of the language covered in the first

eight chapters, which do not require any previous programming experi-

ence. C++ programmers who want to switch to C# will find many

similarities between the two languages and can begin by reading Table 1-1

in Chapter 1, which presents the differences between C++ and C#.

Advanced programmers who are looking for the new features of C#

2005 can start with the table of the new features in Chapter 1, Table 1-2,

then go directly to the topics referenced in the table. Although the new

features of C# 2005 are introduced in several chapters, Chapters 11 and 12

concentrate on the most important features of C# 2005, namely collections

xv

http://www.abicomputer.net

and generics. The new features of C# 3.0 are introduced in Chapter 14

along with ready-to-run examples.

Features of This Book

This book teaches the C# language and provides an introduction to using

Visual Studio 2005. The book does not cover web and Windows applica-

tions, although it introduces them briefly in Chapter 13. All the programs

in this book, except those in Chapter 13, are console applications, which

means that even if you don’t have Visual Studio, you can still write these

programs in a text editor and compile them in the command-line environ-

ment. (Section 1-5 discusses how to get a free C# compiler.) To use the C#

3.0 examples, you must install the new compiler features as explained in

the introduction of Chapter 14.

One important feature of this book is that it gives beginners with no

prior programming experience a quick start to writing code in C#, begin-

ning in Chapter 2.

The Structure of This Book

Each chapter of the book contains:

� Complete examples that are ready to run. The output of each example

is shown in the Output or the Sample Run sections that follow the

example. The source code of the examples is included in the compan-

ion files, which can be downloaded from www.wordware.com/files/

csharp.

� Drills on each topic to help you test yourself. The answers to the drills

are listed in the appendix and are also included in the companion files.

� Tips on C# programming as well as special notes for C++ program-

mers. A comparison of the two languages is given in Table 1-1.

� Syntax blocks using most of the C# statements.

� A summary at the end of each chapter to summarize the major skills

you have learned in the chapter.

In general, with this book you can learn the essentials of the C# language

and delve quickly into its depth. The book also answers most of the ques-

tions frequently asked by programmers since the release of C# 1.0 in 2002.

xvi | Preface

Acknowledgments

I would like to thank John Kennedy for his time and effort spent reviewing

this book and to ensure that it answers most of the readers’ questions.

I would also like to thank my family, Camelia, Hazem, Pille, Sally, and

Craig, for their support during the writing of this book.

xvii

http://www.abicomputer.net

Conventions

Throughout the book different text styles are used to indicate the

following:

� Italics: to emphasize the first occurrence of an important word or

phrase that will play a role in the sections to follow. It is also used in

the syntax blocks to indicate text other than keywords. For example:

if (condition)
statement(s)_1 // The original result

else

statement(s)_2 // The alternative result

� Bold: to distinguish reserved and contextual keywords of the C# lan-

guage, elements of the .NET class library, and menu options, except in

notes, tables, lists, and code examples. For example:

get, set, yield, value, partial, and where

xviii

Chapter 1

Introduction to C# and .NET

Contents:
� Introduction to object-oriented programming
� C#, the OOP language
� The .NET Framework
� C# and IL
� How to get a free C# compiler
� Comparison of C# and C++
� The features of C# 2005
� The new features of C# 3.0

1-1 Object-Oriented Programming

Object-oriented programming (OOP) introduced the concept of classes and

objects in the early ’90s. This methodology is based on the scientific clas-

sification principles of ordering and naming groups within subject fields.

For example, the Mankind class represents all humans. This class pos-

sesses characteristics, such as the body parts and senses, and exercises a

behavior, such as the ability to speak. From this class come the Man class

and the Woman class. Each of these classes inherits the characteristics and

behavior from the Mankind class and adds to it specific characteristics of

the Man or the Woman. The Man class is actually an abstraction of the

behavior and characteristics of a Man, from which you can create instances

or objects such as Craig and Dylan. From the Woman you create objects

such as Isabella and Angelina.

In programming, you divide your data into classes. You can, for exam-

ple, represent the elevators by the class Elevator, which contains the data

fields that represent the characteristics (the elevator number, the number of

floors, and the floor number) and the methods (or functions) that represent

the behavior (going up or down). From the Elevator class, you can create

1

http://www.abicomputer.net

objects such as elevator1, elevator2, and so forth. In fact, you don’t have to

write the Elevator class yourself in order to use it. It might be created by

another programmer or another company, and you just use it in your code,

without even seeing the source code.

The OOP principles are summarized in the following list:

� Abstraction: The ability to create abstract data objects (classes) that

can be used to create instances. (Explained in Chapter 5.)

� Encapsulation: Protecting some data members by hiding the imple-

mentation and exposing the interface. (Explained in Chapter 5.)

� Inheritance: Reusing the code by specializing classes and adding fea-

tures to them. (Explained in Chapter 5.)

� Polymorphism: Changing the behavior of the methods of the inherited

class. (Explained in Chapter 6.)

1-2 C#: The OOP Language

Although the C++ language is object oriented, it is in fact a mixture of

both methodologies, the traditional and OOP approaches. This means that

you can create an object-oriented program consisting of objects that con-

tain the fields and the methods together, or you can write the same old

code with global variables scattered in the program file and exposed to

accidental changes by other programmers. With small applications, it

might be okay to use the traditional method, but with complex programs

that are shared by a large number of programmers, the need for OOP

arises.

C# was built from the ground up as an OOP language. That means you

cannot create a program without building your classes first and having the

fields and methods (the class members) inside their classes. C# was an

evolution of C++, and solved a lot of issues that have always faced C++

programmers. For example, it got rid of pointers that wasted programmers’

time and effort in resolving associated problems such as memory leaks. It

also got rid of multiple class inheritance, which caused more problems

than benefits. In addition, the generics feature that came with C# 2005 was

useful and easier to use than C++ templates. In the next sections, the dif-

ferences between the two languages are discussed in detail.

2 | Chapter 1

1-2 C#: The OOP Language

1-3 The .NET Framework

The .NET Framework, introduced by Microsoft in 2002, is a programming

platform and set of tools for building and running distributed applications

in the Internet era. It also contains an object-oriented class library and a

collection of reusable types (a type is a representation of data such as

classes) that enable you to accomplish many common programming tasks

such as file access, string manipulation, and database management. The

class library is categorized into modules (referred to as namespaces) and

includes types that support a variety of applications such as:

� Console applications

� Windows forms

� ASP.NET applications

� XML web services

� Windows services

� SQL Server applications

� Small device applications

In fact, C# is one of the .NET languages that Microsoft developed. The

other languages that use .NET are Visual Basic .NET, J#, and Managed

C++, in addition to languages developed by other companies. (See more

details on the web site: http://www.dotnetpowered.com/languages.aspx).

All these languages work under the .NET umbrella and use its libraries.

Actually, you can write an application with modules written in different

languages that support .NET.

In addition to the class library, the .NET Framework includes the Com-

mon Language Runtime (CLR), an integrated environment for executing

applications using the .NET library.

There are other versions of the .NET Framework that work with operat-

ing systems other than Microsoft Windows, such as Mono. Mono can run

on operating systems such as Mac OS X and Linux. There is also a subset

of the .NET Framework called the Microsoft .NET Compact Framework

that can be used with small devices and smart phones. There is even a

Micro Framework for extremely low-power devices, such as watches.

1-3-1 CLR and Managed Code

The Common Language Runtime is responsible for executing applications

and runtime services such as language integration, security enforcement,

memory management, and thread execution. The CLR provides metadata,

which is a consistent method for describing code.

Introduction to C# and .NET | 3

1-3 The .NET Framework

http://www.abicomputer.net

The Common Language Specification (CLS) and the Common Type

System (CTS), fundamental parts of the CLR, define the types and syntax

that can be used with many .NET languages. The CTS is a standard that

defines how CLR represents and manages types. The CLS is a subset of

the features that programming languages must support in order to execute

in the context of CLR.

The code that executes under control of CLR, such as C#, is called man-

aged code, while the code that executes without requiring CLR, such as

C++, is called unmanaged code. Prior to Visual Studio .NET 2002, all

applications used unmanaged code. Applications such as MFC, ATL, and

Win32 are unmanaged applications. When you are using managed code,

the .NET Framework handles any interaction with the operating system,

and you just concentrate on the application itself.

1-3-2 MSIL and JIT

When you compile a C# program, the compilation does not directly gener-

ate native (operating system-specific) code; it generates code written in

Microsoft Intermediate Language (MSIL or IL). The MSIL code is trans-

lated to native code at run time. This compilation phase is called the

just-in-time (JIT) compilation.

� Note Native code can also describe the output of the JIT compiler: the
machine code that actually runs at run time.

1-3-3 Metadata

During compilation, the CLR creates information about your application. It

includes class names, field names, method names, and method parameters.

This information is called metadata, which means information on data.

Metadata is used by the CLR and the Jitter (JIT compiler) for many pur-

poses such as debugging and type checking. You can also use metadata to

create instances of the classes and use class members regardless of the

source code language.

1-3-4 Assemblies

The program compilation results in creating an assembly, which can be

either an .exe file (executable) or a .dll file (library). An assembly contains:

� The manifest that contains the metadata, which provides the following

information:

4 | Chapter 1

1-3 The .NET Framework

� Versioning information. The versioning information contains four

parts: major version, minor version, build number, and revision

number (for example, 1.0.32.72005)

� Security information

� External assembly references

� Exported types

� Culture information (the national language such as English, French,

or Chinese)

� Custom attributes such as company name and product information

� One or more modules of MSIL code

� The resources used by the application

1-3-5 Garbage Collection

One of the most important benefits of using managed applications is the

use of the garbage collector (GC). The role of CLR does not end after

compiling the IL code into native code. In fact, the CLR is responsible for

managing memory during the code execution. It assures that the memory

used by the program is totally freed up after the program exits. With

unmanaged applications, programmers are responsible for managing the

memory and resolving problems that might occur if a block of memory is

left allocated after the program ends.

With a managed application, blocks of memory are allocated on the

managed heap. (The heap is the part of memory that is used to store

objects, as opposed to the stack, which is used to store references to

objects — more on heap and stack later.) The GC keeps track of the refer-

enced objects on the heap and automatically frees up the memory allocated

to a specific object when it goes out of scope. Calling the GC programmat-

ically is possible by invoking the method System.GC.Collect. However,

this is not recommended because it is not guaranteed that it will destroy

your objects. It is best to focus on the business logic and let the CLR deter -

mine the right time for garbage collection.

1-3-6 Putting Things Together

The .NET applications are handled according to the following procedure:

1. You start by coding your application using one of the .NET-compliant

languages such as C#.

Introduction to C# and .NET | 5

1-3 The .NET Framework

http://www.abicomputer.net

2. The C# code is compiled into MSIL and stored in an assembly. The

C# code might be split across many source files, which are linked

together during the compilation.

3. On executing the code, it is compiled into an operating system-

specific (native) code by using the JIT compiler.

4. The application is executed under control of the CLR. When the pro-

gram exits, the GC frees up the allocated memory.

1-3-7 ILASM and ILDASM

With Visual Studio, you have two programs for IL compilation:

� ilasm.exe: Used to compile programs written in IL and convert them to

.exe or .dll files.

� ildasm.exe: Does the opposite process as it reads an .exe or .dll file and

retrieves the IL file, which contains the manifest and the metadata.

In the next section, we use ildasm.exe to take a look at the contents of the

assembly and get an idea about its properties.

1-4 A First Look at the C# Code

In the following sections we take a look at the C# code and the various

ways to compile it and execute it without going into the details of the

syntax.

1-4-1 The C# Code

The following code is an example of a C# class that can be compiled as a

.dll file:

// EmployeeDLL.cs

public class Employee
{

// Fields:
public string name;
public string id;

// Methods:
public double

6 | Chapter 1

1-4 A First Look at the C# Code

id
name

CalculateSalary(int hoursWorked, double rate)

{
double salary;
salary = rate * hoursWorked;
return salary;

}
}

This example contains the Employee class, which contains the following

data fields of an employee:

� id

� name

The code also contains the method CalculateSalary. This method takes two

parameters, hoursWorked (the number of hours worked) and rate (the pay-

ment per hour), and is used to calculate and return salary (the gross

payment of the employee). The class can, of course, contain other details,

but for the sake of the example this would be enough.

The file that contains this class (its name is written as a comment in the

first line: EmployeeDLL.cs) can be compiled to a .dll. Then you can take a

peek at this .dll file by using ildasm.exe. The output is shown in the fol -

lowing figure.

In Figure 1-1, the contents of the Employee class (the fields and the

method definition) are shown. Programmers who want to use this class

would have enough information without seeing the source code.

1-4-2 The IL Code

If you click on any of the class members, such as the method

CalculateSalary, you see its IL code, as shown in Figure 1-2.

Introduction to C# and .NET | 7

1-4 A First Look at the C# Code

Figure 1-1: The IL and the manifest of
the DLL.

salary

http://www.abicomputer.net

Ignore the text between the curly braces and examine the code preceded by

a dot (this is called a directive). You will notice that the definition of the

method CalculateSalary gives all the information you need to use this

method:

CalculateSalary(int32 hoursWorked, float64 rate)

The beauty of the assembly is that it is self describing. Therefore, you can

use this library file as a component in another program without looking at

the source code. (The details of the method parameters will be discussed in

the next chapters.)

1-4-3 The Manifest

By double-clicking the MANIFEST icon in Figure 1-1, you can see the

content of the manifest, as shown in Figure 1-3. Again, ignore the code

between the curly braces and examine only the directives. The manifest

contains important information about the assembly, such as the external

class library mscorlib, which is the core library that all .NET programs use:

.assembly extern mscorlib

It also contains the name of the file, the version, and other important

information.

8 | Chapter 1

1-4 A First Look at the C# Code

Figure 1-2: The IL file of the method
CalculateSalary.

1-4-4 Using the Library File

To get the whole picture, let’s write some code to use this library. The fol-

lowing C# program contains the source code needed to call the method

CalculateSalary and display the result for one employee.

// MyProgram.cs

using System;

class MyClass
{
static void Main()
{
Employee emp = new Employee();
emp.name = “John Martin Smith”;
emp.id = “ABC123";
double weeklyPayment = emp.CalculateSalary(40, 55);

Console.WriteLine(“ID: {0}, Name: {1}”, emp.id, emp.name);
Console.WriteLine(“Payment= {0}”, weeklyPayment);
}
}

When you compile this code you only need to link it to the .dll file. This

way you are able to call the method CalculateSalary like this:

CalculateSalary(40, 55)

This method uses two parameters. The first is the number of worked hours

(40) and the second is the rate of the employee (55). The details of the C#

Introduction to C# and .NET | 9

1-4 A First Look at the C# Code

Figure 1-3: The manifest of the file
EmployeeDLL.dll.

emp.CalculateSalary(40, 55)

http://www.abicomputer.net

code will be explained in detail later. Let us now examine the manifest of

this file. The file is compiled first to generate the executable file

(MyProgram.exe), and then ILDASM is used to examine it. The manifest

of MyProgram.exe is shown in Figure 1-4.

Examine the directives in this file and pay attention to the highlighted one:

.assembly extern employeeDLL

This directive tells you that the .dll file (employeeDLL.dll) was linked to

the source code during compilation.

1-5 How to Get a Free C# Compiler

When you buy Visual Studio 2005, you get the full-featured integrated

development environment (IDE). You can also get a free C# compiler by

using one of the following options:

� You can get the command-line compiler (csc.exe) from the site

http://msdn.microsoft.com/netframework/downloads/updates/

default.aspx.

Download the redistributable package of the .NET Framework, which

includes the compiler and the .NET Framework with C# 2005 syntax

support.

10 | Chapter 1

1-5 How to Get a Free C# Compiler

Figure 1-4: The manifest of the file
MyProgram.exe.

� You can also get a smaller version of the IDE by downloading Visual

C# Express from the web site http://lab.msdn.microsoft.com/

express/vcsharp/default.aspx.

This option enables you to build projects, and use the Code Editor and

IntelliSense, which speeds up the development process (explained in

Chapter 13).

1-5-1 Compiling Programs in the Command-Line
Environment

There are two cases in which you can use the command-line environment:

� You only have the compiler that comes with the .NET Framework.

� You have the Visual Studio IDE that comes with C# Express.

1-5-1-1 If You Have the Compiler without the IDE

If you downloaded the C# command-line compiler only, you must include

it in the path before using it. Do this by adding the location of the compiler

to the PATH variable in the Windows environment. The compiler is located

in the following directory:

%windir%\Microsoft.NET\Framework\<version>

where:

� %windir% is the environment variable that indicates the location of the

Windows directory. If you are using Windows XP, this variable is

replaced by “C:\WINDOWS.”

� <version> is the version of the .NET Framework. The latest version is

v2.0.50727, which makes the location “%windir%\Microsoft.NET\

Framework\v2.0.50727.”

To add the location of the compiler to the path, use the following steps:

1. Click the Start menu.

2. Select All Programs.

3. Select Accessories.

4. Click Command Prompt.

5. When the Command Prompt window opens, enter the following

command:

set path=%path%;%windir%\Microsoft.NET\Framework\v2.0.50727

Figure 1-5 shows the response to the csc command before and after setting

the path, assuming that you are compiling a file called myProg.cs. Notice

that before setting the path, the csc command was not recognized by the

Introduction to C# and .NET | 11

1-5 How to Get a Free C# Compiler

http://www.abicomputer.net

operating system. When the set path command was entered, the compila-

tion completed.

1-5-1-2 If You Have the Visual Studio IDE

If you downloaded the IDE, you don’t need to set up the path. Just open

the Visual Studio command prompt by using the following steps:

1. Click the Start menu.

2. Select All Programs.

3. Select Microsoft Visual Studio.

4. Select Visual Studio Tools.

5. Click Visual Studio Command Prompt.

This opens up the window shown in Figure 1-6. It also adds the location of

the command-line compiler (csc.exe) to the path, in which case you can

access the command-line compiler from any directory.

Figure 1-6 shows the response to the csc command in the Visual Studio

2005 Command Prompt window.

12 | Chapter 1

1-5 How to Get a Free C# Compiler

Figure 1-5: Setting the path in the command prompt.

Figure 1-6: The Visual Studio Command Prompt window.

1-6 Comparison of C# and C++

If you are coming from a C++ background, the following information will

be useful for you as it contains a comparison of the two languages; other-

wise, you can skip this section.

Table 1-1: Comparison of C# and C++

Feature Comparison See Chapter

Arrays Array declaration in C# is different from that in
C++.

4

Calling the members of
the inherited class from
the derived classes

In C# you can use the base keyword to do that. 6

Classes and structures Unlike C++, you cannot declare a class in C# by
using the keyword struct. The words class and struct
are totally different in C#.

7

Constructors Similar to constructors in C++. If you don’t define
a constructor, the compiler uses a default
constructor to initialize objects with default values.

5 and 7

Default parameters There are no default parameters in C#. Use
method overloading instead.

6

Destructors In C# you cannot control destructing objects as you
do in C++. The destruction operations are done
automatically by the garbage collector (GC).

5

Exception handling In addition to throw, try, and catch, C# added the
new keyword finally.

9

Function pointers The delegate reference type in C# is similar to the
function pointer in C++. The main difference is
that a delegate is type safe.

10

Global variables and
methods

Not permitted in C#. Variables and methods must
be declared inside a class or struct.

2

Header files There are no header files in C#. You can use
preprocessor directives in conditional compilation.
You can also use the using directives to reference
types in namespaces to avoid using fully qualified
names.

2 and 7

Inheritance There is no multiple inheritance in C#. You can
only inherit from one class.

5

Initialization list Not in C#. Instead, use constructors to build the
inherited class.

6

Initializing local
variables

You cannot use a variable in C# before initializing
it (assigning it a value).

2

Input/output C# relies on the .NET class library in input and
output operations.

2

Interface
implementation

A class, a struct, or an interface can implement
more than one interface at the same time.

8

Introduction to C# and .NET | 13

1-6 Comparison of C# and C++

http://www.abicomputer.net

Feature Comparison See Chapter

Keywords C# changed the meaning of some keywords such
as static and extern.

7

Long type The long type in C# is 64 bits while it is 32 bits in
C++.

3

The main method The name and the declaration of the main method
are different in C#.

2

Method overriding You must use the keyword override to declare an
override method in C#.

6

The new modifier The new modifier is used to hide an inherited
member in C#.

8

Operators C# uses a new set of operators and adds new
usage for some C++ operators.

4

Passing pointers to
methods

Although C# doesn’t support pointers (except
inside an unsafe block), you can pass parameters
as references by using the ref and out keywords.

6

Strings Strings in C# are completely different from strings
in C++.

3

The switch construct Unlike C++, the C# switch does not allow fall
through from one case to the next. You must use a
branching statement.

4

Templates The generics feature is similar to C++ templates,
but is type safe.

12

Type conversion It not possible to convert between some types in
C#, such as bool and int. Unlike C++, the value
false is not equivalent to zero and the value true is
not equivalent to a non-zero value.

3

1-7 The Features of C# 2005

The following is a summary of the most important new features in C# 2005

covered in this book.

Table 1-2: New C# features covered in this book

Feature Explanation See Chapter

Anonymous methods An anonymous method enables you to pass a code
segment as a delegate parameter directly without
declaring a separate method.

10

Contextual keywords Contextual keywords are added to the C# keyword
set. A contextual keyword is not a reserved word,
but it provides a specific meaning in the code.
Contextual keywords are: get, set, yield, value,
partial, and where.

5, 11, and
12

Covariance and
contravariance

With these two features there is more flexibility in
matching the signatures of the delegate and the
encapsulated method.

10

14 | Chapter 1

1-7 The Features of C# 2005

Feature Explanation See Chapter

Generics This is the most important feature added to C#
2005. It facilitates code reuse and enhances the
collection classes.

12

Iterators An iterator is used to iterate through a collection
and return an ordered sequence of values of the
same type, thus providing a standard way to
implement enumerators.

11

Namespace alias
qualifier (::)

You can use this operator to search the global
namespace for identifiers hidden by types or
members in your code.

5

Nullable types This feature enables you to assign the value null to
a value-type variable.

3

Partial classes This feature facilitates breaking a type (class, struct,
or interface) into more than one section, each in a
separate file.

5

Property accessor
accessibility

With C# 2005 it is possible to define accessibility
levels for the set and get accessors.

5

Static classes A static class is a class whose members are all static
and is declared using the modifier static. Static
classes cannot be instantiated or inherited.

5

1-8 The New Features of C# 3.0

All the features of C# 3.0 that were introduced in the Community Technol-

ogy Preview (CTP) of Microsoft Visual Studio Code Name “Orcas” are

covered in detail in Chapter 14.

Summary

In this chapter:

� You saw an overview of object-oriented programming and how C# was

built from the ground up as an OOP language.

� You learned about the .NET Framework and its elements: the class

library and the Common Language Runtime (CLR).

� You also learned about the Common Language Specification (CLS) and

Common Type System (CTS) and their role in creating .NET-supported

languages.

� You learned about assemblies and how they are self described by using

the manifest metadata.

� You also had an overview of the C# code, and examined the IL code

and the manifest of a .dll and an executable file.

Introduction to C# and .NET | 15

1-8 The New Features of C# 3.0

http://www.abicomputer.net

� You also have seen a comparison of C# and C++, from which C#

evolved.

� Finally, you took a global look at the new features of C# 2005, which

are explained throughout this book.

16 | Chapter 1

Summary

Chapter 2

Your First Go at C#
Programming

Contents:
� Your first C# program
� Compilation
� Comments
� Displaying output
� Directives
� Local variables
� The C# program architecture
� Qualifying names
� Code conventions
� Code documentation

2-1 The “Hello, World!” C# Program

It is common to introduce a new language with an example that displays

the phrase “Hello, World!” on the screen. Here is the C# version:

Example 2-1

// Example 2-1.cs
// The first program in C#

class HelloWorld
{

static void Main()

17

http://www.abicomputer.net

{
System.Console.WriteLine("Hello, World!");

}
}

Output:

Hello, World!

2-1-1 Compiling and Running the Program

Type the program text as a Notepad file, or use any other text editor, and

save it with a name such as FirstProgram.cs. Some text editors force the

filename to have a .txt extension. Although the C# compiler doesn’t care

about the file extension, the .cs extension is typically used for C# pro-

grams. Compile the program in the command environment by using the

following command:

csc FirstProgram.cs

This compilation generates the executable file FirstProgram.exe. Run the

program by typing its name (FirstProgram) and pressing Enter. This dis-

plays the phrase “Hello, World!” on your screen.

� Note If you are using the Visual Studio IDE to build the program, you
can use the console applications, as explained in Chapter 13.

In the following sections the main features of the “Hello, World!” program

are explained.

2-1-2 Comments

The first two lines in the example contain comments:

// Example 2-1.cs
// The first program in C#

The two forward slash characters (//) at the beginning of the line convert

the entire line into a comment, which is ignored by the compiler.

You can place the comment characters anywhere in the line, in which

case they convert the text that follows into a comment. For example:

class HelloWorld // This is a class declaration

18 | Chapter 2

2-1 The “Hello, World!” C# Program

You can also use the characters “/*” and “*/” to convert a group of lines

into a single comment. For example:

/* This is a comment line.
This is another comment line.
This is a third comment line. */

2-1-3 Class Declaration

The main thing to remember about any C# program is that everything is

included inside a class or a struct. The class used in the current example is

called HelloWorld:

class HelloWorld

The class name goes after the keyword class, which is written, like all C#

keywords, in lowercase letters. Like C++, the C# language is case

sensitive.

The body of the entire class lies between braces ({ }). The class con-

tains members such as fields and methods. In this example there is only

one method, which is called Main. The Main method is necessary in all

C# programs. The braces are used as delimiters for blocks of code, which

can also contain other blocks. In fact, the class body might contain any

number of nested classes.

2-1-4 The Main Method

As stated above, every C# program must have a method called Main. This

method is similar to the C++ main function. Notice that the name of the

Main method starts with an uppercase letter.

� Note There is no difference between a function and a method; they both
do the same job. In fact, some authors who come from a C++ background
still use the word “function” to refer to a method. Throughout this book we
use the word “method.”

You cannot generate the executable file unless your program contains the

Main method. Notice also the keyword static (explained later), which

modifies the method. The type of the method can be void, which means the

method does not return a value, like this:

static void Main()
{
}

Your First Go at C# Programming | 19

2-1 The “Hello, World!” C# Program

http://www.abicomputer.net

It can also be int, which means it returns an integer:

static int Main()
{

return 0;
}

There are other forms for the Main method that use arguments, such as:

static void Main(string[] args)
{
}

and

static int Main(string[] args)
{

return 0;
}

The arguments of the Main method are explained in Chapter 4.

2-1-5 Using the .NET Methods for Displaying Results

As you can see in Example 2-1, its purpose is to display the string “Hello,

World!” by using the method WriteLine, which is not part of the C# lan-

guage. WriteLine is a .NET method. As mentioned in Chapter 1, the .NET

class library is divided into namespaces, which contain classes. The

WriteLine method is a member of the Console class in the System

namespace. Therefore, when using such methods you have to use the full

name, including the namespace and the class name, like this:

System.Console.WriteLine();

To display text, you enclose it in quotation marks inside the method’s

parentheses:

System.Console.WriteLine("Hello, World!");

A C# statement ends with a semicolon. This is the way the compiler recog-

nizes the statements and separates them from each other.

You can also use the method Write, which belongs to the same .NET

class and does the same job. The only difference between the two methods

is that WriteLine includes a carriage return and a linefeed, which makes

the cursor move to the next line. Successive WriteLine statements display

each output on a separate line.

20 | Chapter 2

2-1 The “Hello, World!” C# Program

Drill 2-1

Add to Example 2-1 another printing statement to display a new

string, such as “Hello, C# user!” The output of the program should be

something like this:

Hello, World!
Hello, C# user!

Then replace the WriteLine methods with Write methods and make

sure you get the following output:

Hello, World!Hello, C# user!

� Note Did you notice that the .NET words are written differently than C#
words? The .NET words use both lowercase and uppercase letters, while
C# words are written in lowercase only (except the Main method).

2-2 Using Directives

You might be wondering, “Do I always have to write this long line of text

in order to display one string?” The answer is no. A shorter way to display

a string is by using directives. For example:

using System;

Add this directive to the beginning of your program outside any of the

classes. Notice also that directives, like language statements, are followed

by a semicolon.

This directive tells the compiler that you are going to use the namespace

System in your program. You can then use the WriteLine statement with-

out qualifying, like this:

Console.WriteLine("Hello, World!");

You still have to use the word Console, though, because it is the name of

the class that contains the method. When you use other .NET statements

that belong to other classes, though, the using directives can save you a lot

of typing.

Example 2-2 shows the Hello, World! program after adding the

directive.

Your First Go at C# Programming | 21

2-2 Using Directives

http://www.abicomputer.net

Example 2-2

// Example 2-2.cs
// The second program in C#

using System;

class HelloWorld
{

static void Main()
{

Console.WriteLine("Hello, World!");
}

}

Output:

Hello, World!

2-3 Using Local Variables

Local variables are declared inside methods. You can use local variables to

store data of various types. For example, in the previous program you

could store the string “Hello, World!” in a variable of the type string, like

this:

string myString = "Hello, World!";

Then you can display it by using the WriteLine method like this:

Console.WriteLine(myString);

You can also display a message with the same statement:

Console.WriteLine("The string is: " + myString);

Following is a program that uses a local variable and a text message.

Example 2-3

// Example 2-3.cs
// Local variables.

using System;

class MyClass
{

static void Main()
{

string myString = "Hello, World!";

22 | Chapter 2

2-3 Using Local Variables

Console.WriteLine("The string is: "+ myString);
}

}

Output:

The string is: Hello, World!

The C# language contains many numeric data types, which are explained

in the following chapters. For example, you can declare an integer variable

like this:

int myInt;

You can also declare and initialize the variable in the same statement:

int myInt = 123;

As you can see in the example, to initialize a variable you actually assign it

an initial value.

You can declare the variable anywhere inside the method. The only rule

to follow in using variables is to declare and initialize the variable before

using it. The C# language doesn’t let you use uninitialized variables. If you

try to use an uninitialized variable by displaying its value, for example,

you get the following error message from the compiler:

"Use of unassigned local variable <variable-name>"

Like other languages, in C# you can add numeric variables by using the

“+” operator like:

int sum = myInt + yourInt;

To display the value of a variable, use the Console.WriteLine or Con-

sole.Write method:

Console.WriteLine(myInt);

You can also display a numeric variable along with a message in one

statement:

Console.WriteLine("My integer = " + myInt.ToString());

The method ToString, in this statement, is a .NET method that is used to

convert a numeric data type to the string data type. In fact, you can drop

the ToString method because it is embedded in the WriteLine method.

For example:

Console.WriteLine("My integer = " + myInt);

You can also use another form of the WriteLine method like this:

Console.WriteLine("My integer = (0)", myInt);

Your First Go at C# Programming | 23

2-3 Using Local Variables

http://www.abicomputer.net

In this form, (0) is replaced by the value of the variable myInt. If you

would like to display several variables with one statement, you can use (0),

(1), (2), and so forth.

Console.WriteLine("My integer = (0), Your integer = (1)", myInt,
yourInt);

In this statement, (0) is replaced by myInt, and (1) is replaced by yourInt.

Drill 2-2

Write a C# program to add the values of two integer variables, then

display the result with an appropriate message.

2-4 The Program Architecture

A C# program may contain one or more files. Any file can contain any of

the following elements (explained in the following chapters):

� Directives

� Namespaces (which can contain all other elements and namespaces)

� Classes

� Structs (structures)

� Interfaces

� Delegates

� Enums (enumerations)

� Function members (such as methods, properties, indexers, and so forth)

If the program consists of more than one file, only one Main method is

required in one of the files.

In the following example, the program contains most of the elements

mentioned above. Although the program does not produce any output, it

compiles and runs.

Example 2-4

// Example 2-4.cs
using System; // Directive

namespace Namespace1 // Namespace
{

class Class1 // Class
{
}

24 | Chapter 2

2-4 The Program Architecture

struct Struct1 // Struct
{
}

interface Interface1 // Interface
{
}

delegate int Delegate1(); // Delegate

enum Enum1 // Enumeration
{
}

namespace Namespace2 // Namespace
{
}

class Class2 // Class
{

static void Main() // The Main method
{
}

}
}

2-5 Qualifying Names

In real life, if you have two coworkers named John, it may be hard to dis-

tinguish between them unless you include the last name. At times, even

using the last name is not enough. In programming, the complete name is

referred to as the fully qualified name. When dealing with program ele-

ments, using the fully qualified name resolves any possible name conflicts.

The fully qualified name includes the names of the containing namespace

and the containing class. By using the fully qualified names you can use

two methods that have the same name but belong to different classes in the

same program and still be able to distinguish between them.

In the following example, there are two classes that have the same name

(MyC2). If you use the fully qualified name for each, you can avoid any

ambiguity. For example:

MyNS1.MyC1.MyC2

and

MyNS1.MyNS2.MyC2

Your First Go at C# Programming | 25

2-5 Qualifying Names

http://www.abicomputer.net

The first name above represents the class MyC2 that is contained in the

class MyC1 that is contained in the namespace MyNS1. The second name

represents the same class, MyC2, that is contained inside the namespace

MyNS2 that is contained inside the namespace MyNS1.

Example 2-5

// Example 2-5.cs
// Fully qualified names

namespace MyNS1 // MyNS1
{

class MyC1 // MyNS1.MyC1
{

class MyC2 // MyNS1.MyC1.MyC2
{
}

}
namespace MyNS2 // MyNS1.MyNS2
{

class MyC2 // MyNS1.MyNS2.MyC2
{
}

}
}
namespace MyNS3 // MyNS3
{

class MyC3 // MyNS3.MyC3
{

static void Main()
{
}

}
}

Notice in the above example that the qualified name is written as a com-

ment beside each element. The elements in this example are described as

follows:

� The namespaces MyNS1 and MyNS3 are contained in the global

namespace that represents the root of the tree; therefore, their names

are already fully qualified.

� The namespace MyNS2 is contained inside the namespace MyNS1;

therefore, its fully qualified name is MyNS1.MyNS2.

� The class MyC1 is contained inside the namespace MyNS1; therefore,

its fully qualified name is MyNS1.MyC1.

26 | Chapter 2

2-5 Qualifying Names

� The first instance of class MyC2 is contained inside the class MyC1;

therefore, its fully qualified name is MyNS1.MyC1.MyC2.

� The second instance of class MyC2 is contained inside the namespace

MyNS2; therefore, its fully qualified name is MyNS1.MyNS2.MyC2.

2-6 Common Conventions for Writing Code

Apart from the language rules, there are common conventions for writing

code. Using these conventions makes your program consistent and easy to

read by others. For the compiler, however, it doesn’t matter how you write

your code as long as you follow the rules.

� Type names for classes, structs, and methods using Pascal casing,

which means that they start with a capital letter (for example, Class1

and Method1). If the name consists of words joined together, capitalize

the beginning of each word (for example, MyFirstClass and

CalculateYourBalance).

� Start interface names with the letter “I” (for example, IMyInterface and

IInterface1).

� For local variables, use camel case, which means that the name starts

with a lowercase letter and the first letter of each successive word is

capitalized (for example, myVariable, yourInt, and myDoubleType-

Variable). The uppercase bumps in the middle of the compound word

make the name look like the humps of a camel.

� Use expressive names that convey the meaning or their use, such as

myAccountNumber and yourSSN. Names like x, y, and z should be

avoided unless they are used in the proper context, such as mathemati-

cal equations or coordinates.

� Start the left brace ({) on a separate line under the class or class mem-

ber declaration. The right brace (}) is placed in the same column on a

separate line. For example:

class HelloWorld
{

// class body
}

Notice that the class body starts in the fourth column after the left brace

(indented by three spaces).

� Leave a blank line after each distinct operation, such as after variable

declarations, repetition loops, or conditional constructs.

Your First Go at C# Programming | 27

2-6 Common Conventions for Writing Code

http://www.abicomputer.net

2-7 Code Documentation

Three forward slash characters (///) are used to provide XML documenta-

tion comments in your code. These comments can precede types, members,

and parameters. This information is especially useful if you work as part of

a team. You can then describe your classes and how they are used as you

type the code. If you are writing end user documentation such as an SDK

or a programmer’s reference, this information can also be useful. One of

the important uses for this information is for generating the IntelliSense in

the IDE environment (explained in Chapter 13).

The following is an example of documenting the Hello, World! program

by using XML tags.

Example 2-6

// Example 2-6.cs
using System;

/// <summary>
/// A test project to show documentation comments.
/// </summary>
class MyClass
{

/// <summary>
/// The Main method of the program.
/// </summary>
/// <param name="args">Command-line arguments.</param>
/// <returns>Does not return a value.</returns>
static void Main(string[] args)
{

string myString = "Hello, World!";
Console.WriteLine(myString);

}
}

The C# compiler generates the documentation information and exports it to

an XML file. To generate the documentation file, use the compiler option

“/doc” as shown below. If you save this program with the name Ex2-6.cs,

you can compile it using the following command:

csc /doc:Ex2-6.xml Ex2-6.cs

The following documentation file (Ex2-6.xml) will be generated:

<?xml version="1.0" ?>
- <doc>
- <assembly>
<name>Tester</name>

28 | Chapter 2

2-7 Code Documentation

</assembly>
- <members>
- <member name="T:MyClass">
<summary>A test project to show documentation comments.</summary>
</member>
- <member name="M:MyClass.Main(System.String[])">
<summary>The Main method of the program.</summary>
<param name="args">Command-line arguments.</param>
<returns>Does not return a value.</returns>
</member>
</members>
</doc>

For a complete list of XML tags, see “Compiler Options” in the help file.

Summary

In this chapter:

� You wrote your first program in C# and learned about its building

blocks, including the declaration of a class, the Main method, and

directives.

� You learned how to display the output by using the .NET methods

Write and WriteLine. You also know how directives can save time

and effort when using the .NET methods.

� You now know how to declare and initialize local variables inside a

method. You also know that the C# language doesn’t allow you to use a

variable before initializing it.

� In the examples, you learned how to assign values to variables and per-

form some basic operations such as numeric variable addition.

� You know that the ToString method is used to convert other types to

strings and that it is embedded in the WriteLine (or Write) method so

you don’t need to use it explicitly in displaying numeric output.

� You learned about the C# program architecture and how the building

blocks work together to build the application.

� You were introduced to fully qualified names and their role in resolving

name conflicts in the program.

� You learned about common conventions for writing your code that

make it easy for others to read and understand.

� Finally, you learned how to create an XML documentation file for your

code.

Your First Go at C# Programming | 29

Summary

http://www.abicomputer.net

This page intentionally left blank.

Chapter 3

C# Data Types

Contents:
� Data, value, and reference types
� Arithmetic operators and expressions
� Integral types
� The char type
� Formatting results
� The nullable types
� Using the “??” operator
� String operators and expressions
� Reading keyboard input
� Converting strings to numbers

3-1 Data Types

In C#, there are two types of data:

� Value types: Variables that store data values on the stack.

� Reference types: Variables that store memory addresses of the data

stored on the heap.

There is also a third type of data, the pointer type, which is used in writing

unsafe code. The pointer type is not covered in this book as it is added to

the language for compatibility with C++. Although the C# language does

not support pointers directly, it is possible for C++ programmers to write

unsafe blocks of code and use pointers inside these blocks.

31

http://www.abicomputer.net

3-2 Built-in Data Types

The built-in data types are aliases of types originally defined in the .NET

class library. These types and the corresponding .NET types are shown in

the following table.

Table 3-1: C# built-in data types

C# Type .NET Type

bool System.Boolean

byte System.Byte

sbyte System.SByte

char System.Char

decimal System.Decimal

double System.Double

float System.Single

int System.Int32

uint System.UInt32

long System.Int64

ulong System.UInt64

object System.Object

short System.Int16

ushort System.UInt16

string System.String

Notice in the table that the word Object is a class in the .NET class library.

It represents the root of all types. It is important to notice also that the C#

object is lowercase. Needless to say, you can use either the C# type or the

.NET type in your code. For example, the following two statements are

equivalent; they both declare an integer variable and assign the value 25

to it:

int myInt = 25;
System.Int32 myInt = 25;

The following two statements are also equivalent; both declare a variable

of the object type:

object myObject;
System.Object myObject;

In Table 3-1, all types except the string and object types are called simple

data types.

32 | Chapter 3

3-2 Built-in Data Types

3-3 Value Types

Value types include the numeric types (integers, floats, and so forth) and

the Boolean type (bool). They also include user-defined types such as

structs and enumerations. The following table shows the C# value types

and a description of each type.

Table 3-2: Value types

C# Type Description

bool Boolean

byte Unsigned integral

char Unsigned integral

decimal Signed numeric

double Signed numeric

enum Enumeration

float Signed numeric

int Signed integral

long Signed integral

sbyte Signed integral

short Signed integral

struct User-defined structure

uint Unsigned integral

ulong Unsigned integral

ushort Unsigned integral

Value types are stored on the stack, which is the region in memory used to

store local variables and their data. All value types are implicitly derived

from the Value Type class in the System namespace. Value types, how-

ever, cannot be inherited.

3-3-1 Variable Initialization

To use a variable you must first initialize it with a value, as shown in the

following examples:

int myValue = 123;
int myValue = 0;
int myValue = new int();

In the first example, we initialized the variable myValue with the value

123. In the second example, it is initialized with zero. In the third example,

the variable is also initialized with zero by using the keyword new, which

calls the default constructor (a constructor is a method that initializes an

C# Data Types | 33

3-3 Value Types

http://www.abicomputer.net

instance of a class) that initializes the variable with its default value —

zero in this case. This means that the last two statements are equivalent.

3-3-2 Default Values

Each value type has a constructor that initializes it to its default value. The

default value for each type is shown in the following table.

Table 3-3: The default values for each value type

Type Default Value

bool false

byte 0

char '\0'

decimal 0.0M or 0.0m

double 0.0D or 0.0d

enum The value resulting from evaluating the expression E(0), where E is
the enumeration identifier.

float 0.0F or 0.0f

int 0

long 0L or 0l

sbyte 0

short 0

struct The value resulting from initializing all value-type fields to their
default values and reference-type fields to null.

uint 0

ulong 0

ushort 0

When using structs, you instantiate the struct by using the keyword new,

which initializes the instance members with the default values. Following

is an example of a struct that represents a point at the coordinates (x,y):

struct Point
{
int x;
int y;
}

In order to create an object of the type Point, use a statement like this:

Point myPoint = new Point();

This statement initializes all the members of the object (x and y in this

case) with the value 0. This is called definite assignment of the struct.

We’ll talk more about structs later in this book.

34 | Chapter 3

3-3 Value Types

3-4 Reference Types

A reference-type variable does not contain the data itself; it actually con-

tains the memory address of the data. It is similar to pointers and

references in C++, but much easier to use. The variable itself lives on the

stack, like a value-type variable, but points to its data that lives on the

heap.

� Note The heap is the region in memory that stores the data pointed to
by the reference-type variables.

3-4-1 The C# Reference Types

The following are the C# reference types:

� Class

� Interface

� Delegate

� Object

� String

It is possible to convert value types to reference types by using boxing and

from reference types to value types by using unboxing.

3-4-2 Boxing and Unboxing

The boxing operation is accomplished by assigning the value-type variable

to a variable of the type object:

int myInt = 123;
object myObj = myInt; // boxing

This means moving the value 123 from the stack to the heap, as shown in

the following figures.

C# Data Types | 35

3-4 Reference Types

Figure 3-1: Memory before boxing.

http://www.abicomputer.net

In order to convert the variable back to a value type you use the unboxing

operation, which is performed by casting the reference-type variable with

(int). The following statement assigns the value pointed to by myObj to a

new value-type variable, yourInt:

yourInt = (int) myObj; // unboxing

This statement creates a new value-type variable that contains the same

value, 123, as shown in Figure 3-3.

Notice that you can use the same variable, myInt, instead of using a third

variable, yourInt, in the unboxing operation.

� Note Boxing is necessary in cases when you would like to use value
types in collections (explained in Chapter 11) where items of the collection
are of the type object. Unboxing is also used in accessing the value-type
contents of an object.

The following example demonstrates boxing and unboxing.

36 | Chapter 3

3-4 Reference Types

Figure 3-2: Memory after boxing.

Figure 3-3: Memory after unboxing.

Example 3-1

// Example 3-1.cs
// Boxing and Unboxing

using System;

public class BoxingAndUnboxing
{
static void Main()
{

// Declare a value type:
int myInt = 123;
// Boxing and changing the value:
object myObj = myInt + 321;
// Unboxing:
int yourInt = (int) myObj;
Console.WriteLine("myInt = {0}", myInt);
Console.WriteLine("myObj = {0}", myObj);
Console.WriteLine("yourInt = {0}", yourInt);
}

}

In this example, we added the value 321 to the original value during the

boxing operation. It is important to notice that this did not change the

value of the original variable, myInt, which contained the same value after

the unboxing operation. The variable yourInt, however, contains the value

that was pointed to by the reference variable. You can see these values in

the example output.

Output:

myInt = 123
myObj = 444
yourInt = 444

Although the concept of reference-type variables is the same as pointers in

C++, reference types save you the trouble of handling pointer operations,

especially deleting the memory that was allocated to pointers. These opera-

tions are done for you in the background.

C# Data Types | 37

3-4 Reference Types

http://www.abicomputer.net

3-5 Simple Data Types

The following table shows the C# simple data types along with the range

and size in bytes for each type. Simple types include integral (int), floating

point (float), Boolean (bool), and character (char). These types are called

“simple” to distinguish them from user-defined types such as structs and

enums. All simple types are, of course, value types.

Table 3-4: Simple data types

Type Range Size in Bytes

bool true or false 1

byte 0 to 255 (unsigned) 1

char U+0000 to U+ffff (Unicode character) 2

decimal ±1.0 × 10–28 to ±7.9 × 1028 8

double ±5.0 × 10–324 to ±1.7 × 10308 8

float ±1.5 × 10–45 to ±3.4 × 1038 4

int –2,147,483,648 to 2,147,483,647 4

long –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

8

sbyte –128 to 127 1

short –32,768 to 32,767 2

uint 0 to 4,294,967,295 (unsigned) 4

ulong 0 to 18,446,744,073,709,551,615 (unsigned) 8

ushort 0 to 65,535 (unsigned) 2

Notice that there is no implicit conversion from the type char to any inte-

gral type as in C++. In other words, false does not equal zero and true is

not a non-zero value.

The following are examples of using simple types in declarations:

int myInt;
char aChar;
long theLongNumber;

As mentioned before, you can also declare a variable and assign it a value

at the same time:

byte myBite = 5;
short myShort = -223;
char myChar = 'A';

38 | Chapter 3

3-5 Simple Data Types

3-6 Creating and Manipulating Arithmetic Expressions

In the following sections, you will learn how to create and manipulate

arithmetic expressions. You can build arithmetic expressions by using liter-

als (data values), variables, and arithmetic operators. Expressions can be

assigned to variables.

3-6-1 The Basic Arithmetic Operators (+, –, *, /)

Simple arithmetic expressions are built by using operators such as +, –, *,

and /, which are used for addition, subtraction, multiplication, and division.

In general, when an expression is evaluated, multiplication and division are

evaluated before addition and subtraction because they have higher prece -

dence. Consider the following expression:

6 + 4 * 5

In this expression, the part 4 * 5 is evaluated first, and then its value is

added to 6. The result would be 26. You can use parentheses to change the

precedence of operations:

(6 + 4) * 5

In this expression, the addition is evaluated first because the parentheses

have higher precedence than the other operators. The addition evaluates to

10, which is multiplied by 5, giving the result 50.

It is possible to assign an expression to a variable, as in this example:

x = y * (2/3) – 1.0;

These operators are called binary operators because they operate on two

operands.

3-6-2 The Modulus Operator (%)

The modulus operator (%) is used to get the remainder of division. For

example, the following expression:

5 % 2

gives the result 1, while the expression:

4 % 2

gives the result 0.

� Note The modulus operator in C# can be applied to all numeric types.
For example, the expression 5.2 % 5 evaluates to 0.2.

C# Data Types | 39

3-6 Creating and Manipulating Arithmetic Expressions

http://www.abicomputer.net

3-6-3 The Assignment Operators

The = assignment operator is used for assigning a value, expression, or

variable to a variable. The following table shows the use of assignment

operators combined with arithmetic operators.

Table 3-5: The assignment operators

Compound Assignment Operator Example Statement Equivalent Statement

*= x *= y; x = x * y;

/= x /= y; x = x / y;

%= x %= y; x = x % y;

+= x += y; x = x + y;

–= x –= y; x = x – y;

As you can see in the above table, each example in the Example Statement

column is equivalent to a statement in the Equivalent Statement column.

For example, the statement:

x *= y;

means multiply x by y and store the result in x.

The statement:

x %= y;

means divide x by y and store the remainder of the division in y.

3-6-4 Increment and Decrement Operators (++, ––)

Increment and decrement operators are classified as unary or primary

arithmetic operators because they have only one operand. Consider the fol-

lowing statements:

x++;
y--;

The first statement increments the value of x by 1, while the second decre-

ments the value of y by 1. The value of the expression that contains this

kind of operator changes according to whether the ++ or –– operator

comes before (prefix) or after (postfix) the variable. For example, the

expression:

--y + x

means decrement y before adding its value to x. The expression:

y-- + x

means decrement y after adding its value to x.

40 | Chapter 3

3-6 Creating and Manipulating Arithmetic Expressions

Example 3-2

// Example 3-2.cs
// Increment and Decrement

using System;

class ArithmeticOperators
{

public static void Main()
{

int x = 10;
int y = 100;
int z = y-- + x;
Console.WriteLine(z); // result = 110
Console.WriteLine(y); // result = 99 — The value of y after

// decrementing
z = --z + x;
Console.WriteLine(z); // result = 119

}
}

Output:

110
99
119

3-6-5 Operator Associativity

Associativity is the direction in which an expression is evaluated. Consider

an expression that contains two operators of the same precedence, like the

following:

80 / 4 * 2

How can the compiler decide which operator to apply first? If you apply

the division first (left-to-right associativity), the result would be evaluated

as follows:

(80 / 4) * 2 = 40

But if you apply the multiplication first (right-to-left associativity), the

result would be evaluated as follows:

80 / (4 * 2) = 10

It is clear that the direction of evaluation changes the result. As you can

see in this example, using parentheses changes the order in which expres-

sions are evaluated. But if you leave out the parentheses, the rule for the

C# Data Types | 41

3-6 Creating and Manipulating Arithmetic Expressions

http://www.abicomputer.net

compiler is to evaluate operators by using left-to-right associativity. In this

case, the expression 80 / 4 * 2 is evaluated as 40.

In general, binary arithmetic operators use left-to-right associativity,

while primary and unary arithmetic operators use right-to-left associativity.

The following table shows the C# arithmetic operators along with their

precedence and associativity. In this table, the operators are divided into

four categories. The operators in each category have the same precedence.

The operators in the first row have the highest precedence, while those in

the last row have the lowest precedence.

Table 3-6: Arithmetic operators

Precedence Category Operator Symbol and Name Associativity

Highest Primary () (Parentheses)

++ (Postfix increment)

–– (Postfix decrement)

Right to left

Unary + (Positive sign)

– (Negative sign)

++ (Prefix increment)

–– (Prefix decrement)

Right to left

Binary * (Multiplication)

/ (Division)

% (Modulus)

Left to right

Lowest Binary + (Addition)

– (Subtraction)

Left to right

Drill 3-1

Start with the following assignments:

int x = 10;
int y = 100;
int z = y;

Then write a C# program to compute and display the values of the

variables y and z after executing these expressions:

y = y++ + x;
z = ++z + x;

Notice that the expression:

y+++x

is equivalent to the expression:

y++ +x

42 | Chapter 3

3-6 Creating and Manipulating Arithmetic Expressions

This is because the associativity for the increment and decrement operators

is from right to left, which is not the case with the binary operators. It is

preferred, however, to use a blank space or parentheses to make the code

easier to read.

3-6-6 How to Get the Type Name

By using the .NET method GetType, you can get the type name of any

local variable or object. This is how to use it:

Console.WriteLine(myVariable.GetType());

In this statement, myVariable is the local variable, expression, or object for

which you would like to get the type name.

Drill 3-2

Try these statements in a program:

Console.WriteLine(123.GetType());
Console.WriteLine(3.14.GetType());

Your output should be:

System.Int32
System.Double

3-6-7 Evaluating Expressions with Mixed Types

If you write an expression that contains different real (floating-point) types

and integral types, it is evaluated as follows:

� If the expression contains a double value, the result would be double.

� If the expression doesn’t contain a double value, the result would be

float.

� If the expression contains any integral type and a real type, the integral

type would be converted to the real type and the result would be of the

real type.

In the following example, an expression that contains integral types and

floating-point types is evaluated as double.

C# Data Types | 43

3-6 Creating and Manipulating Arithmetic Expressions

http://www.abicomputer.net

Example 3-3

// Example 3-3.cs
// Expressions with mixed types

using System;

class NumbersClass
{

static void Main()
{

int x = 128;
short y = 34;
double z = 3.14;

// Print the result and the type of result:
Console.WriteLine("Sum: {0}", x + y + z);
Console.WriteLine("Type: {0}", (x + y + z).GetType());

}
}

Output:

Sum: 165.14
Type: System.Double

3-6-8 Adding a Suffix to Numeric Data

It is necessary with some data types to add a suffix to the numeric literals

to distinguish them from other types. This is explained further in the fol-

lowing sections.

3-6-8-1 Real Types

The compiler treats a real number as a double type unless you add a suffix

to define its type explicitly as follows:

� Use M or m with the decimal type. For example, 23.4M.

� Use F or f with the float type. For example, 23.4F.

When you declare a real type variable you must use the proper suffix; oth-

erwise, the compiler issues an error message. For example, the following

declarations generate error messages:

decimal myAmount = 23.4; // error
float myRealNumber = 23.4 // error

� Note Although you can use either lowercase or uppercase letters in suf-
fixes, we use uppercase letters in the programs in this book.

44 | Chapter 3

3-6 Creating and Manipulating Arithmetic Expressions

Example 3-4

// Example 3-4.cs
// Suffixing real types

using System;

class MyPoint
{

static void Main()
{

decimal myDecimal = 23.4M;
float myFloat = 23.4F;
double myDouble = 23.4;

Console.Write("myDecimal = {0}\nmyFloat = {1}\nmyDouble = {2}",
myDecimal, myFloat, myDouble);

}
}

Output:

myDecimal = 23.4
myFloat = 23.4
myDouble = 23.4

� Note The new line character (\n) inside the quotation marks allows the
string literal to print on more than one line, as shown in the above
example.

Drill 3-3

Test the variable types in Example 3-4 and make sure you get the

following result:

System.Decimal
System.Single
System.Double

3-6-8-2 Integral Types

With integral types, you don’t have to suffix data values because the

appropriate storage is automatically chosen for you when the expression is

evaluated.

C# Data Types | 45

3-6 Creating and Manipulating Arithmetic Expressions

http://www.abicomputer.net

You can, however, use the suffixes L, U, or UL to determine the type of

numeric value and the proper storage for it. Follow these rules when using

the suffixes:

� When you use the suffix L, the number is considered of the long or

ulong type according to its value. For example, the following number

is treated as a long because it is less than the limits of ulong:

4294967296L

� When you use the suffix U, the number is treated as either long or uint

according to its value. For example, the following number is treated as

a uint because it is less than the limits of the type long.

4294967290U

� When you use the letters U and L together, in any order, the number is

treated as a ulong.

Drill 3-4

Try the following statements in a C# program and check the results:

Console.WriteLine(9223372036854775808L.GetType());
Console.WriteLine(123UL.GetType());
Console.WriteLine(4294967296L.GetType());
Console.WriteLine(4294967290U.GetType());

These are the expected results:

System.UInt64
System.UInt64
System.Int64
System.UInt32

3-6-9 Conversion between Types

In C# there are two methods of type conversion: implicit and explicit. For

example, you can write the following statements to declare real variables:

double myVar = 4;
float myVar = 33;

These declarations include implicit conversions from the integer type to

float and double. Such conversions are performed in the background for

you. You cannot, however, type the following statement:

float myVar = 3.3; // compilation error

This statement means that you want to store the value 3.3, a double value

(as mentioned in the previous section), into a smaller storage type, which is

46 | Chapter 3

3-6 Creating and Manipulating Arithmetic Expressions

of type float. The compiler doesn’t accept this statement and sends you an

error message. Of course, you can use the suffix F to specify that the num-

ber is a float; this results in converting the literal itself to the float type.

The general rule for type conversion is that you can store the smaller

size storage type into the larger size, but not the opposite. Consider the fol-

lowing declarations:

int x = 4;
double y = 3.0;

With these declarations the following statements are not allowed:

short z1 = x; // compilation error
short z2 = y; // compilation error

The reason is that there is no implicit conversion from int or double to

short — they are both larger than the size of the storage. To complete this

conversion, you must use a cast, as shown in the following statements:

short z1 = (short)x;
short z2 = (short)y;

This kind of conversion is called explicit conversion.

With integral types, it is important to check the destination storage

before performing an assignment. For example, the following statement

shows an incorrect attempt to store an int into a short storage.

short x = 32768; // compilation error

You cannot use a cast in this case because this value exceeds the size of the

short type (32767).

3-7 The char Type

C# characters are stored as 16-bit Unicode characters. With the Unicode

system, it is possible to represent characters of any language including

Chinese, Japanese, Hebrew, and Arabic. You can write characters in multi-

ple ways. The following examples represent the letter “A”.

You can write it as a literal character:

char myChar = 'A';

as hexadecimal code:

char myChar = '\x0041';

C# Data Types | 47

3-7 The char Type

http://www.abicomputer.net

as a Unicode character:

char myChar = '\u0041';

or by casting the ASCII code:

char myChar = (char)65;

The character code is enclosed in single quotes in all instances except

when you use the cast. The following example introduces two methods for

coding the letter “A” and displaying the results, once as a character and

once in ASCII code.

Example 3-5

// Example 3-5.cs
// char conversion

using System;

class CharClass
{

static void Main()
{

char myChar = (char)65;
int yourChar= 'A';

// Print the result:
Console.WriteLine("The character is: {0}", myChar);
Console.WriteLine("The code of the character is: {0}", yourChar);

}
}

Output:

The character is: A
The code of the character is: 65

Notice that it was possible in the example above to write the statement for

declaring the char as:

int yourChar= 'A';

This means that there exists an implicit conversion from the type char to

the type int, but the opposite is not allowed. Thus, the following statement

is incorrect:

char myChar = 65; // compilation error

You can, however, use explicit conversion (casting) like this:

char myChar = (char)65;

48 | Chapter 3

3-7 The char Type

3-8 Formatting Results

In most applications you would want to display the results in the appropri-

ate format. For example, in some applications you need to show two

decimal places, and in other applications you need to display the dollar

sign or the pound sign. This is all done through the Write or WriteLine

methods, as explained in the following sections.

3-8-1 The Currency Format

To display a number with its associated currency symbol and the appropri-

ate number of decimal places, use the currency character “C” or “c”, as in

the following example:

Console.WriteLine ("{0:C}", 1.2);

The number 1.2 appears in the output like this: $1.20.

If the number 1.2 is negative, like this:

Console.WriteLine ("{0:C}", -1.2);

it appears inside parentheses like this: ($1.20).

� Note The currency symbol depends on the Regional Options setting of
your machine. For example, if this option is set to English (United King-
dom), you get the English pound symbol (£) instead of the dollar symbol.

3-8-2 The Decimal Format

To display a number preceded by a specified number of zeroes, use the for-

mat character “D” or “d”, like this example:

Console.WriteLine ("{0:D5}", 123);

The result of this statement is 00123. The number following the letter “D”

determines the number of decimal places in the output.

3-8-3 The Fixed-point Format

To display a number followed by a specified number of decimal places, use

“F” or “f”, like these examples. The output of each statement is written

next to it as a comment.

Console.WriteLine("{0:F2}", 12); // 12.00 - two decimal places
Console.WriteLine("{0:F0}", 12); // 12 - no decimal places

C# Data Types | 49

3-8 Formatting Results

http://www.abicomputer.net

Console.WriteLine("{0:F0}", 12.3); // 12 - omitting fractions
Console.WriteLine("{0:F2}", 12.3); // 12.30 - two decimal places

3-8-4 The General Format

To display a number in the default format, use the letter “G” or “g” like

this:

Console.WriteLine("{0:G}", 1.2); // 1.2
Console.WriteLine("{0:G}", 1.23); // 1.23

As you can see in the comments that follow the statements, this is the same

output produced by no formatting at all. The statements are then equivalent

to these statements:

Console.WriteLine("{0}", 1.2);
Console.WriteLine("{0}", 1.23);

3-8-5 The Numeric Format

To display a number with decimal points and commas, use the letter “N” or

“n”, like this example:

Console.WriteLine("{0:N}", 1230000000);

This statement gives the following output:

1,230,000,000.00

3-8-6 The Scientific Format

To display a number in the exponential form, use the letter “E” or “e”, like

this example:

Console.WriteLine("{0:E}", 12300000);

The resulting number is:

1.230000E+007

3-8-7 The Hexadecimal Format

To display a number in hexadecimal form, use the letter “X” or “x”, like

these examples:

Console.WriteLine ("{0:X}", 123); // 7B
Console.WriteLine ("{0:X}", 65535); // FFFF

The hexadecimal output of each statement is shown in the comment fol-

lowing it.

50 | Chapter 3

3-8 Formatting Results

The following example demonstrates all of the above formats in one

program.

Example 3-6

// Example 3-6.cs
// Formatting Results

using System;
class Format
{

static void Main()
{

string s;

// Currency:
s ="Currency";
Console.WriteLine("{0} Format:", s);
Console.WriteLine("{0:C}", 1.2);
Console.WriteLine("{0:C}", -1.2);

// Decimal:
s = "Decimal";
Console.WriteLine("\n{0} Format:", s);
Console.WriteLine("{0:D5}", 123);

// Fixed-point:
s = "Fixed-point";
Console.WriteLine("\n{0} Format:", s);
Console.WriteLine("{0:F2}", 12);
Console.WriteLine("{0:F0}", 12);
Console.WriteLine("{0:F0}", 12.3);
Console.WriteLine("{0:F2}", 12.3);

// General:
s = "General";
Console.WriteLine("\n{0} Format:", s);
Console.WriteLine("{0:G}", 1.2);
Console.WriteLine("{0}", 1.23);

// Numeric:
s = "Numeric";
Console.WriteLine("\n{0} Format:", s);
Console.WriteLine("{0:N}", 1230000000);

// Scientific:
s = "Scientific";
Console.WriteLine("\n{0} Format:", s);

C# Data Types | 51

3-8 Formatting Results

http://www.abicomputer.net

Console.WriteLine("{0:E}", 12300000);

// Hexadecimal:
s = "Hexadecimal";
Console.WriteLine("\n{0} Format:", s);
Console.WriteLine ("{0:X}", 123);
Console.WriteLine ("{0:X}", 65535);

}
}

Output:

Currency Format:
$1.20
($1.20)

Decimal Format:
00123

Fixed-point Format:
12.00
12
12
12.30

General Format:
1.2
1.23

Numeric Format:
1,230,000,000.00

Scientific Format:
1.230000E+007

Hexadecimal Format:
7B
FFFF

52 | Chapter 3

3-8 Formatting Results

3-9 The Nullable Types

The nullable types were added to value types with C# 2005. This feature

enables you to assign the value null to a value-type variable. You need this

with databases where a variable can assume any value including null. The

nullable variable is declared by using the ? symbol next to the type name,

like this:

myType? myVariable;

where myType is one of the value types including the struct type. It is

called the underlying type of the nullable type. For example, consider the

following statement:

int myInt? = null;

In this statement, the underlying type is int. This means that the variable

myInt can accept all the values that can be assigned to int in addition to

null, which means “not used” or “empty.” In the following example,

bool myBool?;

myBool can assume one of the values true, false, or null. In databases, this

feature is important because a database field may contain null to indicate

that the variable is not defined. This is the same concept used with refer-

ence types where the value null has been used to indicate that a variable is

not initialized.

In the following example, you declare some nullable-type variables,

assign them various values, and display the result. Notice that the values of

the variables that were assigned null are displayed as blanks.

Example 3-7

// Example 3-7.cs
// Nullable types

using System;

class MyPoint
{

static void Main()
{

int? myInt = null;
bool? myBool = null;
float? myFloat = 1.23F;
char? myChar = 'C';

C# Data Types | 53

3-9 The Nullable Types

http://www.abicomputer.net

Console.WriteLine("myInt = {0}\n"+
"myBool = {1}\n" +
"myFloat = {2}\n" +
"myChar = {3}\n",
myInt, myBool, myFloat, myChar);

}
}

Output:

myInt =
myBool =
myFloat = 1.23
myChar = C

3-9-1 Using the Nullable Structure Properties

The C# nullable type is an instance of the System.Nullable structure. The

two essential properties of the Nullable structure are HasValue and Value.

The HasValue property is a Boolean value. If the HasValue property of a

nullable variable is true, the value of this variable can be accessed with the

Value property. The Value property represents the underlying type of the

nullable variable. For example:

if (myInt.HasValue) yourInt = myInt.Value;

In this statement the HasValue property of myInt is checked to determine

whether it is true or false. If it is true, the value of myInt is assigned to the

variable yourInt.

If the HasValue property is false, the value of the variable is undefined

and an attempt to use the Value property throws an exception. More details

on properties and conditional statements are explained in the next chapters.

3-9-2 Using the ?? Operator

As you can see in the preceding example, all of the variables that contain

null are displayed as blanks. You can change this by assigning a default

value to the nullable variable. Use the ?? operator to assign a default value

that will be applied when a variable with the value null is assigned to

another variable. For example:

int? myInt = null;
int yourInt = myInt ?? -5;

54 | Chapter 3

3-9 The Nullable Types

The first statement assigns null to myInt, and the second statement assigns

the default value (–5) to myInt, and then assigns it to yourInt. Now when

you display yourInt you get –5.

The following example demonstrates using the nullable-type properties

and the ?? operator.

Example 3-8

// Example 3-8.cs
// The operator ??

using System;

class MyPoint
{

static void Main()
{

// Using the operator ??:
double? myDouble = null;
double myDouble1 = myDouble ?? -1.0;
Console.WriteLine("myDouble1 = {0}", myDouble1);

// Using HasValue:
int? myInt = 123;
int? yourInt = null;
if (myInt.HasValue) // true
{

yourInt = myInt.Value;
Console.WriteLine("myInt = {0}", yourInt);

}

int? theirInt = null;
if (theirInt.HasValue) // false

yourInt = 0;
else

Console.WriteLine("The variable theirInt does not
have a value.");

}
}

Output:

myDouble1 = -1
myInt = 123
The variable theirInt does not have a value.

C# Data Types | 55

3-9 The Nullable Types

http://www.abicomputer.net

3-10 The string Type

If you are familiar with C or C++, you might be aware of the difficulty of

creating and manipulating strings. The C language does not contain the

string keyword; instead a string is declared as a character pointer or a char-

acter array. This can cause some confusion for beginners as well as the

possibility of memory leakage, which takes some time to resolve. C# has

solved this problem once and for all. You declare a string variable by using

the keyword string and use it in the same way you use any other variable.

In the background, the compiler does the complicated chores C and C++

require you to do with pointers.

3-10-1 String Expressions

To declare a string variable, use the string keyword in a declaration like

this:

string myString;

You can, of course, initialize the string in the same statement:

string myString = "Welcome to the string world!";

The string literal (data value) is placed between the quotation marks. You

can also include any of the escape sequence characters, such as the new

line character, in the string. For example:

string myString = "My friend,\nWelcome to the string world!";

This statement displays the following:

My friend,
Welcome to the string world!

In order to include any special characters in the string, such as a backslash

or a quotation mark, you must precede the special character with a back-

slash. For example:

string myString = "To go to the next line use the new line character:
\"\\n\"";

This statement displays the following:

To go to the next line use the new line character: "\n"

As in C++, the double backslash is used in folder names (directories). For

example:

string myDir = "C:\\Documents\\Letters\\friends.doc";

56 | Chapter 3

3-10 The string Type

A summary of the commonly used escape sequence characters is shown in

the following table.

Table 3-7: The escape sequence characters

Description Escape Sequence Character

Single quotation mark \'

Double quotation mark \"

Backslash \\

Backspace \b

Form feed \f

New line \n

Carriage return \r

Horizontal tab \t

Vertical tab \v

Null \0

3-10-2 String Operators

To manipulate strings, you use the string operators, which are explained in

the following sections.

3-10-2-1 String Concatenation (+, +=)

To concatenate two strings, use the + operator as in this example:

string myString = "Hello" + ", " + "World!";

With this statement the string myString would contain the phrase “Hello,

World!”

You can also concatenate string variables. First declare and initialize the

variables:

string hello = "Hello";
string commaAndSpace = ", ";
string world = "World!";

Then concatenate the variables in an ordered manner:

string myString = hello + commaAndSpace + world;

You can also use the addition assignment operator (+=):

hello += commaAndSpace + world;

The above statement concatenates the three strings and then assigns them

to the variable on the left-hand side. That is, this statement says: Concate-

nate “hello” to “commaAndSpace” and “world”, and put the result in the

C# Data Types | 57

3-10 The string Type

http://www.abicomputer.net

variable “hello”. Notice that the order of the concatenated variables (or lit -

erals) matters.

In practice, you would rarely use this method to concatenate strings;

you would use the StringBuilder class (explained in the next section) and

its methods instead.

3-10-2-2 Using the StringBuilder Class

The C# string type is an alias of the System.String class. A String object

is immutable, which means you cannot change its value once you have cre-

ated it. When you make a change to a string you are actually creating a

new string with new contents. If you would like to modify the contents of

the actual string, you use the StringBuilder class (a member of the Sys-

tem.Text namespace). For example, you can create a string that contains

“Hello,” like this:

StringBuilder myString = new StringBuilder("Hello,");

You can then append it with the string “World!” by using the method

Append:

myString.Append("World!");

You can also insert a space in the sixth place by using the method Insert:

myString.Insert(6, " ");

Now, when you display myString it will contain the string “Hello, World!”

� Note Refer to the Visual Studio help for more information on the
StringBuilder class and its members.

3-10-2-3 The Equality Operator (==)

The equality operator is used to determine if two strings are identical. For

example, the following statement checks to see if the strings stored in

myString and yourString are equivalent.

Console.WriteLine(yourString == myString);

The result of this statement is true if they are equal or false otherwise.

3-10-2-4 The [] Operator

This operator is used to access the individual characters of a string—which

is the same concept as a character array in C++. You can, for example, dis-

play the letter “W” in the string “Hello, World!” by accessing the seventh

58 | Chapter 3

3-10 The string Type

character (notice that the starting index is 0), as shown in the following

statement:

Console.WriteLine("Hello, World!"[7]);

If the string is stored in a variable, such as myString, you can access the

character like this:

Console.WriteLine(myString[7]);

3-10-2-5 The @ Symbol

With the @ symbol you can display any string without using the escape

characters inside the string. For example, instead of writing the following

statement:

string myDoc = "C:\\Documents\\Letters\\friends.doc";

you can precede the string with the @ symbol, like this:

string myDoc = @"C:\Documents\Letters\friends.doc";

Both methods declare a string that contains the string “C:\Documents\Let-

ters\friends.doc.”

In fact, anything inside the quotation marks is displayed as is. For

example:

string myString = @"Dear Sir,
I have read your manuscript 'Learn C# in Three Days', and I would like
to inform you that we are interested in publishing the book.

Yours,
Dylan A. Combel";

If you display this string you get the following:

Dear Sir,
I have read your manuscript 'Learn C# in Three Days', and I would like
to inform you that we are interested in publishing the book.

Yours,
Dylan A. Combel

In order to display a quotation mark inside the text, use two quotation

marks instead of one. For example:

@"He said, ""You should stop by when you can,"" OK?"

This string is displayed like this:

He said, "You should stop by when you can," OK?

C# Data Types | 59

3-10 The string Type

http://www.abicomputer.net

The last use of the @ symbol is to prefix C# keywords in order to use them

as variables. Although you cannot use keywords such as bool and int as

variables, the words @bool and @int are allowed.

Example 3-9

// Example 3-9.cs
// Strings

using System;

class MyClass
{

static void Main()
{

bool isEqual;
string a = "\u0048ello my friend.\n";
string b = @"You can compose Unicode letters using the escape

characters.
However, you cannot use the @ symbol with that.";

// Print both a and b:
Console.WriteLine(a + b);

// Check for equality:
isEqual = (a == b);
Console.WriteLine("BTW, the equality is: {0}.", isEqual);

}
}

Output:

Hello my friend.
You can compose Unicode letters using the escape characters.
However, you cannot use the @ symbol with that.
BTW, the equality is: False.

Drill 3-5

Write a C# program that uses Unicode characters to compose the

three letters A, B, and C in the following sentence:

A, B, and C are the first three letters.

60 | Chapter 3

3-10 The string Type

3-11 Reading the Keyboard Input

To read input from the keyboard, use the .NET method ReadLine. It reads

anything you type in the command line before you press the Enter key.

Therefore, you would expect that this method reads strings. For example,

the following statement:

string myString = Console.ReadLine();

reads the data value from the command line and stores it in the variable

myString. In the following example, you type a number from the keyboard

and the program reads it and stores it into the variable theNumber, and then

displays it with the proper message.

Example 3-10

// Example 3-10.cs
// Reading from the keyboard

using System;

public class Keyboard
{

public static void Main()
{

Console.Write("Please enter a number: ");
string theNumber = Console.ReadLine();
Console.WriteLine("Your number is: {0}", theNumber);

}
}

Sample Run:

Please enter a number: 33
Your number is: 33

Although the program displays the same number you entered from the key-

board, it is in fact a string. If you try to add it to another integer, the

compiler will issue the error message:

Cannot implicitly convert type ‘string’ to ‘int’.

C# Data Types | 61

3-11 Reading the Keyboard Input

http://www.abicomputer.net

3-12 Converting Strings to Numbers

A string read from the keyboard can be converted to any type of data by

using the conversion methods explained in the following sections.

3-12-1 Using the Convert Class

The class Convert belongs to the System namespace. You can use it to

convert a string to another type, such as an integer, like this example:

int myInt = Convert.ToInt32(myString); // convert to int

In this statement, myString is converted to the type Int32, which is equiva-

lent to the C# type int. Similar conversions to various types are shown in

the examples below:

long myLong = Convert.ToInt64(myString); // convert to long
float myFloat = Convert.ToSingle(myString); // convert to float
double myDouble = Convert.ToDouble(myString); // convert to double
decimal myDecimal = Convert.ToDecimal(myString); // convert to decimal

It is also possible to add another value to the number in the same

statement:

int myInt = Convert.ToInt32(theNumber) + 20;

In Example 3-11, conversions to various numeric types are performed.

Example 3-11

// Example 3-11.cs
// Converting strings to numbers

using System;

public class Keyboard
{

public static void Main()
{

Console.Write("Please enter a number: ");
string theNumber = Console.ReadLine();
Console.WriteLine("Your string number is: {0}", theNumber);

double d = Convert.ToDouble(theNumber);
float f = Convert.ToSingle(theNumber);
decimal c = Convert.ToDecimal(theNumber);

Console.WriteLine("Your decimal number is: {0}", c);
Console.WriteLine("Your double number is: {0}", d);

62 | Chapter 3

3-12 Converting Strings to Numbers

Console.WriteLine("Your float number is: {0}", f);
}

}

Sample Run:

Please enter a number: 3.14 � Input from the keyboard
Your string number is: 3.14
Your decimal number is: 3.14
Your double number is: 3.14
Your float number is: 3.14

3-12-2 Using the Parse Method

The second way to convert strings to numbers is by using the Parse

method, one of the .NET methods. It can be used like this:

int myInt = Int32.Parse(myString);

In this example, the string myString is converted to the integer myInt. You

can, of course, convert to other types:

Int64.Parse(myString) // convert to long
Single.Parse(myString) // convert to float
Decimal.Parse(myString) // convert to decimal
Double.Parse(myString) // convert to double

Example 3-12

// Example 3-12.cs
// Parsing input

using System;

public class ParseClass
{

static void Main()
{

Console.Write("Please enter an integer: ");
string str = Console.ReadLine();

long myLong = Int64.Parse(str);
int myInt = Int32.Parse(str);
double myDouble = Double.Parse(str);

Console.WriteLine("Your long number is: {0}", myLong);
Console.WriteLine("Your int number is: {0}", myInt);
Console.WriteLine("Your double number is: {0}", myDouble);

}
}

C# Data Types | 63

3-12 Converting Strings to Numbers

http://www.abicomputer.net

Sample Run:

Please enter an integer: 12 � Input from the keyboard
Your long number is: 12
Your int number is: 12
Your double number is: 12

Needless to say, you cannot enter a number that contains a decimal point in

this program because the conversion to the int and long types would gen-

erate exceptions.

� Note In Chapter 14, you are going to learn an easy way to declare vari-
ables and arrays without specifying their types, like these examples:

var myVariable = 1.23;
var yourVariable = "Hello, World!";
var myArray = new int{} { 1, 2, 4, 8, 64 };

In such cases the compiler (C# 3.0) will figure out the types from the values
used in the initialization.

Summary

In this chapter:

� You took a look at different data types. You learned about the two main

types: value types and reference types. You also learned how to convert

between these two types by using boxing and unboxing.

� You now know how to build expressions using variables, literals, and

operators.

� You dealt with the numeric and string expressions and operators.

� You learned about formatting results using the general, decimal,

numeric, scientific, currency, and hexadecimal formats.

� You were introduced to the nullable type, a new type that was added to

the language in C# 2005.

� You learned how to use the character type in C# and how to access

individual characters in a string.

� Finally, you learned how to convert the strings read from the keyboard

to numbers by using the Convert class and the Parse method.

64 | Chapter 3

Summary

Chapter 4

Building the Program Logic

Contents:
� Relational and logical expressions
� Conditional statements
� The conditional expression
� Building and using DLLs
� Loops
� Arrays
� Program arguments
� Using .NET methods with arrays

4-1 Using Conditions

In this section, you will learn how to build conditions in your program by

using selection statements such as if and switch. Selection statements are

used to determine which and when a statement or group of statements

should be executed in your program. Selection statements rely on relational

or logical expressions and operators.

4-1-1 Relational Operators

The relational operators (or comparison operators) are used in building

relational (or Boolean) expressions to compare literals, variables, or

expressions. The following are some examples of relational expressions:

x > y // x is greater than y
y < 255 // y is less than 255
myInt == x + y // myInt is equal to x + y

65

http://www.abicomputer.net

The following table lists the relational operators in C#.

Table 4-1: The C# relational operators

Operator Description

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

== Equal

!= Not equal

Relational expressions are evaluated as either true or false. This means that

the result is a Boolean value. As mentioned in Chapter 3, unlike C++, in

C# the value false doesn’t equal zero and the value true doesn’t mean a

non-zero value.

The following example demonstrates the use of some relational

expressions.

Example 4-1

// Example 4-1.cs
// Relational Operators

using System;

class OperatorClass
{

static void Main()
{

char myChar = 'A';
int myInt = 55;
int yourInt = 44;

Console.WriteLine(myChar == 'A'); // true
Console.WriteLine(myInt >= yourInt); // true
Console.WriteLine(100 > 100.2); // false

}
}

Output:

True
True
False

66 | Chapter 4

4-1 Using Conditions

4-1-2 Logical Operators

Logical operators are used to combine relational expressions to build a log-

ical (or Boolean) expression. A logical expression is also evaluated as

either true or false. Some operators operate on two operands (binary),

while others operate on one operand (unary). The following table contains

a list of the commonly used C# logical operators and their descriptions.

Table 4-2: The commonly used C# logical operators

Operator Description

&& AND (Short-circuit evaluation)

|| OR (Short-circuit evaluation)

& AND

| OR

! NOT

The following are some examples of logical expressions assuming that x

equals 5 and y equals 10:

(x > 5) && (y == 10) // false — The second operand is not evaluated

(x > 5) & (y ==10) // false

(x == 5) || (y == 12) // true — The second operand is not evaluated

(x == 5) | (y ==12) // true

! (x == 7) // true

These examples are discussed in detail in the following sections.

4-1-2-1 The Logical AND Operators (&&, &)

Notice in the first example that there is no need to evaluate the second

operand as long as the first one is evaluated false. This is because in an

AND operation, if one of the operands is false the whole expression

becomes false. This is called short-circuit evaluation.

In the second example, however, both operands are evaluated in order to

evaluate the whole expression. The result is false because the first operand

is false and the second is true. The result can be true only if both operands

are true.

4-1-2-2 The Logical OR Operators (||, |)

Notice in the third example that there is no need to evaluate the second

operand as long as the first operand is evaluated true. This is because in the

|| operation, if one of the operands is true the whole expression becomes

true. This is also called short-circuit evaluation.

Building the Program Logic | 67

4-1 Using Conditions

http://www.abicomputer.net

In the | example, however, both operands are evaluated in order to eval-

uate the whole expression. The first operand is true; therefore, the whole

expression is evaluated true. The result can be true if one operand is true.

4-1-2-3 The Logical NOT Operator (!)

In the fifth example the NOT operator operates on one operand:

!(x == 7)

Because the operand is an expression that is evaluated false (remember that

x equals 5), the result of the operation is true. In other words, “!true” is

evaluated false and “!false” is evaluated true.

This expression can also be written like this:

(x != 7)

4-1-2-4 The Bitwise Operators

The logical operators && and || can be used with integral operands, in

which case they compute the bitwise AND and the bitwise OR of their

operands. The following examples perform bitwise AND and OR opera-

tions on two integers (21 and 4) and display the results in several formats:

// Hexadecimal:
Console.WriteLine("0x{0:x}",0x15 | 0x4); // 0x15
Console.WriteLine("0x{0:x}",0x15 & 0x4); // 0x4
// Decimal:
Console.WriteLine(21 | 4); // 21
Console.WriteLine(21 & 4); // 4

4-2 The if-else Construct

The if-else construct is used to build a conditional statement. It takes the

form:

if (condition)
statement(s)_1 // The original result

[else
statement(s)_2] // The alternative result

where:

condition is a relational or logical expression.

statement(s)_1 is a statement (or a block of statements) that is executed if

the condition is true.

statement(s)_2 is a statement (or a block of statements) that is executed if

the condition is false.

68 | Chapter 4

4-2 The if-else Construct

Notice that what goes inside the brackets ([]) is always optional.

As you can see in the if-else construct, you can use the if keyword and

the original result to build the conditional statement, like this example:

if (salary > 2000)
Console.Write("Salary is greater than 2k");

You can also add to it the optional part to represent the alternative result:

if (salary > 2000)
Console.Write("Salary is greater than 2k"); // The original result

else
Console.Write("Salary is less than or equal to 2k"); // The

alternative result

If you use more than one statement to express either one of the results,

include the statements inside block braces ({}). For example, when the fol-

lowing condition becomes true, all the statements in the following block

are executed:

if (salary > 2000)
{

Console.WriteLine("Original result_1");
Console.WriteLine("Original result_2");
Console.WriteLine("Original result_3");

}

It is possible for the original result or the alternative result to be another

if-else construct. For example, you can test the case of the character

entered from the keyboard by using the following algorithm:

� If the character is a letter, check to see whether it is:

� Lowercase: display the appropriate message.

� Uppercase: display the appropriate message.

� If the character is not a letter, display the appropriate message.

This algorithm is illustrated in the following C# example.

Example 4-2

// Example 4-2.cs
// Character Tester

using System;

public class CharacterTester
{

public static void Main()

Building the Program Logic | 69

4-2 The if-else Construct

http://www.abicomputer.net

{
Console.Write("Please enter a character: ");
char yourChar = (char) Console.Read();
if (Char.IsLetter(yourChar))

if (Char.IsLower(yourChar))
Console.WriteLine("The letter {0} is lowercase.", yourChar);

else
Console.WriteLine("The letter {0} is uppercase.", yourChar);

else
Console.WriteLine("The character {0} is not alphabetic.",

yourChar);
}

}

Sample Runs:

Please enter a character: A
The letter A is uppercase.

Please enter a character: a
The letter a is lowercase.

Please enter a character: 33
The character 3 is not alphabetic.

Notice also that the program ignores anything that follows the first charac-

ter; therefore, the number 33 is read as 3.

4-2-1 Manipulating Characters

As you can see in the last example, you have to cast the Read method with

the cast “(char)” in order to explicitly convert the data entered from the

keyboard to the type char. Without the cast, the Read method returns an

integer that is the ASCII code of the input character.

The example also demonstrated some .NET methods for manipulating

characters such as Char.IsLetter to check if a character is a letter. Simi-

larly, if you would like to check to see if the character is a digit, you can

use the method Char.IsDigit.

In the example, the method IsLower is used to check if a letter is a low-

ercase. Similarly, you can use the method IsUpper to check if the letter is

an uppercase letter.

70 | Chapter 4

4-2 The if-else Construct

4-2-2 Nested if-else Statements

Although the if-else statement is intended for binary choice, it can be

expanded to handle more complex choices. It is possible to build a whole

ladder of nested if-else statements as shown in the following form:

if (condition_1)
statement_1;

else if (condition_2)
statement_2;

else if (condition_3)
statement_3;

...
else

statement_n;

The conditions in the ladder are evaluated from the top down, and when-

ever a condition is evaluated as true, the corresponding statement is

executed and the rest of the construct is skipped. If no condition has been

satisfied, the last else will be brought into action.

Drill 4-1

Rewrite Example 4-2 using a nested if-else statement.

4-3 The switch Construct

The switch construct is used to select from multiple choices, such as

selecting a floor in an elevator, an item from a vending machine, or a

choice from a menu. In these cases, you select only one of the available

choices. The switch construct takes the following form:

switch (expression)
{

case constant-1:
statement(s)
jump-statement

case constant-2:
statement(s)
jump-statement

case constant-3:
...
...

Building the Program Logic | 71

4-3 The switch Construct

http://www.abicomputer.net

[default:
statement(s)
jump-statement]

}

where:

expression represents a value that corresponds to the associated switch

choice.

statement(s) is a statement or block of statements that is executed if the

corresponding condition is evaluated true.

jump-statement is a branching statement to transfer control outside the spe-

cific case, such as break or goto (explained later in the chapter).

default deals with all the other cases.

According to the value of the expression, the control of the program is

transferred to one of the case labels and the corresponding statement is

executed. The cases actually represent the different possible values of the

expression. Take a look at the example below, which simulates a menu for

selecting sandwiches (beef, fish, or chicken). When you select an item, the

program gives you the cost. If you enter a number that does not exist in the

menu, you get a message asking you to select 1, 2, or 3. In both cases, the

program gives you a thank-you message for using the machine.

Example 4-3

// Example 4-3.cs
// switch example

using System;

class FastFoodClass
{

public static void Main()
{

Console.WriteLine("Sandwiches: 1=Beef 2=Fish 3=Chicken");
Console.Write("Please enter your selection: ");
string s = Console.ReadLine();
double totalCost = 0;
switch(s)
{

case "1":
totalCost = 4.5;
break;

72 | Chapter 4

4-3 The switch Construct

case "2":
totalCost = 5.25;
break;

case "3":
totalCost = 4.2;
break;

default:
Console.WriteLine("Invalid selection. Please select 1, 2,

or 3.");
break;

}
if (totalCost != 0)

Console.WriteLine("Please pay {0:C}.", totalCost);
Console.WriteLine("Thank you for your business.");

}
}

Sample Run 1:

Sandwiches: 1=Beef 2=Fish 3=Chicken // the first run
Please enter your selection: 3 // the entered number
Please pay $4.20. // the result
Thank you for your business.

Sample Run 2:

Sandwiches: 1=Beef 2=Fish 3=Chicken // the second run
Please enter your selection: 0 // the entered number
Invalid selection. Please select 1, 2, or 3. // the result
Thank you for your business.

In the second trial, the user incorrectly selected 0, which is not a valid

choice; therefore, he or she received the message, “Invalid selection.

Please select 1, 2, or 3.”

� Note The use of the default case is very similar to the use of the last else
in a nested if-else statement. It is recommended to use the default case for
detecting and catching errors.

When you deal with multiple choices, you can write your conditions either

in the form of nested if statement or as a switch construct. In cases like

that of the example above, the switch is easier to write than a nested if. It

is also more efficient in most cases, which means it runs faster.

Building the Program Logic | 73

4-3 The switch Construct

http://www.abicomputer.net

� Note for C++ programmers: There is a difference between the C#
switch and the C++ switch. In C++, if you don’t have a branching state-
ment, control is transferred directly to the next case. But in C#, the
compiler will complain about the missing statement. You can compensate
for this by using some empty cases so control can fall through until it
reaches a valid case. For example:

switch(n)
{

case 1: // fall through to case 3
case 2: // fall through to case 3
case 3:

Console.WriteLine("cases 1 & 2 come here!");
break;
// ...

}

The C# switch was designed without the fall through feature in order to
avoid problems that might occur in the program if you mistakenly omit a
break statement. In that case, one or more switch cases might be executed
unintentionally, causing bugs in the program.

4-4 The Conditional Expression

The conditional expression is used to build a simple conditional statement.

It takes the form:

condition ? expression_1 : expression_2

where:

condition is the Boolean expression to test.

expression_1 is the expression evaluation if the condition is true.

expression_2 is the expression evaluation if the condition is false.

Of course, you can assign the entire expression to a variable, as in this

example:

result = (x != 0.0) ? Math.Tan(x) : 1.0;

(Notice that the parentheses around the condition are optional. They are

used for better readability.)

This statement says, “if x is not equal to zero, assign the value

Math.Tan(x) to result; otherwise, assign the value 1.0 to result.” This state-

ment is equivalent to the following code segment:

if (x != 0.0)
result = Math.Tan(x);

else
result = 1.0;

74 | Chapter 4

4-4 The Conditional Expression

Tan, a method from the Math class, is used to calculate the tangent of an

angle.

In the following example, the conditional expression is demonstrated.

Example 4-4

// Example 4-4.cs
// Conditional expression example

using System;

class Conditional
{

public static void Main()
{

double x = Math.PI/3, result = 0;
result = (x != 0.0) ? Math.Tan(x) : 1.0;
Console.WriteLine("Exact value = {0}", result);
Console.WriteLine("Approximate value = {0}",

Math.Round(result));
}

}

Output:

Exact value = 1.73205080756888
Approximate value = 2

In the preceding example, notice the way we declared and initialized two

variables with one statement:

double x = Math.PI/3, result = 0;

This statement is equivalent to the following statements:

double x = Math.PI/3;
double result = 0;

Notice also that we used some other members of the Math class. The

Round method is used to round a value to the nearest integer or specified

number of decimal places according to the specified format (refer to the

section titled “Formatting Results” in Chapter 3). The public field PI rep-

resents the ratio of the circumference of a circle to its diameter.

You can find the rest of the mathematical constants and trigonometric

and logarithmic methods on the web site http://www.msdn.microsoft.com.

Building the Program Logic | 75

4-4 The Conditional Expression

http://www.abicomputer.net

4-5 Using Libraries

When you call a method in a Dynamic Linking Library (DLL), the method

is linked to the application at run time. The following example contains a

method for computing the factorial. It can be compiled as a DLL to be used

by another program:

Example 4-5

// Example 4-5a.cs
// Compile as DLL.

public class Class1
{

public static long Factorial(long i)
{

return ((i <= 1) ? 1 : (i * Factorial(i-1)));
}

}

To compile this code, use the following command line (assuming the file-

name is Ex4-5a.cs):

csc/t:library Ex4-5a.cs

This will generate the library file Ex4-5a.dll.

The following code file is calling the Factorial method, which resides

in the DLL. Notice in this code that the method name is qualified by the

class name Class1.

// Example 4-5b.cs
// Compile as DLL.

using System;

public class MyClass
{

static void Main()
{

Console.Write("Please enter an integer: ");
long n = Convert.ToInt64(Console.ReadLine());
Console.WriteLine(Class1.Factorial(n)); // calling the method

}
}

To compile this code, use the following command line (assuming the file-

name is Ex4-5b.cs):

csc/r:Ex4-5a.dll Ex4-5b.cs

76 | Chapter 4

4-5 Using Libraries

You can now run the application Ex4-5b, which reads a number and dis-

plays the factorial.

Sample Run:

Please enter an integer: 4
24

4-6 Repetition Loops

Repetition loops are used to repeat one or more statements. The repetition

might continue for a specified number of times, until a specific condition is

satisfied, or indefinitely. There is more than one statement you can use to

create a loop, as explained in the following sections.

4-6-1 The for Loop

The for loop repeats an operation as long as a specified condition is satis -

fied. It takes the form:

for ([initialization]; [control_expression]; [counter_update])
statement(s)

where:

initialization is the counter initialization statement.

control_expression is a condition to be satisfied during the loop execution.

counter_update is the counter increment or decrement statement.

statement(s) is the statement or block of statements to be repeated.

The following example shows a for loop that displays the numbers from 1

to 5, each on a separate line:

for (int counter = 1; counter <= 5; counter++)
{

Console.WriteLine(counter);
}

Notice in this example that the counter variable is declared and initialized

inside the loop’s parentheses. Notice also that the statement to be repeated

is placed inside block braces. Using a block is not necessary in this case

because there is only one statement to execute. If you need to execute more

than one statement, you must use a block.

The following example demonstrates a simple loop to print odd num-

bers from 1 to 10.

Building the Program Logic | 77

4-6 Repetition Loops

http://www.abicomputer.net

Example 4-6

// Example 4-6.cs
// for loop example

using System;

class ForLoop
{

static void Main()
{

for (int counter = 1; counter <= 10; counter=counter +2)
{

Console.WriteLine(counter);
}

}
}

Output:

1
3
5
7
9

4-6-1-1 Using continue and break

It is possible to skip a specific counter value by using the continue state-

ment. For example, the statement:

if (counter == 3) continue;

causes the loop to skip the counter value 3 and jump to the next counter

value.

It is also possible to abort the loop completely by using the break state-

ment, as in the following statement:

if (counter == 7) break;

This will cause the loop to end when the counter value is equal to 7. When

the loop is terminated, control is transferred to the next statement immedi-

ately following the loop.

4-6-1-2 Available Options in the for Loop

Notice that all the for loop control elements are optional, which means that

the following for loop runs indefinitely:

78 | Chapter 4

4-6 Repetition Loops

for (; ;)
{

Console.WriteLine("Hello again!");
}

This loop will continue to display the phrase “Hello again!” until you

break the execution of the program by pressing Ctrl+C. The previous state-

ment is equivalent to the following statement:

for (; true;)
{

Console.WriteLine("Hello again!");
}

It is also possible to use more than one counter to control the loop; just

separate them with commas like this:

for (i = 0, j = 10; i<= j, i++; j = j-1)
{

// do something
}

4-6-1-3 Nesting Loops

The for loops can be nested inside each other as in the following example,

which displays the prime numbers from 2 to 10. The prime numbers are

those numbers that can only be divided either by 1 or by themselves, such

as 3, 7, 43, and so forth. In this program, there are two loops, one using the

counter i (the i-loop) and one using the counter j (the j-loop). Nesting the

j-loop inside the i-loop means that for each value of i, the entire range of j

values is tested.

Example 4-7

// Example 4-7.cs
// Prime Numbers

using System;

class Prime
{

static void Main()
{

for (int i = 2; i <= 10; i++)
{

bool x = false;
for (int j = 2; j <= i - 1; j++)

Building the Program Logic | 79

4-6 Repetition Loops

http://www.abicomputer.net

{
if (i % j == 0) x = true;

}
if (x == false) Console.WriteLine(i);

}
}

}

Output:

2
3
5
7

Notice also the use of the operator % to test the remainder of the division

by using the following statement:

if (i % j == 0) x = true;

This statement says, “if i is divided by j without remainder, set x to true.”

When the j-loop exits and x is still false, the value of i will contain a prime

number.

When the i-loop is done, all the prime numbers within the range of 2 to

10 are displayed. You can increase the maximum value of the counter i to

see more prime numbers.

4-6-2 The while Loop

The while loop is used to execute a block of statements as long as a spe-

cific condition is satisfied. The while loop statement takes the form:

while (control_expression)
statement(s);

where:

control_expression is a condition be satisfied during the loop execution.

statement(s) is a statement (or the block of statements) to be executed.

Because the while loop starts with testing the condition, the statement

block might not execute at all if the condition fails.

The following code segment displays the numbers from 1 to 5, each on

a separate line. Notice that you must initialize the counter before the loop

starts.

80 | Chapter 4

4-6 Repetition Loops

while (counter < 6)
{

Console.WriteLine(counter);
counter++;

}

The following example also displays the counter numbers, but by using a

different logic. The control expression says, “if counter is not equal to

zero.” This condition is always true because the counter is initialized to the

value 1. Inside the loop, the break statement is used to terminate the loop

when a specified condition is satisfied.

Example 4-8

// Example 4-8.cs
// while loop example

using System;

class WhileClass
{

public static void Main()
{

int counter = 1;
while (counter != 0)
{

counter++;
if (counter == 2) continue; // Skip the value 2
if (counter > 5) break; // Terminate the loop
Console.WriteLine(counter);

}
}

}

Output:

3
4
5

In the example above, notice that the continue statement is used to resume

the loop execution after skipping the value 2 according to the condition:

if (counter == 2) continue;

The break statement causes the loop to terminate when the counter

exceeds the value 5:

if (counter > 5) break;

Building the Program Logic | 81

4-6 Repetition Loops

http://www.abicomputer.net

4-6-3 The do-while Loop

The do-while loop is used to repeatedly execute a block of statements as

long as some condition is satisfied. This loop takes the following form:

do statement(s)
while (control_expression);

where:

control_expression is a condition to be satisfied during the loop execution.

statement(s) is a statement (or the block of statements) to be executed.

The do-while loop is distinguished by being executed at least once regard-

less of the condition. This is because the condition is tested after executing

the statement(s).

The following example displays the even numbers from 1 to 10 using a

do-while loop. Notice the use of the continue statement to skip the odd

numbers and the use of the return statement to terminate the loop early.

Example 4-9

// Example 4-9.cs
// do-while example

using System;

public class DoWhileClass
{

static void Main ()
{

int x = 0;
do
{

x++;
if (x%2 != 0) // if the number is odd

continue;
if (x == 8)

return; // terminate the loop and return
Console.WriteLine(x);

}
while(x < 100);

}
}

Output:

2
4
6

82 | Chapter 4

4-6 Repetition Loops

In this example, the return statement is doing the same job that the break

statement does. Although both statements terminate the loop, there is a dif-

ference between them. The break statement transfers control to the

statement that follows the loop, if one exists. The return statement trans-

fers control to the calling method. Suppose that the loop exists inside a

method named MyMethod, which is invoked from another method named

YourMethod. When the return statement is encountered in MyMethod, the

program control will be transferred to YourMethod. In this example,

return ends the execution of the Main method; therefore, if you add any

statement immediately after the loop, it will not be executed.

Try this code snippet:

static void Main ()
{

int x = 0;
do
{

x++;
if (x == 4)

return;
Console.WriteLine(x);

}
while(x < 100);
Console.WriteLine("The loop is done!");

}

When you run this code, you will notice that the last statement that dis-

plays “The loop is done!” is not executed.

� Note If you have to choose between using a while loop and a do-while
loop, in most cases the while loop is a better choice. However, in some
applications where the user has to input some data before processing it in
a loop, the do-while is the appropriate choice.

Drill 4-2

Write a C# program to compute the value of a number raised to the

power of a second number. Read the two numbers from the keyboard.

Building the Program Logic | 83

4-6 Repetition Loops

http://www.abicomputer.net

4-6-4 Branching Statements

The following statements are used to exit repetition loops:

� break

� goto

� return

� throw

You have seen already some examples of return and break in the preced-

ing sections. In many languages, including C#, the statement goto is not

recommended because it corrupts the program structure. However, it can

be used in some cases to exit from deeply nested loops. It is also used in

the switch construct to jump from one case to another. For example:

case 1:
// do something
goto case 3;

In general, the goto statement takes the following forms:

goto label;
goto case expression;
goto default;

where:

label is a label name.

The label is an identifier followed by a colon, as in the following example

that contains the label “Finish.”

goto Finish;
...

Finish:
Console.WriteLine("You are done here!");

The throw statement is used in catching exceptions that may occur during

the program execution. Exceptions are explained in depth in Chapter 9.

4-7 Arrays

An array represents a group of elements of the same type. The array can be

of one or more dimensions. The single-dimensional array can represent a

group of people lining up in a queue. The two-dimensional array can repre-

sent students in a classroom whose positions are organized in rows and

columns. The array elements might be arrays themselves, in which case the

array is called a jagged array or an array of arrays.

84 | Chapter 4

4-7 Arrays

Arrays descend from the System.Array class, which serves as the base

class for all arrays in the Common Language Runtime. The use of some

methods of this class will be demonstrated in the following sections.

4-7-1 One-Dimensional Arrays

You can declare a one-dimensional array like this example:

int[] myIntArray = new int [10];

This declaration allocates memory for ten integers under the name

myIntArray. The array elements start from the element myIntArray[0] up

to the element myIntArray[9]. The new operator is used here to initialize

the array elements to their default values — zero in this case.

It is possible to declare an array of any type (reference or value type), as

in this example, which declares an array of strings:

string[] myStringArray = new string [10];

The only difference between value-type elements and reference-type ele-

ments is that value-type elements are initialized to their default values,

while those of reference type are initialized with the value null. (The

default values were discussed in Chapter 3, Section 3-3-2.)

4-7-2 Declaring and Initializing Arrays

Like any other variable, you can initialize the array when you declare it:

int[] myIntArray = new int [] { 1, 2, 3, 4, 5 };

In this case, there is no need to specify the number of elements of the array

because it is obvious.

The following example declares and initializes an array for days of the

week:

string[] myDay = new string []
{ "Sat", "Sun", "Mon", "Tue", "Wed", "Thu", "Fri" };

In the following kind of declaration, you can omit the new operator

because the type of element is obvious to the compiler:

int[] myIntArray = { 1, 2, 3, 4, 5 };
string[] myDay = { "Sat", "Sun", "Mon", "Tue", "Wed", "Thu", "Fri" };

It is also possible to declare an array without initializing it, in which case

you must initialize it before using it in the program. Here is an example:

int[] myIntArray; // Declaration
myIntArray = new int[] { 1, 3, 5, 7, 9 }; // Initialization

Building the Program Logic | 85

4-7 Arrays

http://www.abicomputer.net

4-7-3 Multi-Dimensional Arrays

You can declare and initialize a two-dimensional array by using a state-

ment like this:

int[,] myTwoDimArray = new int[3, 2] { {1, 2}, {3, 4}, {5, 6} };

This declares an array with dimensions [3, 2] named myTwoDimArray.

You can visualize the two-dimensional array as a table that contains rows

and columns. In this example, it has three rows and two columns.

In the following example, you declare a string array named grades with

dimensions [2, 4].

string[,] grades = new string[2, 4] { {"Pass"," Good", "VeryGood",
"Distinct"}, {"55%", "65%", "75%", "85%"} };

This array stores the grade names and corresponding percentages.

As with one-dimensional arrays, you can omit the dimensions as long as

you initialize the array:

int[,] myTwoDimArray = new int[,] { {1, 2}, {3, 4}, {5, 6} };
string[,] grades = new string[,] { {"Pass", "Good", "VeryGood",
"Distinct"}, {"55%", "65%", "75%", "85%"} };

You can also omit the new operator:

int[,] myTwoDimArray = { {1, 2}, {3, 4}, {5, 6} };
string [,] grades = { {"Pass", "Good", "VeryGood", "Distinct"},
{"55%", "65%", "75%", "85%"} };

4-7-4 Jagged Arrays

To declare a jagged array with the name myJaggedArray, use a statement

like this:

int[][] myJaggedArray =
new int[2][] { new int[] {2, 3, 4}, new int[] {5, 6, 7, 8, 9} };

This array is a one-dimensional array that contains two elements. Each ele-

ment is a one-dimensional array with a different number of elements; in

this case, three and five.

It is possible to omit the dimensions of the first array, like this:

int[][] myJaggedArray =
new int[][] { new int[] {2, 3, 4}, new int[] {5, 6, 7, 8, 9} };

You can also omit the first new operator:

int[][] myJaggedArray =
{ new int[] {2, 3, 4}, new int[] {5, 6, 7, 8, 9} };

86 | Chapter 4

4-7 Arrays

4-7-5 Accessing Array Elements

By accessing the array elements, you can manipulate and display them. For

example, you can change the contents of the element [2] of the one-dimen-

sional array myIntArray by using the following statement:

myIntArray[2] = 45;

In the same way, you can change the element [0,0] of the two-dimensional

array myTwoDimArray by using the statement:

myTwoDimArray[0,0] = 133;

The following statements access the elements of myJaggedArray and

assign the value 11 to the first element of the first array and the value 22 to

the third element of the second array:

myJaggedArray[0][0] = 11;
myJaggedArray[1][2] = 22;

The easiest way to read from or assign to array elements is to use loops.

For example, to print the contents of the array myIntArray, use the follow-

ing loop:

for (int i = 0; i <= 4; i++)
Console.WriteLine(myIntArray[i]);

Always remember that the index of an array starts at 0.

In the case of two-dimensional arrays, you need two nested loops, one

for each dimension:

for (int i = 0; i <= 2; i++)
for (int j = 0; j <= 1; j++)

Console.WriteLine(myTwoDimArray[i,j]);

In order to display this array in the form of a table with three rows and two

columns, insert a new line after each row:

for (int i=0; i<= 2; i++)
{

for (int j=0; j<= 1; j++)
{

Console.Write(myTwoDimArray[i,j] + " ");
}

Console.WriteLine(); // Blank line
}

This loop displays the array as follows:

1 2
3 4
5 6

Building the Program Logic | 87

4-7 Arrays

http://www.abicomputer.net

The following example demonstrates how to declare a jagged array, change

the values of its elements, and display them.

Example 4-10

// Example 4-10.cs
// Jagged array example

using System;

class JaggedClass
{

static void Main ()
{

int[][] myJaggedArray =
{ new int[] {2, 3, 4}, new int[] {5, 6, 7, 8, 9} };

myJaggedArray[0][0] = 11; // Change the first element of the
first array

myJaggedArray[1][2] = 22; // Change the third element in the
second array

// Display the first array:
Console.WriteLine("First array:");
for (int j = 0; j <= 2; j++)
{

Console.WriteLine(myJaggedArray[0][j]);
}
// Display the second array:
Console.WriteLine("Second array:");
for (int j = 0; j <= 4; j++)
{

Console.WriteLine(myJaggedArray[1][j]);
}
Console.WriteLine("The job is done!");

}
}

Notice that we used some extra braces to make the program easier to read.

Output:

First array:
11 // new element
3
4
Second array:
5
6
22 // new element

88 | Chapter 4

4-7 Arrays

8
9
The job is done!

Drill 4-3

Display the contents of the two-dimensional array called “grades”

that was discussed in this section. Make sure you get the following

result:

Grade=Pass Score=55%
Grade=Good Score=65%
Grade=VeryGood Score=75%
Grade=Distinct Score=85%

4-8 Using Program Arguments

One possible form of the Main method is:

static void Main(string[] args)

Using this form allows the C# program to accept as arguments a sequence

of strings. The arguments are received as string array elements named

args[0], args[1], and so forth. The string arguments can also be converted

to other data types, as explained in Chapter 3.

In the following example, the program receives two arguments at run

time. The program converts the first one to a long number and the second

to a double number, and then displays them and their product.

Example 4-11

// Example 4-11.cs
// Parsing arguments

using System;

public class ParseClass
{

static void Main(string[] args)
{

long myLong = Convert.ToInt64(args[0]);
double myDouble = Convert.ToDouble(args[1]);
double result = myLong * myDouble;

Building the Program Logic | 89

4-8 Using Program Arguments

http://www.abicomputer.net

Console.WriteLine("Your long number is: {0}", myLong);
Console.WriteLine("Your double number is: {0}", myDouble);
Console.WriteLine("The result of multiplication is: {0}",

result);
}

}

Sample Run:

Assuming that the program is called “example,” enter the following at the

command line:

> example 2 1.1

The output should be:

Your long number is: 2
Your double number is: 1.1
The result of multiplication is: 2.2

Drill 4-4

Rewrite the program created for Drill 4-2 to read the number and the

power as program arguments. For example, if the program is called

“power,” you can invoke it as shown in these sample runs:

Sample Run 1:

>power 4 2
The number 4 raised to the power 2 = 16

Sample Run 2:

>power 4 3
The number 4 raised to the power 3 = 64

4-9 Using .NET Properties and Methods with Arrays

As mentioned earlier, arrays are inherited from the class System.Array,

which contains several methods and properties for manipulating arrays. In

the following sections, some of these properties and methods are

introduced.

90 | Chapter 4

4-9 Using .NET Properties and Methods with Arrays

4-9-1 Array’s Length (Length)

The Length property is the number of elements in an array. Consider the

following array:

int[,] myArray= new int[10,4]; // Array declaration

The following statement displays the number 40, which represents the

number of elements:

Console.WriteLine(myArray.Length); // Get and display the length

4-9-2 Array’s Rank (Rank)

The Rank property is the number of dimensions of an array. Consider the

following declarations:

int[,] myArray= new int[1, 3]; // Two dimensions
int[,,] yourArray= new int[10, 4, 5]; // Three dimensions

The following statements display the numbers 2 and 3, which represent the

rank of myArray and yourArray, respectively:

// Display the rank:
Console.WriteLine(myArray.Rank); // 2
Console.WriteLine(yourArray.Rank); // 3

4-9-3 Sorting an Array (Array.Sort)

The Array.Sort method is used to sort an array. Consider the following

declaration:

int[] myArray = { 3, 4, 56, 8 };

In order to sort this array, use the statement:

Array.Sort(myArray);

The result is the sorted array: 3, 4, 8, 56.

4-9-4 Reversing an Array (Array.Reverse)

The Array.Reverse method is used to reverse an array. Consider the fol-

lowing declaration:

int[] myArray = { 3, 4, 8, 56 };

Building the Program Logic | 91

4-9 Using .NET Properties and Methods with Arrays

http://www.abicomputer.net

In order to reverse this array, use the statement:

Array.Reverse(myArray);

The result is the reversed array: 56, 8, 4, 3.

In the following example, you create a one-dimensional array and dis-

play it. Then you apply the Array.Sort and Array.Reverse methods and

display the array after each change.

Example 4-12

// Example 4-12.cs
// Array methods

using System;

class MyClass
{

static void Main()
{

int[] myArray = { 1, 4, 25, 3 };

// Display the array:
for (int i=0; i<=3; i++)

Console.Write("{0} ", myArray[i]);
Console.WriteLine("Original");

// Sort, then display:
Array.Sort(myArray);
for (int i=0; i<=3; i++)

Console.Write("{0} ", myArray[i]);
Console.WriteLine("Sorted");

// Reverse, then display:
Array.Reverse(myArray);
for (int i=0; i<=3; i++)

Console.Write("{0} ", myArray[i]);
Console.WriteLine("Reversed");

}
}

Output:

1 4 25 3 Original
1 3 4 25 Sorted
25 4 3 1 Reversed

92 | Chapter 4

4-9 Using .NET Properties and Methods with Arrays

4-9-5 Resizing an Array (Array.Resize)

One of the biggest problems beginners struggle with involves setting the

size of an array. Does the program need to use a fixed size right at the

start? What happens if it needs to be made larger? The .NET Framework

version 2.0 introduced a solution to this problem by adding the

Array.Resize method, which is used to change the size of an array.

Because the array size is immutable (the size cannot be changed at run

time), this method actually copies the elements of the array to another

array and then renames the new array and discards the old one. This is a

generic method, which means it can work with any array type. (Generics

are explained in detail in Chapter 12.)

For example, if you have an array named myArray initialized with three

elements, you can extend its size to six elements by using the following

statement:

Array.Resize<int>(ref myArray, 6);

In this statement, <int> is the type argument. (The type argument is

explained in Chapter 12, Section 12-1.) You can also use the following

statement to extend the size to six:

Array.Resize (ref myArray, 6);

In the following example, the sizes of two arrays — an int array and a

string array — are increased from three to six. When the newly sized

arrays are displayed, the null elements of the string array are filled with

the string “empty.” This is done by using the ?? operator.

yourArray[i] = yourArray[i] ?? "empty";

Example 4-13

// Ex4-13.cs
// Resizing an array

using System;

public class MyClass
{

public static void Main()
{

int [] myArray = { 1, 2, 3 };
string[] yourArray = { "Tom", "Dick", "Harry" };

// Resize the int array:
Array.Resize(ref myArray, 6);

Building the Program Logic | 93

4-9 Using .NET Properties and Methods with Arrays

http://www.abicomputer.net

// Display it:
for(int i = 0; i < myArray.Length; i++)
{

Console.Write(myArray[i] + " ");
}
Console.WriteLine();

// Resize the string array:
Array.Resize(ref yourArray, 6);

// Display it:
for(int i = 0; i < yourArray.Length; i++)
{

// Use the ?? operator to assign "empty" to null elements:
yourArray[i] = yourArray[i] ?? "empty";

Console.Write(yourArray[i]+ " ");
}

}
}

Output:

1 2 3 0 0 0
Tom Dick Harry empty empty empty

4-10 The foreach Loop

The foreach loop is used with arrays and collections. The topic will be

revisited after we discuss collections in Chapter 11. The foreach loop

accesses arrays in a unique way without using counters. The foreach state-

ment takes the form:

foreach (type identifier in expression) statement(s);

where:

type is the data type, such as int or string.

identifier is the variable name.

expression is the name of the array (or collection).

statement(s) is the statement or block of statements to be executed.

Consider, for example, the following array:

int[,] myIntArray = { {1, 3, 5},{2, 4, 6} };

94 | Chapter 4

4-10 The foreach Loop

You can display the elements of this array by using the following

statement:

foreach(int i in myIntArray)
Console.Write("{0} ", i);

The result should be:

1 3 5 2 4 6

It is important to notice that the number of dimensions doesn’t matter

because foreach accesses all the elements sequentially. If the array is a

one-dimensional array like this:

int[] myIntArray = {1, 3, 5, 2, 4, 6};

you can still display it by using the same statement. If the array is a string

array, you need only to change the type from int to string:

foreach(string i in myIntArray)
Console.Write("{0} ", i);

� Note The foreach loop can be applied to your custom data structures to
do more advanced data processing. This will be covered in Chapter 11.

In the following example, you create a string array and display it along

with the rank and number of elements using foreach.

Example 4-14

// Example 4-14.cs
// foreach example

using System;

class foreachClass
{

static void Main ()
{

string [,] nameArray =
{ {"Hazem","Pille"}, {"Isabella","Angelina"} };

foreach(string n in nameArray)
Console.Write("{0} ", n);

// Blank line:
Console.WriteLine();

// Number of elements
Console.WriteLine("Number of array elements = {0}",

nameArray.Length);

Building the Program Logic | 95

4-10 The foreach Loop

http://www.abicomputer.net

// The rank of the array:
Console.WriteLine("Dimensions of the array = {0}",

nameArray.Rank);
}

}

Output:

Hazem Pille Isabella Angelina
Number of array elements = 4
Dimensions of the array = 2

Drill 4-5

Rewrite Example 4-12 using the foreach statement to display the

arrays.

Summary

In this chapter:

� You had a tour of the if-else constructs and learned how to use them to

express conditions and to nest them to build more complex conditions.

� You also learned the switch construct and used it to express multiple

choices.

� You now know that a condition can be expressed in a simple form by

using the conditional expression, which uses two operators.

� You learned how to compile and use libraries in your programs.

� You had a complete tour of loops and you are now familiar with many

kinds of loops, such as for, while, and do-while. You also learned

about the foreach loop, which combines power and simplicity in han-

dling arrays.

� You learned some branching statements that you can use in controlling

the flow of the program such as goto, break, and return.

� Finally, you used arrays in different dimensions and learned how to

declare and initialize them, and how to access and display their ele-

ments. You also learned about some useful .NET properties and meth-

ods that are used to process arrays.

96 | Chapter 4

Summary

Chapter 5

Using Classes

Contents:
� Declaring and using classes
� Using namespaces
� Accessibility and access levels
� Using properties
� Accessor accessibility
� Static members and classes
� Constants
� Constructors
� Read-only fields
� Inheritance
� Destructors
� Partial classes

5-1 Classes

The class is the most important element in C# because everything must be

included inside a class (or a struct). Unlike other languages, the C# com-

piler doesn’t allow you to declare any variables or methods outside a class.

As we mentioned before, global variables are not permitted in the lan-

guage. In fact, object-oriented programming is based on the concept of

classes. Structs are similar to classes in some aspects and can be used

instead of classes in some applications. The main difference between a

class and a struct is that the class is a reference type, while the struct is a

value type. (Refer to Chapter 3, Sections 3-3 and 3-4 for more information

on value types and reference types.)

97

http://www.abicomputer.net

5-1-1 Class Declaration

You declare a class by using the keyword class as follows:

class MyClass
{

// Class implementation
}

The class implementation (or class body) goes between the braces ({}).

You can declare a struct in the same way by using the keyword struct:

struct MyStruct
{

// Struct implementation
}

Structs are discussed in detail in Chapter 7.

5-1-2 Field Initialization

In the following example, you declare the class Point, which contains two

fields — x and y:

class Point
{

int x;
int y;

}

You can initialize the fields with values like this example:

class Point
{

int x = 0;
int y = 0;

}

This declaration initializes the fields x and y to their default values. Of

course, you can use any other values to initialize the fields.

5-1-3 Class Instantiation

To create objects from the Point class, use the following statement:

Point myPoint; // create the object

You can also create the object and initialize the fields in the same

statement:

Point myPoint = new Point();

98 | Chapter 5

5-1 Classes

Notice, however, that you cannot use an uninitialized object — this is the

same rule that applies to uninitialized variables. In the second statement,

when the object is created the default constructor is invoked to initialize

fields to their default values.

You can, of course, create more than one instance from the class:

Point p1 = new Point();
Point p2 = new Point();

Then you can assign each object its own coordinates:

p1.x = 15;
p1.y = 22;
p2.x = 10;
p2.y = 12;

As you can see from these statements, the fields x and y are associated

with the objects p1 and p2. In the following example, you see the complete

picture of the class and the object created from it. In this example, the

object is created in the Main method, but you can create objects inside any

other method. You cannot, however, create an object inside the class itself.

Example 5-1

// Example 5-1.cs
// Class instantiation

using System;

class Point
{

int x;
int y;

static void Main()
{

// Create a Point object:
Point p1 = new Point();
// Assign values to fields:
p1.x = 22;
p1.y = 25;
// Display the fields
Console.Write("x = {0}, y = {1}", p1.x, p1.y);

}
}

Output:

x = 22, y = 25

Using Classes | 99

5-1 Classes

http://www.abicomputer.net

5-2 Namespaces

A namespace is a container that includes classes and other types. You can

place the class inside a namespace. The benefit of using namespaces is

being able to fully qualify members included in the same namespace. If

two classes in two different namespaces have the same name, you can refer

to each one by using the fully qualified name, for example:

MyNameSpace.Class1
YourNameSpace.Class1

5-2-1 Nesting Namespaces

It is also possible to nest namespaces inside other namespaces. In that case,

you need to use the fully qualified names to distinguish between similar

class names:

MyParentNameSpace.MyNestedNamespace.MyClass1
MyParentNameSpace.MyClass1

In the following example, you declare two classes that have the same

name, MyClass. One class is contained in a namespace called

MyNameSpace, and the other is contained in a namespace called

YourNameSpace. In the Main method, which lies in MyNameSpace, you

instantiate both classes and create the objects mc1 and mc2. In order to

instantiate the class in YourNameSpace you have to use the fully qualified

name of the class.

Example 5-2

// Example 5-2.cs
// Namespace example

namespace MyNameSpace
{

using System;

class MyClass
{

int field1 = 1;
int field2 = 2;
public void MyMethod()
{

Console.WriteLine("MyNameSpace.MyClass fields:");
Console.WriteLine("Value of field1 = {0}", field1);
Console.WriteLine("Value of field2 = {0}", field2);

}

100 | Chapter 5

5-2 Namespaces

static void Main()
{

// Create an object of MyClassNameSpace.MyClass:
MyClass mc1 = new MyClass();

// Invoke MyMethod on the mc1 object:
mc1.MyMethod();

// Create an object of YourNameSpace.MyClass:
// Notice the use of the fully qualified name:
YourNameSpace.MyClass mc2 = new YourNameSpace.MyClass();

// Invoke MyMethod on the mc2 object:
mc2.MyMethod();

}
}

}

namespace YourNameSpace
{

using System;

class MyClass
{

int field1 = 3;
int field2 = 4;
public void MyMethod()
{

Console.WriteLine("YourNameSpace.MyClass fields:");
Console.WriteLine("Value of field1 = {0}", field1);
Console.WriteLine("Value of field2 = {0}", field2);

}
}

}

Output:

MyNameSpace.MyClass fields:
Value of field1 = 1
Value of field2 = 2
YourNameSpace.MyClass fields:
Value of field1 = 3
Value of field2 = 4

Using Classes | 101

5-2 Namespaces

http://www.abicomputer.net

5-2-2 The Namespace Alias Qualifier

There may be times when you want to use special names for your classes,

such as System or Console. It is obvious that these names will cause con-

flicts with the .NET classes that have similar names. For example, a class

named System would hide the System class of the .NET library. Although

this is not a common case, C# 2005 allowed for this possibility by adding

the namespace alias qualifier operator (::). You can use this operator to

search the global namespace for identifiers hidden by types or members in

your code.

The :: operator goes between two identifiers, like this:

global::System.Console.WriteLine("Hello, World!");

The left-hand identifier that precedes the :: operator is where the search

starts. The right-hand identifier is the identifier to look for. When the

left-hand identifier is the word “global,” the search starts at the global

namespace.

Consider the following example in which a class named System is used.

This class name causes a problem that is solved only by using the

namespace alias qualifier, like this:

global::System.Console.WriteLine(mc.myClassNumber);
global::System.Console.WriteLine(ms.mySystemNumber);

If you try to use the following statements instead, you get a compiler error:

System.Console.WriteLine(mc.myNumber); // error
System.Console.WriteLine(ms.myNumber); // error

Example 5-3

// Example 5-3.cs
// The namespace alias qualifier

class MyClass
{

int myClassNumber = 123;

public class System
{

public int mySystemNumber = 555;
}

static void Main()
{

// Instantiate classes:
MyClass mc = new MyClass();

102 | Chapter 5

5-2 Namespaces

System ms = new System();

// Display fields:
global::System.Console.WriteLine(mc.myClassNumber); // 123
global::System.Console.WriteLine(ms.mySystemNumber); // 555

}
}

Output:

123
555

5-3 Access Levels

It is a common practice that one programmer creates a class, and then other

programmers use that class in their code. This code is usually called the

client. One important feature of OOP is encapsulation, which enables you,

as a class creator, to protect your class fields by restricting access to them.

The clients in this case can access those fields only through public meth-

ods. You probably noticed that the keyword public was used in most class

declarations in the previous chapters. In this section you learn about public

and other keywords used for protecting types and members. The following

keywords can be used to restrict or permit access to types and members:

� public

� private

� protected

� internal

These keywords are referred to as access modifiers because they are used

to modify the declarations. For example:

public int MyMethod()

� Note The set of access modifiers is a subset of the C# modifiers, which
are used for different purposes.

Access modifiers are used to create five access levels, which are explained

in the following table.

Using Classes | 103

5-3 Access Levels

http://www.abicomputer.net

Table 5-1: Access levels

Access Level Description

public Used with types and members. Access is not restricted.

private Used with members. Access is permitted only through
member methods of the same class.

protected Used with members. Access is permitted through
member methods of the same class or a derived class.

internal Used with types and members. Access is permitted
through methods in the same assembly.

protected internal Used with members. Access is permitted through
member methods of the class or a derived class, in
addition to the methods in the same assembly.

The following table shows the default access levels and the allowed access

levels to use with different type members. (More on types in Chapters 7

and 8.)

Table 5-2: Access levels of type members

Member Of Default Access Level Allowed Access Levels

enum public n/a

class private public

protected

internal

private

protected internal

interface public n/a

struct private public

internal

private

� Notes:

� There are no access levels for namespaces.

� For classes nested inside other classes, the default access level is internal. The
allowed access levels are public or internal.

In the following example, the Point class is used to demonstrate access

levels.

Example 5-4

// Example 5-4.cs
// Access Levels

using System;

class OuterClass

104 | Chapter 5

5-3 Access Levels

{
// The private access level is permitted only for
// classes inside other classes:
private class Point
{

// The public access level on the fields
// makes them accessible from other classes:
public int x;
public int y;

}

class MainClass
{

static void Main()
{

Point p1 = new Point();
p1.x = 33;
p1.y = 22;
Console.WriteLine("x = {0}, y = {1}", p1.x, p1.y);

}
}

}

Output:

x = 33, y = 22

There are several parts of this example worth discussing:

� The example contains three classes: Point, MainClass, and the con-

taining class, OuterClass. The Main method is placed inside a class

other than the Point class in order to test the effect of the access levels.

Note that you could not access the fields of the Point class if they did

not have the public modifier. To test that, change the public modifier

to private or protected and see the error message from the compiler.

� The containing class, OuterClass, is used as a container to the other

classes so that we can give the Point class the private access level (see

Table 5-2). If you remove the outer class, the compiler will complain

about using the word private. The access level of the outer class has no

effect on the program though.

Drill 5-1

Try changing the access level of the classes and members in Example

5-4 and check the results.

Using Classes | 105

5-3 Access Levels

http://www.abicomputer.net

5-4 Properties

The easiest way to protect the fields of a class is to use properties. The

properties are in fact methods like other member functions, but they facili-

tate the access of the private fields by the client. The client can use the

properties in the same way it uses fields. The traditional method that is

used in C++ is to dedicate some functions for accessing the private fields.

For example:

set_MyPoint_x(); // C++
get_MyPoint_x(); // C++

The job of the first function is to assign a value to the field x, and the job

of the second function is to read the value of that field. The C# properties

are used like the following example:

private string item;
public string Item
{

get
{

return item;
}
set
{

item = value;
}

}

The field “item” is declared private, and the property “Item” is declared

public. (This naming system is not mandatory but is a common conven-

tion.) A property contains the method get to read the field and the method

set to assign a value to the field. The methods get and set are called

accessors. They are classified as contextual keywords, which are words

that have special meaning when used with properties or indexers.

Notice the use of the return keyword in the get accessor. Notice also

the use of another contextual keyword, value, which is used to change the

value of the field. The following example shows how to use the property to

read or write a field name:

Item = "C# book"; // using the set method
Console.Write(Item); // using the get method

As you can see in the first example, using the set accessor means assigning

a value to the property. (The contextual keyword value is never used

explicitly.). In the second example, the get accessor is also used implicitly

for retrieving the property value (reading it).

106 | Chapter 5

5-4 Properties

� Note Although keywords are reserved words, contextual keywords are
not. You cannot use a keyword as an identifier without prefixing it with the
@ symbol, but contextual keywords can be used as identifiers.

Unless you need to write additional code in the set accessor, you can devi-

ate from the common coding convention by writing the property like this:

public string Item
{

get { return item; }
set { item = value; }

}

5-4-1 Using Properties

Properties expose a convenient public way for reading and setting field

values instead of dealing directly with the fields. One advantage of using

properties as opposed to using fields directly is that you can validate the

data before changing the value of the field. For example, if the field con-

tains a specific date, you can check to see if the value to be assigned to the

field is within a specific range.

In the following example, the valid value for the field called number

should be within the range 100 to 1000. If you try to assign a value less

than 100 or greater than 1000, it won’t be accepted and you will get a mes-

sage from the set accessor telling you about the error. Regardless of

whether or not the entered value is accepted, the program displays the cur-

rent value of the field.

Example 5-5

// Example 5-5.cs
// Using properties

using System;

class MyClass
{

private int number = 144;
public int Number
{

get { return number; }
set
{

if ((value >= 100) && (value <= 1000))
number = value;

Using Classes | 107

5-4 Properties

http://www.abicomputer.net

else
Console.WriteLine(

"The value is not within the permitted range");
}

}

static void Main()
{

// Create an object:
MyClass mc = new MyClass();

// Read a value from the keyboard:
Console.Write("Please enter the new value: ");
int myInt = Int32.Parse(Console.ReadLine());

// Assign the value to the property:
mc.Number = myInt;

// Display the value:
Console.WriteLine("The current value is: {0}", mc.Number);

}
}

Sample Run 1:

Please enter the new value: 10
The value is not within the permitted range
The current value is: 144

Sample Run 2:

Please enter the new value: 199
The current value is: 199

5-4-2 Read-only Properties

Sometimes you need to protect the fields from any change by the user. For

example, a field containing the company name should not be changed. In

such cases, you omit the set accessor and keep the get accessor to read the

field. This kind of property is called a read-only property, while the regular

property is called a read-write property.

In the following example, both property kinds are used. The person’s

name is a read-write property, while the company name is a read-only

property.

108 | Chapter 5

5-4 Properties

Example 5-6

// Example 5-6.cs
// Read-only properties

using System;

public class Employee
{

// Private fields:
private string companyName = "Microsoft";
private string employeeName;

// EmployeeName – read-write property:
public string EmployeeName
{

get { return employeeName; }
set { employeeName = value; }

}

// CompanyName – read-only property:
public string CompanyName
{

get { return companyName; }
}

}

public class MainClass
{

public static void Main()
{

Employee emp = new Employee();
// Assign to the read-write property:
emp.EmployeeName = "Hazem Abolrous";

// Read both properties:
Console.WriteLine("Company Name: {0}", emp.CompanyName);
Console.WriteLine("Employee name: {0}", emp.EmployeeName);

}
}

Output:

Company Name: Microsoft
Employee name: Hazem Abolrous

Using Classes | 109

5-4 Properties

http://www.abicomputer.net

5-4-3 Accessor Accessibility

In C# 2002, the two accessors, set and get, have the same accessibility as

the property they act upon. In C# 2005, each accessor can have its own

access level. This way, you can restrict the accessibility of the set accessor

while keeping the get accessor public. In this case, the value of the prop -

erty can only be changed by the class designer.

The following example shows a property with public get and protected

set.

public string EmployeeName
{

get { return employeeName; }
protected set { employeeName = value; }

}

There are, however, some restrictions when using this feature:

� Access modifiers are allowed only on one of the accessors — usually it

is the set accessor.

� If you use one accessor only (as in the read-only property), you cannot

use an access modifier on the accessor. Of course in this case, the

accessor accessibility is the same as that of the property.

� On interfaces (explained in Chapter 8), no access modifiers are allowed

on accessors.

� The accessibility of the accessor must be more restrictive than the

accessibility of the property itself.

5-5 Static Members and Static Classes

Assume you are building a class that represents a group of employees

working for a company as shown in Example 5-6. The employees’ names

change with each instance of the class, while the company name stays the

same. In other words, the employee name belongs to the corresponding

employee object, while the company name belongs to the class. In this case

you can modify the declaration of the company name with the modifier

static, which qualifies it to belong to the class rather than a specific object.

Here is the new declaration:

private static string companyName = "Microsoft";
private string name;

110 | Chapter 5

5-5 Static Members and Static Classes

When you use a static field, you associate it with the class name rather

than a particular object:

Console.WriteLine("Company Name: {0}", Employee.CompanyName);

This leads to classifying the class members into two categories:

� Instance members

� Static members

This classification applies to methods and fields.

In the following example, the class Employee is modified to include the

company name and the property associated with it as static members.

Example 5-7

// Example 5-7.cs
// Static properties example.

using System;

public class Employee
{

// Declare the private fields:
private static string companyName = "T-Mobile";
private string name;

// The Name property--read-write:
public string Name
{

get {return name;}
set {name = value;}

}

// The company name property--read-only:
public static string CompanyName
{

get {return companyName;}
private set
{

companyName = value;
}

}
}

public class MainClass
{

public static void Main()

Using Classes | 111

5-5 Static Members and Static Classes

http://www.abicomputer.net

{
Employee emp = new Employee();
emp.Name = "Sally Abolrous";
Console.WriteLine("Company Name: {0}", Employee.CompanyName);
Console.WriteLine("Employee name: {0}", emp.Name);

}
}

Output:

Company Name: T-Mobile
Employee name: Sally Abolrous

Examples of static members that we used earlier in this book are the meth-

ods of the Math class, such as Math.Tan and Math.Round. We also used

static fields such as Math.PI. These members are always associated with

the class name. All the members of the Math class are static members. In

fact, the Math class itself is a static class. A static class is a class whose

members are all static and is declared using the modifier static. Static

classes cannot be instantiated or inherited.

5-6 Constants

A constant is a name that represents a constant value. The modifier const is

used to declare a constant field or local variable whose value cannot be

changed after declaration. For example, the value of the PI constant we

used earlier cannot be changed and we never need to change it. Here is an

example of a class that uses constant fields:

class MyClass
{

public const int field1 = 3, field2 = 10;
}

Notice that the constant fields in this declaration are initialized as declared.

This is a requirement for declaring constants. The same applies for the con-

stant local variables. If you used constants as in the following examples:

const double myDoubleConst = 3.1;
const int myIntConst = 25;

you cannot later change their value with other statements such as:

int x = ++myIntConst; // error
myIntConst = 26; // error

112 | Chapter 5

5-6 Constants

You can use a constant to build other constants, like this example:

const string language = "C#";
const string productName = language + " "+ "2005";

Here the value of the productName constant is “C# 2005.”

When you declare variables that represent conversion ratios in your pro-

grams, it is best to declare them using the modifier const. In the following

program, the conversion ratio convRatio is used to convert kilometers to

miles.

Example 5-8

// Example 5-8.cs
// const example

using System;

public class TestClass
{

public static void Main()
{

const double convRatio = 0.6211; // Kilos to miles
double miles = 10;
double kilos = miles/convRatio;

Console.WriteLine("{0} Mile(s) = {1:F2} Km", miles, kilos);
}

}

Output:

10 Mile(s) = 16.10 Km

5-7 Constructors

A class can contain one or more methods to build and initialize objects.

These methods are called constructors. Constructors are divided into three

categories:

� Instance constructors

� Private constructors

� Static constructors

These constructors are explained in the following sections.

Using Classes | 113

5-7 Constructors

http://www.abicomputer.net

5-7-1 Instance Constructors

Instance constructors are the most common and sometimes referred to as

just constructors. A constructor is named the same as the class. It is

invoked when you create a new object. For example:

Point myPoint = new Point();

The class might also contain a constructor with parameters, such as:

Point myPoint = new Point(int x, int y);

As you might have noticed in the previous examples, if the class doesn’t

contain a constructor, the default constructor is invoked. The default con-

structor is a parameterless constructor such as Point(). This constructor

initializes the created object with default parameters — zero in case of

integer fields.

Example 5-9

// Example 5-9.cs
// Constructor example

using System;

class Point
{

public int x, y;

// Default constructor:
public Point()
{

x = 0;
y = 0;

}

// A constructor with parameters
public Point(int x1, int y1)
{

x = x1;
y = y1;

}
}

class MyClass
{

static void Main()

114 | Chapter 5

5-7 Constructors

{
Point p1 = new Point();
Point p2 = new Point(2, 10);

Console.WriteLine("First Point at: ({0}, {1})", p1.x, p1.y);
Console.WriteLine("Second Point at: ({0}, {1})", p2.x, p2.y);

}
}

Output:

First Point at: (0, 0)
Second Point at: (2, 10)

5-7-1-1 Declaring Constructors

Although the default parameterless constructor is automatically created by

the compiler, you cannot declare one constructor with parameters without

declaring the parameterless constructor. The compiler provides the default

constructor only if the class does not have any constructors. In other

words, in order to use the statement:

Point p1 = new Point();

you must declare a parameterless constructor.

5-7-1-2 Using this

As in C++, in C# the this keyword is used to access data members in

instance constructors (methods or accessors). For example, you can declare

the constructor in the preceding example like this:

public Point(int x, int y)
{

this.x = x;
this.y = y;

}

In this case, you can use the same names for both fields and parameters (x

and y). This is because the expression “this.x” represents the field “x” of

the current object, while “x” is the method parameter. It is obvious that the

keyword this cannot be used with static constructors or fields.

� Note In C++, the this keyword is classified as a pointer, but in C#, it is
called “this-access.” The word “pointer” is used only in unsafe code.

Using Classes | 115

5-7 Constructors

http://www.abicomputer.net

5-7-2 Private Constructors

Private constructors are used with classes that contain only static members.

Other classes, except those nested in the same class, are not allowed to cre-

ate instances of that class. Consider the following example:

public class MyClass
{

private MyClass() {} // private constructor
public string companyName;
public string employmentDate;

}

In this example, the private constructor is an empty constructor whose job

is to prevent the generation of a default constructor for the class. Notice

that the private constructor uses the access modifier private, which is a

common convention but not necessary because the default access level is

private. It is recommended to declare the class as a static class when its

members are all static.

Drill 5-2

Use the preceding code segment in a program and try the following

statement, then observe the compilation result:

MyClass mc = new MyClass();

5-7-3 Static Constructors

A static constructor is used to initialize a class. It is called before any

objects are created and before any call to any static member of the class.

In the following example, the static constructor MyClass contains two

printing statements. There is also a method, MyMethod, that contains

another printing statement. Notice that when MyMethod is called, the

static constructor is automatically invoked.

Example 5-10

// Example 5-10.cs
// Static constructor example

using System;

class MyClass
{

// Static constructor:

116 | Chapter 5

5-7 Constructors

static MyClass()
{

Console.WriteLine("Hey, I am the static constructor! " +
"I am called automatically!");

}

public void MyMethod()
{

Console.WriteLine("Hi, I am MyMethod. I was called after " +
"the static constructor had been invoked!");

}
}

class MainClass
{

static void Main()
{

MyClass myObject = new MyClass();
myObject.MyMethod();

}
}

Output:

Hey, I am the static constructor! I am called automatically!
Hi, I am MyMethod. I was called after the static constructor had
been invoked!

� Note In Chapter 14, you are going to learn about object initializers that
let you save the time and effort of writing redundant code to declare con-
structors that do the same job. For example, if you have a class called Point
with two properties, X and Y, that are used to set the coordinates x and y,
you can declare and initialize its objects like these examples:

Point p = new Point { X = 10, Y = 20 };

OR

var p = new Point { X = 10, Y = 20 };

5-8 Read-only Fields

The readonly keyword is used to declare read-only fields. There are only

two ways to assign values to read-only fields. The first way is to assign the

value in the declaration statement, as in this example:

public readonly int readOnlyInt1 = 55;

Using Classes | 117

5-8 Read-only Fields

http://www.abicomputer.net

The second is to use a constructor, as in this example:

public MyClass()
{

readOnlyInt1 = 66;
}

The following example demonstrates the read-only fields.

Example 5-11

// Example 5-11.cs
// readonly example

using System;

class MyClass
{

public int myRegularInt;
public readonly int readOnlyInt1 = 55;
public readonly int readOnlyInt2;

public MyClass()
{

readOnlyInt2 = 66;
}

public MyClass(int l, int m, int n)
{

myRegularInt = l;
readOnlyInt1 = m;
readOnlyInt2 = n;

}
}
class MainClass
{

static void Main()
{

MyClass obj1 = new MyClass(11, 22, 33); // OK
Console.WriteLine("obj1 fields are: {0}, {1}, {2}" ,
obj1.myRegularInt, obj1.readOnlyInt1, obj1.readOnlyInt2);

MyClass obj2 = new MyClass();
obj2.myRegularInt = 44; // OK
Console.WriteLine("obj2 fields are: {0}, {1}, {2}" ,
obj2.myRegularInt, obj2.readOnlyInt1, obj2.readOnlyInt2);

}
}

118 | Chapter 5

5-8 Read-only Fields

Output:

obj1 fields are: 11, 22, 33
obj2 fields are: 44, 55, 66

Notice in this example that you cannot change the value of the read-only

field in the Main method by using a statement like this:

obj1.readOnlyInt1 = 55; // error

� Note The difference between a read-only field and a constant field is
that you can change the value of the first by using the allowed ways men-
tioned above. The constant fields, however, cannot be changed after
declaration.

5-9 Inheritance

It is possible for a class to inherit another class as in the following

example:

class MyDerivedClass: MyBaseClass
{

// ...
}

In this example, you declared the class MyDerivedClass, which inherits the

class MyBaseClass. In the declaration, the colon (:) is used between the

name of the derived class and the name of the base class. Inheritance

means that the derived class contains all the members of the base class.

You can also add new members to the inherited members. For example, the

Employee class inherits all the characteristics of the Person class and adds

to them the characteristics of an Employee.

The following rules control inheritance:

1. All members of the base class are inherited (except instance construc-

tors, destructors, and static constructors).

2. If you declare a member in the derived class with the same name as

that in the base class, it hides the member in the base class. In that

case, the member of the base class is not accessible through the

derived class.

3. Function members in the base class can be overridden by those in the

derived class, making it possible to exhibit polymorphism. (Polymor-

phism is explained in Chapter 6.)

4. In C#, unlike C++, a class can inherit from one class only. However,

it can implement more than one interface. When a class implements

Using Classes | 119

5-9 Inheritance

http://www.abicomputer.net

an interface, it “inherits” its members. (Interfaces are explained in

Chapter 8.)

5. Structs cannot inherit from classes or other structs, but they can

implement interfaces. They also cannot be inherited.

� Note Sometimes the expressions specialization and generalization are
used to express inheritance. For example, the Cow class specializes the
Mammal class, and the Mammal class generalizes the Cow class. The base
class is also referred to as the superclass or parent class, and the derived
class is referred to as the subclass or child class.

In the following example, the class Employee, which inherits from the

class Citizen, is demonstrated.

Example 5-12

// Example 5-12.cs
// Inheritance example

using System;

class Citizen
{

string idNumber = "111-2345-H";
string name = "Pille Mandla";

public void GetPersonalInfo()
{

Console.WriteLine("Name: {0}", name);
Console.WriteLine("ID Card Number: {0}", idNumber);

}
}
class Employee: Citizen
{

string companyName = "Technology Group Inc.";
string companyID = "ENG-RES-101-C";

public void GetInfo()
{

// Calling the base class GetPersonalInfo method:
Console.WriteLine("Citizen's Information:");

GetPersonalInfo();

Console.WriteLine("\nJob Information:");
Console.WriteLine("Company Name: {0}", companyName);
Console.WriteLine("Company ID: {0}", companyID);

}

120 | Chapter 5

5-9 Inheritance

}

class MainClass {
public static void Main()
{

Employee E = new Employee();
E.GetInfo();

}
}

Output:

Citizen's Information:
Name: Pille Mandla
ID Card Number: 111-2345-H

Job Information:
Company Name: Technology Group Inc.
Company ID: ENG-RES-101-C

Notice in this example that all the member methods have the access level

public. This is necessary for accessing the class fields.

5-10 Destructors

Destructors are used to destruct objects. A destructor is declared as shown

in this example:

~MyClass()
{

// Destruction statements.
}

The destructor of a class uses the same name as the class but is preceded

with the tilde (~) character. You cannot, however, call a destructor as it is

called automatically when the object finishes its work and goes out of

scope. In case of inheritance, the destruction starts with the children and

goes up in the inheritance tree.

The following example shows how destructors are called to destruct

objects in the order of their position in the inheritance hierarchy.

Example 5-13

// Example 5-13.cs
// Destructor example

using System;

Using Classes | 121

5-10 Destructors

http://www.abicomputer.net

class Parent // parents
{

~Parent()
{

Console.WriteLine("Calling the Parent destructor.");
}

}

class Kid: Parent // kids
{

~Kid()
{

Console.WriteLine("Calling the Kid destructor.");
}

}

class GrandKid: Kid // grandkids
{

~GrandKid()
{

Console.WriteLine("Calling the Grandkid destructor.");
}

}

public class MyClass
{

public static void Main()
{

GrandKid myObject = new GrandKid();
}

}

Output:

Calling the Grandkid destructor.
Calling the Kid destructor.
Calling the Parent destructor.

Notice in this example that the grandkid was destructed first, then the kid,

and finally the parent.

Although destructors play an important role in C++ (as you use them to

deallocate memory that was allocated for the pointers), in C# you don’t

need to use them because the garbage collector does that task for you auto-

matically when the objects finish their work and are no longer in use.

In C#, you can still use destructors to clear unmanaged resources such

as files and network connections. This topic, however, will not be dis-

cussed here as it is beyond the level of this book. For more information on

122 | Chapter 5

5-10 Destructors

that, read about the Dispose method on the Microsoft web site:

http://msdn.microsoft.com.

� Note You can force the garbage collector to start the cleaning process
by using the .NET GC.Collect method, but this is not recommended as it
might cause undesirable results.

5-11 Partial Classes

Partial classes were added to C# 2005 to facilitate breaking a type (class,

struct, or interface) into more than one section and each in a separate file.

This is useful when writing large projects or using machine-generated

code. This feature also helps developer teams to collaborate on the same

application.

To declare a partial class, all sections of the class must use the modifier

partial right before the word class. Other modifiers can precede the key-

word partial. The following example declares a class called TimeSheet

divided into two files:

// File1.cs
public partial class TimeSheet
{

public void AddWorkingHours()
{

// ...
}
public void CalculateSalary()
{

// ...
}

}

// File2.cs
public partial class TimeSheet
{

public void SubtractVacationTime()
{

// ...
}

}

On compilation, all sections of the class are put together to create the class.

All the sections of course must be included in the same namespace, but

cannot span assemblies.

The following rules and restrictions control the use of partial classes:

Using Classes | 123

5-11 Partial Classes

http://www.abicomputer.net

1. All partial classes that constitute one class must use the same accessi-

bility level.

2. If one part of the class is declared using the modifiers abstract or

sealed, the modifier will apply to the whole class.

3. If one partial class is derived from a base class, all the other partial

classes will inherit this base class even if it is not mentioned in their

declarations. This means that if you have two partial classes, as in this

example:

partial class Employee: Person
{

// ...
}
partial class Employee: Citizen
{

// ...
}

the class Employee would effectively be:

class Employee: Person, Citizen
{

// ...
}

4. What applies to inheritance from classes applies to implementing

interfaces.

The following example consists of two files — file1.cs and file2.cs — that

contain a definition of the Employee class. Each file contains part of the

class declared as partial. To compile the program, use the following

command:

csc/out:Ex5-14.exe file1.cs file2.cs

This combines the two files, file1.cs and file2.cs, and generates an execut-

able file named Ex5-14.exe.

Example 5-14, file1.cs

// Example 5-14.cs
// file1.cs

public partial class Employee
{

private string name;
private string id;

124 | Chapter 5

5-11 Partial Classes

public string Name
{

get { return name; }
set { name = value; }

}

public string Id
{

get { return id; }
set { id = value; }

}
}

Example 5-14, file2.cs

// Example 5-14.cs
// file2.cs

using System;

public partial class Employee
{

public void DisplayInfo()
{

Console.WriteLine("Employee's name: {0}", name);
Console.WriteLine("Employee's id: {0}", id);

}
}

class MyClass
{

static void Main(string[] args)
{

// Create object:
Employee emp = new Employee();

// Read name and id:
Console.Write("Please enter the employee's name: ");
emp.Name = Console.ReadLine();
Console.Write("Please enter the employee's id: ");
emp.Id = Console.ReadLine();
// Display information:
emp.DisplayInfo();

}
}

Using Classes | 125

5-11 Partial Classes

http://www.abicomputer.net

Sample Run:

Please enter the employee's name: Craig Combel
Please enter the employee's id: XYZ-cTQ
Employee's name: Craig Combel
Employee's id: XYZ-cTQ

Drill 5-3

Make the necessary changes to Example 5-14 to make the Employee

class a subclass of the Citizen class. Display some properties from

the Citizen class, such as the SSN and Age. The output should look

something like:

Citizen's Information:
SSN: 555-55-5555
Age: 36

Job Information:
Company Name: Pille Mandla
Company ID: 123-WxYz

Summary

In this chapter:

� You were introduced to the details of classes. You learned how to ini-

tialize a class and how to instantiate it.

� You also learned about namespaces and their role in fully qualifying the

names of the classes and their members.

� You saw how to use access modifiers and learned about the accessibil-

ity levels that can be used with types and members to provide the nec-

essary protection to them.

� You used properties and learned about the read-only properties. You

also learned about the new feature of accessor accessibility, and how to

use it to control the accessibility of each successor separately.

� You learned about static members and static classes. You know now

when to declare a member static and when to declare a class static.

� You now know the constant fields and local variables and the differ-

ence between the modifiers const and readonly and their use.

� You learned about constructors and that there are three types of

constructors.

126 | Chapter 5

Summary

� You also learned about destructors and garbage collection in C#. You

know now that you don’t need to invoke destructors because the gar-

bage collector does the cleaning up for you.

� You took a tour of inheritance and learned about its important role in

reusing code and polymorphism.

� Finally, you had a tour of partial classes and you learned that you can

split the code of a class into sections, with each section in a separate

file.

Using Classes | 127

Summary

http://www.abicomputer.net

This page intentionally left blank.

Chapter 6

Function Members

Contents:
� Defining function members
� Polymorphism
� Using abstract classes and methods
� Method overloading
� Passing parameters to methods
� Declaring and using indexers
� User-defined operators
� Overriding ToString()

6-1 Function Members

All members of a class or a struct (except fields and constants) are classi-

fied as function members. If you are a C++ programmer you might

compare this to member functions, which use the same concept.

Function members are:

� Methods

� Properties

� Events

� Indexers

� User-defined operators

� Constructors

� Destructors

You learned about some of these members earlier, in Chapters 1 through 5.

The rest will be explained in the following chapters of this book.

129

http://www.abicomputer.net

6-2 Polymorphism

One important benefit of inheritance is code reusability. For example, if

another programmer already created a class called Person, there is no need

for you to rewrite the same class in order to create the Employee class or

the PoliceMan class. Many characteristics of these classes are already

included in the Person class. All you need to do is inherit the Person class

and add to it the characteristics of Employee or PoliceMan. This will save

you the effort of reinventing the wheel.

The second benefit of inheritance is polymorphism. In programming,

you deal with many kinds of user interface windows in the Microsoft Win-

dows environment, such as message boxes that convey a message or a

warning and windows for painting or writing. If you wrote, for example, a

method called DrawWindow, you can associate this method with various

objects that represent different kinds of windows. Based on the object

associated with the method, the result would be different. Consider these

examples:

myButton.DrawWindow(); // draws a button
myMsg.DrawWindow(); // draws a message box
myPaintSurface.DrawWindow(); // draws a painting window

The three objects — myButton, myMsg, and myPaintSurface — are not

instances of the same class, but instances of other classes derived from the

base class that contains the original DrawWindow method. Each object is

used to invoke a new definition of the method DrawWindow.

6-2-1 Virtual and Override Methods

To use the polymorphic methods introduced in the preceding section,

declare the DrawWindow method with the keyword virtual in the base

class:

public virtual void DrawWindow()
{

// The method definition in the base class.
}

Then, in each of the classes that inherit the base class, declare a

DrawWindow method using the keyword override:

public override void DrawWindow()
{

// The method definition in one of the derived classes.
}

130 | Chapter 6

6-2 Polymorphism

The method declared with the keyword override is called an override

method. It can override another method that has the same name, signature,

and accessibility in the base class. When you override a method, you can

change its original behavior in the derived class. An override method can

override any of the methods declared with the following modifiers:

� virtual

� abstract

� override

When a virtual method in a derived class has the same name, accessibility,

and signature as that of another method in the base class but is not quali -

fied with the override modifier, it simply hides the method of the base

class. (More on hiding members of the base class in Chapter 8.) To make

the method override the one in the base class, you must modify its declara-

tion with the keyword override. An abstract method is implicitly a virtual

method, and therefore, it can be overridden without using the virtual mod-

ifier (since it can’t use the virtual modifier anyway).

� Note You cannot use the virtual modifier with the following modifiers:
static, abstract, or override.

You cannot combine the override modifier with the following modifiers:
static, abstract, virtual, or new.

6-2-2 Calling Members of the Base Class

Sometimes when you inherit a class, the methods in the derived class can

override methods in the base class. What if you wanted to call one of the

overridden methods from within the derived class? The keyword base is

the solution to this problem. To call an overridden method, such as

GetInformation, you can call it by using this statement:

base.GetInformation();

This statement calls the original GetInformation method, which was over-

ridden by a method with a similar name in the derived class.

� Note You cannot use the keyword base inside a static method.

In other cases, you need to build the object of the base class before you

build the object of the derived class. You can also do that using the base

keyword like the following example:

Function Members | 131

6-2 Polymorphism

http://www.abicomputer.net

public MyDerived(int x) : base(x)
{

// ...
}

This is the constructor of the class MyDerived, which builds the base class

object on the fly. You need to do this in cases when constructing the base

class is necessary to construct the derived class. For example, let’s say the

base class represents the area of a circle, and the derived class represents

an area of a sphere (which uses the area of a circle). In this case, you must

instantiate the area of the circle before you can instantiate the area of the

sphere (see Example 6-1).

� Note for C++ programmers: Notice that this way of building the
base class is equivalent to the initialization list in C++.

6-2-3 Overriding Virtual Methods on the Base Class

In this section, we will use an example that demonstrates calculating the

areas of different shapes. The example includes inheritance and overriding

the virtual methods on the base class. The class contains two dimensions, x

and y, and a virtual method to calculate the area:

public virtual double Area()
{

return 0;
}

The returned value (zero) doesn’t mean much now because other methods

will override this method and change its behavior.

Several classes will inherit this class, such as the Point, Circle, Sphere,

and Cylinder classes. The common factor among all these classes is the x

and y dimensions. The dimension x might represent a side of a square or a

radius of a circle or a sphere. The dimension y could be the length of a

rectangle or the height of a cylinder. Inheriting these dimensions will cer-

tainly facilitate creating the derived classes. Each of the derived classes

contains a method that has the same name: Area.

This is the Area method of the Circle class:

public override double Area()
{

return Math.PI * x * x;
}

132 | Chapter 6

6-2 Polymorphism

This is the Area method of the Sphere class:

public override double Area()
{

return 4 * Math.PI * x * x;
}

This is the Area method of the Cylinder class:

public override double Area()
{

return 2 * Math.PI * x * x + 2 * Math.PI * x * y;
}

All these methods use the modifier override, which enables them to over-

ride the Area method in the base class. The area of the point is, of course,

zero. It will use the value returned by the base class.

When you create these classes, it is important to build the base class

when you build the derived class. For example:

public Cylinder(double r, double h): base(r, h)
{
}

In this constructor, the base keyword is used to call the base class con-

structor before building the cylinder object. The reason for that is to pass

the parameters h and r to the corresponding fields in the base class. Here is

the complete example:

Example 6-1

// Example 6-1.cs
// virtual Example

using System;

// The base class:
public class AreasClass
{

// Fields:
protected double x, y;

// Constructors:
public AreasClass()
{
}
public AreasClass(double x, double y)
{

this.x = x;
this.y = y;

Function Members | 133

6-2 Polymorphism

http://www.abicomputer.net

}

// Methods:
public virtual double Area()
{

return 0;
}

}

// The Point class uses a parameterless constructor:
class Point: AreasClass
{

public Point(): base()
{
}

}

// The Circle class:
class Circle: AreasClass
{

public Circle(double r): base(r, 0)
{
}
public override double Area()
{

// The area of a circle.
// The radius is represented by x:
return Math.PI * x * x;

}
}

// The Sphere class:
class Sphere: AreasClass
{

public Sphere(double r): base(r, 0)
{
}
public override double Area()
{

// The radius is represented by x:
return 4 * Math.PI * x * x;

}
}

// The Cylinder class:
class Cylinder: AreasClass
{

public Cylinder(double r, double h): base(r, h)
{

134 | Chapter 6

6-2 Polymorphism

}
public override double Area()
{

// The radius is represented by x and
// the height is represented by y:
return 2 * Math.PI * x * x + 2 * Math.PI * x * y;

}
}

class MyClass
{

public static void Main()
{

// Receive numbers from the keyboard:
Console.Write("Please enter the radius: ");
double radius = Convert.ToDouble(Console.ReadLine());
Console.Write("Please enter the height: ");
double height = Convert.ToDouble(Console.ReadLine());

// Create objects:
Point myPoint = new Point();
Circle myCircle = new Circle(radius);
Sphere myShpere = new Sphere(radius);
Cylinder myCylinder = new Cylinder(radius,height);

// Display results:
Console.WriteLine("Area of your point = {0:F2}",

myPoint.Area());
Console.WriteLine("Area of your circle = {0:F2}",

myCircle.Area());
Console.WriteLine("Area of your sphere = {0:F2}",

myShpere.Area());
Console.WriteLine("Area of your cylinder = {0:F2}",

myCylinder.Area());
}

}

When you run this program you will be asked to enter two numbers that

represent the radius and the height. It will then display the corresponding

areas of the circle, sphere, and cylinder.

Sample Run:

Please enter the radius: 4 � input
Please enter the height: 6 � input
Area of your point = 0.00
Area of your circle = 50.27
Area of your sphere = 201.06
Area of your cylinder = 251.33

Function Members | 135

6-2 Polymorphism

http://www.abicomputer.net

Drill 6-1

Modify Example 5-12 to make use of the virtual and override meth-

ods. Instead of using two methods, GetPersonalInfo and GetInfo, use

only one virtual method, GetInformation, to display the same output.

6-3 Abstract Classes and Methods

The purpose of an abstract class is to be inherited by other classes. It can-

not be instantiated. The abstract method is, by default, a virtual method. It

can exist only inside an abstract class.

Declare abstract classes or abstract methods using the abstract keyword

as in this example:

abstract class MyBaseClass // abstract class
{

public abstract void MyMethod(); // abstract method
...

}

The abstract class might contain abstract methods and properties. When an

abstract class is inherited, the derived class must implement all of its meth-

ods and properties. As you can see in the code segment above, the abstract

method doesn’t contain any implementation. The implementation goes

inside the overriding methods of the derived classes.

The following keywords are not allowed in the abstract method

declaration:

� static

� virtual

� Note for C++ programmers: The abstract method is equivalent to
the pure virtual function in C++.

Abstract properties are similar to abstract methods except in the way they

are declared. The following example demonstrates abstract classes, meth-

ods, and properties.

136 | Chapter 6

6-3 Abstract Classes and Methods

Example 6-2

// Example 6-2.cs
// Abstract classes, methods, and properties

using System;

// Abstract class:
abstract class MyBaseClass
{

// Fields:
protected int number = 100;
protected string name = "Dale Sanders";

// Abstract method:
public abstract void MyMethod();

// Abstract properties:
public abstract int Number
{ get; }
public abstract string Name
{ get; }

}

// Inheriting the class:
class MyDerivedClass: MyBaseClass
{

// Overriding properties:
public override int Number
{

get { return number; }
}
public override string Name
{

get { return name; }
}

// Overriding the method:
public override void MyMethod()
{

Console.WriteLine("Number = {0}", Number);
Console.WriteLine("Name = {0}", Name);

}
}

class MainClass

Function Members | 137

6-3 Abstract Classes and Methods

http://www.abicomputer.net

{
public static void Main()
{

MyDerivedClass myObject = new MyDerivedClass();
myObject.MyMethod();

}
}

Output:

Number = 100
Name = Dale Sanders

Drill 6-2

You now know that the override methods can override other override

methods. That means that you can add another override method

named MyMethod to a new class derived from MyDerivedClass. For

example:

class MySecondDerivedClass: MyDerivedClass
{

public override void MyMethod()
{

// Method implementation.
}

}

Add this method to the preceding example with an appropriate

implementation and then call it from within the Main class.

6-4 Method Overloading

Overloading methods means that you can give the same name to more than

one method and let the compiler load the appropriate method according to

the number and type of parameters. It might be suitable to use method

overloading if the purposes of the methods are similar. For example, if you

would like to create one method to return the square root of an integer and

another to return the square root of a real number, you would use the same

name for both methods:

int SquareIt(int x)
double SquareIt(double f)

138 | Chapter 6

6-4 Method Overloading

Then if you use the following call:

SquareIt(3.25);

the compiler will invoke the method SquareIt(double f), which uses a real

parameter.

When you use the following call:

SquareIt(44);

the compiler will invoke the method SquareIt(int x), which uses an inte-

ger parameter.

The return type does not have any effect on overloading. That means

that methods might have similar names and return types, but the compiler

can still differentiate between them as in the following example:

void SquareIt(int x)
void SquareIt(double f)

� Note The binding between the specific method and the call is done at
compile time, before the program runs. This is called static or early binding,
as opposed to dynamic or late binding used with virtual methods.

It is also possible to overload methods that use the same type but a differ-

ent number of parameters. For example:

void MyMethod(int m1) { }
void MyMethod(int m2, int m3) { }

One important use of overloading is operator overloading to invent new

uses for operators, as explained in Section 6-8.

In the following example, three methods use the name MyMethod, but

each uses different parameters. The three methods are called from within

the Main method and generate three different results.

Example 6-3

// Example 6-3.cs
// Overloading methods

using System;

class MyClass
{

// Using a string parameter:
static void MyMethod(string s1)
{

Console.WriteLine(s1);
}

Function Members | 139

6-4 Method Overloading

http://www.abicomputer.net

// Using an integer parameter:
static void MyMethod(int m1)
{

Console.WriteLine(m1);
}

// Using a double parameter:
static void MyMethod(double d1)
{

Console.WriteLine(d1);
}

static void Main()
{

string s = "This is my string";
int m = 134;
double d = 122.67;

MyMethod(s);
MyMethod(m);
MyMethod(d);

}
}

Output:

This is my string
134
122.67

Drill 6-3

Write a program to test the overloading of two methods that use dif-

ferent numbers of parameters of the same type.

6-5 Passing Parameters to Methods

When you pass a parameter to a method, it is important to know what is

going on in the background in order to avoid unexpected results. For

example, you may create a method to change the value of a variable, and

then find out in the end that the change affected only the local variable and

not the original value. One common example of this problem is swapping

the values of two variables.

140 | Chapter 6

6-5 Passing Parameters to Methods

In C#, there are two ways to pass a parameter to a method: by value

(which is the default) or by reference. Passing parameters by reference

makes the changes to the variable values persist. To pass a parameter by

reference, modify the parameter with the ref keyword.

The following example demonstrates swapping the values of two

variables.

Example 6-4

// Example 6-4.cs
// Swap method example - successful trial

using System;

class MyClass
{

static void Swap(ref int x, ref int y)
{

int temp = x;
x = y;
y = temp;

}
static void Main()
{

int x = 25;
int y = 33;
Console.WriteLine ("Before swapping: x={0}, y={1}", x, y);
Swap(ref x, ref y);
Console.WriteLine ("After swapping: x={0}, y={1}", x, y);

}
}

Output:

Before swapping: x=25, y=33
After swapping: x=33, y=25

As you can see in the preceding example, the Swap method is using the ref

keyword to modify the parameters in both the method header and the

method call. This method did swap the two variables, as indicated in the

output.

In the following example, take a look at how this function will behave if

you pass the parameters by value — without the keyword ref.

Function Members | 141

6-5 Passing Parameters to Methods

http://www.abicomputer.net

Example 6-5

// Example 6-5.cs
// Swap method example - unsuccessful trial

using System;

class MyClass
{

static void Swap(int x, int y)
{

int temp = x;
x = y;
y = temp;
Console.WriteLine ("Values inside the method: x={0}, y={1}", x, y);

}
static void Main()
{

int x = 25;
int y = 33;
Console.WriteLine ("Before swapping: x={0}, y={1}", x, y);
Swap(x, y);
Console.WriteLine ("After swapping: x={0}, y={1}", x, y);

}
}

Output:

Before swapping: x=25, y=33
Value inside the method: x=33, y=25
After swapping: x=25, y=33

As you can see in the output, the values of x and y did not change after

invoking the Swap method. The change took place only inside the method,

but when the method returned to the caller, the values were the same.

Recall that in Example 6-4 we passed the memory addresses that contain

the variables. That is why the Swap method succeeded.

142 | Chapter 6

6-5 Passing Parameters to Methods

Drill 6-4

Write a method to swap the values of two string variables, such as:

string s1 = "John";
string s2 = "Smith";

Then call the method from within the Main method. Compare the

output you get with the following:

Before swapping: s1 = John, s2 = Smith
Inside the swap method: s1 = Smith, s2 = John
After swapping: s1 = Smith, s2 = John

6-6 Various Ways to Pass Parameters to Methods

There is more than one way to pass parameters to a method by reference.

There are three parameter modifiers, each of which results in saving the

changes of the variable values after the method returns to the caller. The

three modifiers are:

� ref

� out

� params

The three modifiers, however, have different uses, as explained in the fol-

lowing sections.

6-6-1 Using ref

As you have seen in the preceding examples, the ref keyword is used to

pass variables to a method and reflect back the changes that occurred on

the original variables. When you use ref to pass a variable to a method, the

variable must be initialized first; otherwise, you will get a compiler error.

For example:

string myVariable = "This my string"; // initialize the variable
MyMethod(ref myVariable); // invoke the method

When the method returns the variable, myVariable will retain the changes

that occurred to it in MyMethod.

Function Members | 143

6-6 Various Ways to Pass Parameters to Methods

http://www.abicomputer.net

6-6-2 Using out

The out keyword does the same work as the ref keyword when used as a

parameter modifier. It does not require initializing the variable before pass-

ing it to the method, but it does require initializing the variable in the

method itself. For example, the method might look something like this:

void MyMethod(out string myVariable)
{

myVariable = "This is my string";
}

In order to call this method, use the out keyword:

MyMethod(out myVariable);

The variable myVariable might not be initialized at all. It will be assigned

the value "This is my string" when the method returns to the caller. Notice

that the out keyword is used in both the method header and the call.

It is possible to use more than one parameter, as in this example:

void YourMethod(out int x, out int y, out int z)
{

...
}

This method is called in the same way:

YourMethod(out m, out n, out l);

� Note It is not enough to have different parameter modifiers in order to
overload a method. Methods must also be different in the type of parame-
ters they use.

In the following example, the out keyword is used to pass an uninitialized

array to the method MyMethod. When the method returns to Main, its ele-

ments are initialized.

Example 6-6

// Example 6-6.cs
// out Example

using System;

public class MyClass
{

public static void MyMethod(out int[] myList)

144 | Chapter 6

6-6 Various Ways to Pass Parameters to Methods

{
myList = new int[] {1945, 1966, 1987, 1997}; // initialize the

array
}

public static void Main()
{

int[] myarray; // declare an uninitialized array
MyMethod(out myarray); // pass it as a parameter

// Display the array:
for (int i = 0 ; i < myarray.Length ; i++)
Console.Write("{0} ", myarray[i]);

}
}

Output:

1945 1966 1987 1997

Notice in the example above that MyMethod was declared static in order

to be called directly without the need to create an object.

Drill 6-5

Modify the preceding example to do the following:

� Use MyMethod without the static modifier.

� Use more than one integer parameter instead of the array.

� Add another method with the same name and the same number

and type of parameters, but that uses the keyword ref instead of

out. Test the method overloading after making this change — you

might change the number of parameters if necessary.

6-6-3 Using params

The keyword params is used with arrays. It lets you pass any number of

parameters to a method without the need to declare them in an array. This

keyword is required only in the method declaration. For example, the

method:

static void MyMethod(params object[] myObjArray)

can be called like this:

MyMethod(123, 'A', "My original string");

Function Members | 145

6-6 Various Ways to Pass Parameters to Methods

http://www.abicomputer.net

The parameters passed in this call are all of the type object, which means

they can include any types descended from the object class.

Consider also the following method:

static void MyMethod(params int[] myIntArray)

This method can be called by passing a group of integers that constitute an

integer array regardless of its length, for example:

MyMethod(2, 4, 7);

Any method that uses the params keyword cannot use more than one

parameter.

In the following example, the use of the params keyword in the decla-

ration of the method is demonstrated. It also demonstrates the overloading

of two methods with the same name and different parameters. One method

uses an object array and the second method uses an integer array. Both

methods change the content of the array passed to it. The content of each

array is displayed before and after the change takes place inside the

method.

Example 6-7

// Example 6-7.cs
// params and overloading example

using System;

public class MyClass
{

// Declare MyMethod that uses integer parameters:
public void MyMethod(params int[] myIntArray)
{

// Display the integer array before the change:
Console.WriteLine("My original integer list:");
for (int i = 0 ; i < myIntArray.Length; i++)

Console.WriteLine(myIntArray[i]);
Console.WriteLine();

// Changing the second array element:
myIntArray[1] = 555;

// Display the integer array after the change:
Console.WriteLine("My integer list after the change:");
for (int i = 0 ; i < myIntArray.Length; i++)

Console.WriteLine(myIntArray[i]);
Console.WriteLine();

}

146 | Chapter 6

6-6 Various Ways to Pass Parameters to Methods

// Declare MyMethod that uses object parameters:
public void MyMethod(params object[] myObjArray)
{

// Display the object array before the change:
Console.WriteLine("My original object list:");
for (int i = 0 ; i < myObjArray.Length; i++)

Console.WriteLine(myObjArray[i]);
Console.WriteLine();

// Changing the third array element:
myObjArray[2] = "My new string";

// Display the results after the change:
Console.WriteLine("My object list after the change:");
for (int i = 0 ; i < myObjArray.Length; i++)

Console.WriteLine(myObjArray[i]);
Console.WriteLine();

}
}

class MainClass
{

static void Main()
{

// Declare an object array:
object[] myObjList = new object[] {123, 'A', "My old string"};

MyClass mc = new MyClass();

// Pass four integers to the "first" MyMethod:
mc.MyMethod(11, 22, 33, 44); // using numeric parameters

// Pass an object array to "second" MyMethod:
mc.MyMethod(myObjList); // using an object array

}
}

Output:

My original integer list:
11
22
33
44

Function Members | 147

6-6 Various Ways to Pass Parameters to Methods

http://www.abicomputer.net

My integer list after the change:
11
555
33
44

My original object list:
123
A
My old string

My object list after the change:
123
A
My new string

Drill 6-6

Write a method that can receive parameters by using any of the fol-

lowing calls:

mc.MyMethod(11, 22, 33);
mc.MyMethod(45.33, 'A', "My string");

6-7 Indexers

Using indexers, you can treat classes as if they were arrays or collections;

that is, you can access the indexer’s elements by using square brackets ([]).

An indexer is similar to properties in that it also uses the accessors get and

set to express its characteristics.

The declaration of the indexer takes the form:

indexer-type this [parameter-type parameter]
{

get {};
set {};

}

where:

indexer-type is the type of the indexer.

parameter-type is the type of the parameter.

parameter is a parameter or a parameter list.

The keyword this points to the object to which the indexer belongs.

Although the indexer doesn’t have a name, it is recognized by its signature

148 | Chapter 6

6-7 Indexers

(types and number of parameters). It is possible to modify the indexer

declaration with the keyword new or one of the access modifiers.

In the following example, you declare an array and an indexer of the

type string. Then the indexer is used to access the elements of the object

as if they were array elements.

Example 6-8

// Example 6-8.cs
// Indexer example

using System;

class MyClass
{

private string[] myArray = new string[10];

// Indexer declaration:
public string this[int index]
{

get
{

return myArray[index];
}
set
{

myArray[index] = value;
}

}
}

public class MainClass
{

public static void Main()
{

MyClass s = new MyClass();

// Using the indexer to initialize the elements #1 and #2:
s[1] = "Tom";
s[2] = "Edison";

for (int i=0; i<5; i++)
{

Console.WriteLine("Element #{0}={1}", i, s[i]);
}

}
}

Function Members | 149

6-7 Indexers

http://www.abicomputer.net

Output:

Element #0=
Element #1=Tom
Element #2=Edison
Element #3=
Element #4=

Notes on using indexers:

� It is common to use the accessors set and get in inspecting the limits of

the indexer to avoid errors. For example:

if (!(index < 0 || index >= 10))
// ...

� It is possible for interfaces to have indexers. They are declared in the

same way with the following exceptions:

� Interface indexers don’t use modifiers.

� There is no implementation of accessors in interfaces.

The following is an example of an interface indexer:

string this[int index]
{

get;
set;

}

6-8 User-defined Operators

By using overloading, you can invent new roles for some operators. The

need for this feature arises when you deal with objects. In some cases, you

might want to test the equality between two objects using the equality

operator (==). In this case, you redefine the equality operator in your pro-

gram to make it work with objects.

Operator overloading is accomplished by using the keyword operator,

as shown in the following example:

public static Point operator+(Point p1, Point p2)
{

// Implementation of the + operator:
}

This example overloads the + operator in order to use it in adding two

objects of the type Point.

Adding two points means adding the x and y coordinates of each point.

If the coordinates of the first point are (x1, y1) and the coordinates of the

second point are (x2, y2), the result is a new point at the location (x1+x2,

150 | Chapter 6

6-8 User-defined Operators

y1+y2). These details should be included in the implementation of over-

loading the operator +.

Notice in the syntax that the redefined + operator follows the keyword

operator. Other examples are:

operator+
operator–
operator==

The method used for operator overloading is always static.

The following table lists the operators that can be overloaded. The oper -

ators that are classified as binary operate on two operands, such as + and *.

The operators that are classified as unary operate on one operand, such as

++ and ––.

Table 6-1: Overloadable C# operators

Operator Note on Overloading

+, –, !, ~, ++, ––, true, false Unary operators

+, –, *, /, %, &, |, ^, <<, >> Binary operators

==, !=, <, >, <=, >= Must be overloaded in pairs, that is, to
overload == you must overload !=. The
same is true for (<, >) and (<=, >=).

&&, || Cannot be overloaded directly. They can be
redefined by overloading & and |.

+=, -=, *=, /=, %=, &=, |=,
^=, <<=, >>=

The operator = cannot be overloaded. It can
be redefined by overloading +=.

The following example overloads the + operator to add two points, p1 and

p2, and displays the coordinates of the resulting point.

Example 6-9

// Example 6-9.cs
// Overloading operators

using System;

public class Point
{

public int x;
public int y;

// Constructor:
public Point(int x, int y)
{

this.x = x;
this.y = y;

}

Function Members | 151

6-8 User-defined Operators

http://www.abicomputer.net

// Overloading the + operator:
public static Point operator+(Point p1, Point p2)
{

// Return the sum as a point:
return new Point(p1.x + p2.x, p1.y + p2.y);

}

static void Main()
{

Point p1 = new Point(15, 33);
Point p2 = new Point(10, 12);

// Add the two Point objects using the overloaded + operator:
Point sum = p1 + p2;

// Display the objects:
Console.WriteLine("Point #1: ({0}, {1})", p1.x, p1.y);
Console.WriteLine("Point #2: ({0}, {1})", p2.x, p2.y);
Console.WriteLine("Sum of the two points: ({0}, {1})",

sum.x, sum.y);
}

}

Output:

Point #1: (15, 33)
Point #2: (10, 12)
Sum of the two points: (25, 45)

6-9 Overriding the ToString Method

The ToString method is one of the most important methods in the .NET

library as it always works in the background with the methods Con-

sole.Write or Console.WriteLine. It is used to convert an expression to a

string. As you know, you can use it explicitly like this:

Console.WriteLine(myVariable.ToString());

but if you omit the ToString method, which is always the case since it is

embedded, you still get the same result.

This method is an override method defined in the class Sys-

tem.AppDomain as follows:

public override string ToString();

152 | Chapter 6

6-9 Overriding the ToString Method

In some cases you might need to override it to change its behavior, such as

when you would like to display an object as if it were a regular variable.

Instead of displaying a Point object like this (as in the example above):

Console.WriteLine("Point #1: ({0},{1})", p1.x, p1.y);

you can display it like this:

Console.WriteLine("Point #1: {0}", p1);

To do that, you must override the method ToString to be able to display

objects of the type Point. Here is an example of the code to do this:

// Overriding the ToString method:
public override string ToString()
{

return (String.Format("({0}, {1})", x, y));
}

In this code segment, the String.Format method replaces the format items,

{0} and {1}, with the text equivalent to the value of the specified objects,

x and y. Thus, the output of this method would be the values of the point

(x, y). You can add this method to the preceding example and display the

Point objects directly as single variables.

Drill 6-7

A complex number contains two parts, a real part and an imaginary

part, such as 34 + 21i. When you add two complex numbers, you add

the real parts and the imaginary parts separately. For example, adding

3+4i and 4+5i gives the result 7+9i.

The following method overloads the + operator to use it in adding

complex numbers:

public static CompNum operator+(CompNum n1+CompNum n2)
{

// Implementation of the operator
}

Write a complete program to implement this method and display the

sum of two complex numbers in the proper format by overloading the

ToString method.

Function Members | 153

6-9 Overriding the ToString Method

http://www.abicomputer.net

Summary

In this chapter:

� You learned about function members of a class and learned more

details about methods and properties.

� You also learned about polymorphism and how to accomplish it either

by overriding the virtual methods in the base class or by overloading

methods.

� You now understand the abstract classes, whose only role is to be inher-

ited. You also understand the abstract methods, which exist only in the

abstract classes.

� You had a complete tour of method parameters and learned how to pass

them by using the keywords ref, out, and params.

� Using indexers, you learned how to treat classes as if they were arrays

or collections.

� You also had a tour of user-defined operators and learned how to

declare and implement methods to overload operators and redefine a

new role for them.

� Finally, you learned how to override the ToString method to change its

behavior.

154 | Chapter 6

Summary

Chapter 7

Structs, Enums, and
Attributes

Contents:
� Declaring and using structs
� Passing structs and classes as parameters
� Declaring and using enums
� Using attributes
� Combining attributes
� Calling native functions
� Emulating unions

7-1 Structs vs. Classes

The word “struct,” originally an abbreviation of structure, has become a

part of the programming terminology. In C#, the struct is a user-defined

value type. It might, however, contain members of both reference types

and value types.

� Note to C++ programmers: The concept of struct is totally different
in the C++ and C# languages. In C++, it is possible to declare a class by
using the word struct. In C#, this is not the case.

The struct is used to represent lightweight objects such as a point, which

contains two fields (x and y). It can also represent a color, which contains

three fields (red, blue, and green). Although we use the Point class in the

examples, the struct is a more suitable type for such objects as it consumes

a small amount of memory. You can see the difference if you create a large

array of points represented as classes. In this case, the required memory

would be huge because each point is using a reference that points to it.

155

http://www.abicomputer.net

7-2 Declaring and Using Structs

To declare a struct, use the struct keyword like this example:

struct MyStruct
{

// The struct members
}

You can modify the declaration with any valid combination of access mod-

ifiers or the new keyword. When you use a struct, keep in mind the

following points:

� Unlike classes, the fields of a struct cannot be initialized. That means

that the following statements will generate error messages:

struct MyStruct
{

int x = 0; // error
int y = 0; // error

}

� A struct can use one or more constructors, but you cannot declare a

default constructor (parameterless constructor) for a struct. Thus, the

following constructor is invalid:

struct MyStruct
{

MyStruct() // error
{

//...
}

}

The compiler always provides a default constructor to initialize the

members of a struct to their default values.

� Like classes, you can use the new operator to create struct objects as

shown in the following example:

MyStruct ms = new MyStruct();

Unlike classes, you can declare an object without the new operator, like

this:

MyStruct ms;

In the latter case, you must initialize the struct fields before using it.

� As mentioned in the preceding chapters, a struct cannot be inherited or

inherit from another type, but it can implement one or more interfaces.

For example:

156 | Chapter 7

7-2 Declaring and Using Structs

struct MyStruct: IMyInterface
{

// ...
}

Although structs cannot inherit other types, the struct type itself

descends from the Object class.

The following example demonstrates the Color struct, which con-

tains three fields (r, g, and b) representing the three basic colors (red,

green, and blue). The program uses a constructor to create two objects

with different colors.

Example 7-1

// Example 7-1.cs
// struct example

using System;

public struct Color
{

// Fields:
private int r;
private int g;
private int b;

// Constructor:
public Color(int r, int g, int b)
{

this.r = r;
this.g = g;
this.b = b;

}

// Override the method ToString():
public override string ToString()
{

return (String.Format("Red = {0}, Green = {1}, Blue = {2}",
r, g, b));

}
}

class MyClass
{

static void Main()
{

// Declare objects:

Structs, Enums, and Attributes | 157

7-2 Declaring and Using Structs

http://www.abicomputer.net

Color c1 = new Color(); // uses the default values
Color c2 = new Color(100, 100, 0);

// Display objects:
Console.WriteLine("The first object:");
Console.WriteLine("The colors are: {0}", c1);
Console.WriteLine("The second object:");
Console.WriteLine("The colors are: {0}", c2);

}
}

Output:

The first object:
The colors are: Red = 0, Green = 0, Blue = 0
The second object:
The colors are: Red = 100, Green = 100, Blue = 0

In the above example, two struct instances, c1 and c2, were used. The first

one uses a default constructor; therefore, all of its fields contain the value

zero. The second instance is constructed using the parameters 100, 100,

and 0. These values are assigned to the fields r, g, and b.

The objects are displayed directly by using the statement:

Console.WriteLine("The colors are: {0}", c1);

This requires overriding the ToString method to display objects in the

appropriate format.

In the following example, the three properties R, G, and B are used to

access the private fields r, g, and b. This makes it possible to access the

fields directly through the properties, which is an alternative to using

constructors.

Example 7-2

// Example 7-2.cs
// Using properties with structs

using System;

public struct Color
{

// Fields:
private int r;
private int g;
private int b;

158 | Chapter 7

7-2 Declaring and Using Structs

// Properties:
public int R
{

get { return r; }

set { r = value; }
}

public int G
{

get { return g; }

set { g = value; }
}

public int B
{

get { return b; }

set { b = value; }
}

// Override ToString():
public override string ToString()
{

return (String.Format("Red = {0}, Green = {1}, Blue = {2}",
R, G, B));

}
}

class MyClass
{

static void Main()
{

Color c1 = new Color();
Console.WriteLine("The colors are: {0}", c1);
c1.R = 100;
c1.G = 100;
c1.B = 0;
Console.WriteLine("The colors are: {0}", c1);

}
}

Output:

The colors are: Red = 0, Green = 0, Blue = 0
The colors are: Red = 100, Green = 100, Blue = 0

Structs, Enums, and Attributes | 159

7-2 Declaring and Using Structs

http://www.abicomputer.net

Notice in the above example that we used one object created with the

default constructor. Then we used the color properties to assign color val-

ues to the corresponding fields:

c1.R = 100;
c1.G = 100;
c1.B = 0;

The object was displayed twice — once with the default values and once

after assigning the values to the properties. You can, of course, use a con-

structor with three parameters to achieve the same result.

Drill 7-1

It is obvious that you can include the entire program inside the struct

container, as you did with classes. In that case, the members’ accessi-

bility will differ from the case when there is a container for the

members and another for the Main method. Try to rewrite the previ-

ous example and put everything inside the struct. Also try to mix

Examples 7-1 and 7-2 to include both the properties and the con-

structors in the struct.

7-3 Passing Structs and Classes to Methods

You learned in Chapter 6 that you can pass variables to methods either by

value or by reference. You also learned that passing variables by reference

reflects any changes that occur to them on their original values, while pass-

ing them by value results in modification of only their copies in the

method, and the original variables stay the same. Structs, being value

types, are created on the stack. When passed to methods, they are passed

by value. Since classes are reference types, they are created on the heap.

When passed to methods, they are passed by reference.

The following example demonstrates this concept. In the example, you

declare a class called MyClass and a struct called MyStruct. Then you

instantiate the class and the struct and initialize the field in each with the

value 555. You pass both objects to the methods MyMethod1 and

MyMethod2 to change their fields to 100. The output, however, indicates

that the field of the class has changed but not that of the struct.

160 | Chapter 7

7-3 Passing Structs and Classes to Methods

Example 7-3

// Example 7-3.cs
// Passing struct & class objects to methods

using System;

class MyClass
{

public int classField;
}

struct MyStruct
{

public int structField;
}

class MainClass
{

public static void MyMethod1(MyStruct s)
{

s.structField = 100;
}
public static void MyMethod2(MyClass c)
{

c.classField = 100;
}

static void Main()
{

// Create class and struct objects:
MyStruct sObj = new MyStruct();
MyClass cObj = new MyClass();

// Initialize the values of struct and class objects:
sObj.structField = 555;
cObj.classField = 555;

// Display results:
Console.WriteLine("Results before calling methods:");
Console.WriteLine("Struct member = {0}", sObj.structField);
Console.WriteLine("Class member = {0}\n", cObj.classField);

// Change the values through methods:
MyMethod1(sObj);
MyMethod2(cObj);

Structs, Enums, and Attributes | 161

7-3 Passing Structs and Classes to Methods

http://www.abicomputer.net

// Display results:
Console.WriteLine("Results after calling methods:");
Console.WriteLine("Struct member = {0}", sObj.structField);
Console.WriteLine("Class member = {0}", cObj.classField);

}
}

Output:

Results before calling methods:
Struct member = 555
Class member = 555

Results after calling methods:
Struct member = 555 � the same value
Class member = 100 � the value has changed

Drill 7-2

In the preceding example, change the field type in both the class and

the struct to string and verify that the type of the field doesn’t affect

the result.

7-4 Enumerations

The enumeration type is a value type used to store a set of named constants

such as days of the week, months of the year, and so forth. Each enumera-

tion has an underlying type (also called the base type), which can be any

one of the integral types (byte, sbyte, short, ushort, int, uint, long, or

ulong). The default underlying type is int. The enumeration is usually

referred to as enum.

7-4-1 Declaring Enumerations

You can declare the enumeration by using the enum keyword, as shown in

the following example that enumerates the seasons of the year:

enum Seasons { Summer, Fall, Winter, Spring };

Each enumeration element (enumerator) has a value. The value of the first

enumerator is 0 by default. The value of each successive element is incre-

mented by 1. Thus the values of the elements in this enum are:

162 | Chapter 7

7-4 Enumerations

enum Seasons
{

Summer, // 0
Fall, // 1
Winter, // 2
Spring // 3

};

You can force the elements to start at 1 as in this example:

enum Seasons { Summer = 1, Fall, Winter, Spring };

In this enumeration, the values of the successive elements are indicated

below:

enum Seasons
{

Summer = 1,
Fall, // 2
Winter, // 3
Spring // 4

};

You can assign a value to any element — not necessarily the first one:

enum WeekDays { Sat, Sun, Mon = 9, Thu, Wed, Thu, Fri };

This will make the values of the elements that follow Mon 10, 11, 12, and

13. However, Sat and Sun will still be 0 and 1.

You can also assign integers to the elements as appropriate. In this

example, scores that correspond to grades are assigned:

enum Grades { Pass = 65, Good = 75, VeryGood = 85, Distinct = 100 };

You can choose another underlying type rather than int, such as long, if

you need to use numbers in that range for the elements:

enum Color: long { Red, Green, Blue };

The enumeration identifier is followed by a colon and then the underlying

type.

7-4-2 Using Enumerations

In order to use one of the enumerators, you must qualify it with the enu-

meration name. For example, the elements of the WeekDays enumeration

are WeekDays.Sun, WeekDays.Mon, and so forth.

Structs, Enums, and Attributes | 163

7-4 Enumerations

http://www.abicomputer.net

However, to convert an enum element to an integral type you must use a

cast. For example:

int monday = (int) WeekDays.Mon;
long monday = (long) WeekDays.Mon;

In the following example, you declare three enumerations for WeekDays,

Seasons, and Grades. This example demonstrates the various enumeration

rules explained in the preceding sections.

Example 7-4

// Example 7-4
// enum example

using System;

enum WeekDays { Sun, Mon, Tue, Wed, Thu, Fri, Sat };
enum Seasons { Summer = 1, Fall, Winter, Spring };
enum Grades { Pass = 65, Good = 75, VeryGood = 85, Distinct = 100 };

class MyClass
{

static void Main()
{

int sunday = (int) WeekDays.Sun;
short summer = (short) Seasons.Summer;
byte vGood = (byte) Grades.VeryGood;
Console.WriteLine("Sunday = {0}", sunday);
Console.WriteLine("Summer = {0}", summer);
Console.WriteLine("Very Good = {0}", vGood);

}
}

Output:

Sunday = 0
Summer = 1
Very Good = 85

7-4-3 Using .NET Methods with enums

If you have an enum like this one:

enum Color { Red = 1, Green, Blue }

you can declare a blue color object using the following statement:

Color c = Color.Blue;

164 | Chapter 7

7-4 Enumerations

You can display the name of this element simply by using the ToString

method like this:

Console.WriteLine(c);

This statement displays the string Blue.

You can also use the methods of the System.Enum structure. This

structure includes various methods to process enums. One useful method,

which is used to display the name of any enum element, is GetName. If

you declare a general Color object like this:

Color c = new Color();

you can use this method to display a specific element by using its numeric

value. For example, you can display the name of the element whose value

is 2 by using the following statement:

Console.WriteLine(Enum.GetName(c.GetType(), 2));

This statement displays the string Green.

Another useful method is GetNames. It stores the names of the enum

elements in a string array. For example, you can store all the Color names

in an array like this:

string[] colorNames = Enum.GetNames(c.GetType());

You can then display this array by using a repetition loop.

These methods are demonstrated in the following example.

Example 7-5

// Example 7-5.cs
// Using System.Enum methods

using System;

// Declare the Color enum:
enum Color { Red = 1, Green, Blue }

class MyClass
{

static void Main()
{

// Declare a blue color object:
Color myColor = Color.Blue;

// Display the color name using ToString:
Console.WriteLine("My color is: {0}", myColor); // Blue

Structs, Enums, and Attributes | 165

7-4 Enumerations

http://www.abicomputer.net

// Declare a color object:
Color yourColor = new Color();

// Display the color whose value is 2 by using the GetName method:
Console.WriteLine("Your color is: {0}",

Enum.GetName(yourColor.GetType(), 2)); // Green

// Display all the color names using the GetNames method:
Console.WriteLine("Your colors are:");
// Declare a string array for colors:
string[] colorNames = Enum.GetNames(yourColor.GetType());
foreach (string s in colorNames)

Console.WriteLine("{0} ", s);
}

}

Output:

My color is: Blue
Your color is: Green
Your colors are:
Red
Green
Blue

Drill 7-3

Enumerations can be used as selector expressions in the switch con-

structs. Declare the enum Color, which contains the three basic colors

(red, green, and blue). Then enter a color number from the keyboard.

Use a switch construct to display the color name according to the

entered number along with the appropriate message. If the entered

number is not one of the enum values, display an appropriate

message.

7-5 Attributes

Attributes are additional declarative information that can modify the decla-

rations of program entities (types, members, parameters, and so forth). At

run time the compiler can retrieve this information through a process called

reflection. Attributes can be either predefined or user-defined. In most

cases, programmers use the predefined attributes. The user-defined attrib-

utes are not covered in this book. Attributes serve different purposes, such

166 | Chapter 7

7-5 Attributes

as marking a method as deprecated, indicating conditional compilation,

setting a type layout, and so forth.

Attributes are derived from the abstract class System.Attribute, which

defines the services of attributes. By convention, all attributes have the suf-

fix Attribute, such as DllImportAttribute. You can skip the suffix and just

use the attribute alias, which is DllImport.

The attribute is written between brackets like this example:

[method: DllImport("user32.dll")]

Notice that the brackets are part of the attribute syntax. Do not confuse

these brackets with those that indicate the optional part of the syntax.

The word “method” in this attribute represents the target to which the

attribute is applied. In this example, the attribute applied is to a method in

the library user32.dll. In most cases, the target is optional; it is necessary

only if there is ambiguity. For instance, add the target if the attribute can be

applied to a method or a return type.

In this example, the attribute is written without the target element:

[DllImport("user32.dll")]

Target elements can be any of the following:

� assembly

� field

� event

� method

� parameter

� property

� return

� type

When using an attribute, either qualify its name or use the appropriate

using directive. The following are some commonly used attributes that

exist in various namespaces:

� System.ObsoleteAttribute

� System.Diagnostics.ConditionalAttribute

� System.Runtime.InteropServices.DllImportAttribute

� System.Xml.Serialization.XmlArrayAttribute

Structs, Enums, and Attributes | 167

7-5 Attributes

http://www.abicomputer.net

7-5-1 Attribute Parameters

Consider this example, which indicates a deprecated method by applying

the ObsoleteAttribute attribute:

[Obsolete]
public static void MyMethod()
{

// The body of the obsolete method.
}

When MyMethod is executed, you get the warning:

'MyClass.MyMethod()' is obsolete.

Some attributes such as Obsolete allow the programmer to provide extra

information on using the deprecated method. You can do this by using the

following modified version, which includes two parameters:

[System.Obsolete ("Use MyNewMethod instead.", false)]
public static void MyMethod()
{

// The body of the obsolete method.
}

When you compile this method, the compiler generates the warning:

'MyClass.MyMethod()' is obsolete: 'Use MyNewMethod instead.'

The first parameter contains the string message that you would like to add.

The second parameter causes the compilation to generate either an error or

a warning, depending on whether it is false or true. The default value is

false.

7-5-2 The Conditional Attribute

This attribute is in the namespace System.Diagnostics. It is used to exe-

cute a method if a specific constant is defined in the program. For

example:

[Conditional("MYCONSTANT")]
public void MyMethod(string s) {}

MyMethod is only executed if the constant MYCONSTANT is defined in

the program with a preprocessor directive:

#define MYCONSTANT

If the constant is not defined, the execution resumes and the attribute is

ignored. The target method must be of the void type.

168 | Chapter 7

7-5 Attributes

7-5-3 Combining Attributes

Attributes can be grouped or combined. For example, you can group the

two attributes Obsolete and Conditional as shown in this example:

[Obsolete]
[Conditional ("TRACE")]

You can also combine the attributes by listing them inside a pair of square

brackets and separating them with commas:

[Obsolete, Conditional ("TRACE")]

You can also combine the two styles together as shown in this example,

which uses three attributes:

[Serializable]
[Obsolete, Conditional ("TRACE")]

The following example demonstrates combining attributes.

Example 7-6

Example 7-6.cs
// Attribute example

#define TRACE
using System;
using System.Diagnostics;

public class MyClass
{

[Obsolete("Please use MyNewMethod.", false)]
[Conditional("TRACE")]
public void MyMethod(string s)
{

Console.WriteLine(s);
}
static void Main()
{

MyClass mc = new MyClass();
mc.MyMethod("The conditional method is executed.");
Console.WriteLine("End execution.");

}
}

Structs, Enums, and Attributes | 169

7-5 Attributes

http://www.abicomputer.net

Output:

The output shows the result of the compilation and the output of execution.

Compilation:
warning CS0618: 'MyClass.MyMethod(string)' is obsolete: 'Please use

MyNewMethod.'
Output:
The conditional method is executed.
End execution.

Drill 7-4

Make some changes to the above example by misspelling the word

“TRACE” in the attribute or by removing the preprocessor directive,

and see the result.

7-5-4 Calling Native Functions

To call a native function (outside the .NET Framework), such as

MessageBoxA, use the DllImportAttribute attribute like this example:

[DllImport("user32.dll")]

To use this function in your C# program, do the following:

1. Declare the function as a C# method by using the two modifiers

extern and static:

static extern int MessageBoxA(int h, string m, string c, int type);

� Note If you don’t remember the syntax of the function, use the IDE’s
IntelliSense feature.

2. Add the attribute DllImport right before the declaration:

[DllImport("user32.dll")]
static extern int MessageBoxA(int h, string m, string c, int type);

This attribute tells the program that the required function exists in the

library user32.dll.

3. Add the following directive to your program:

using System.Runtime.InteropServices;

Example 7-7 shows the complete program, which results in a message box

titled “My Message Box” that contains the phrase “Hello, World!”

170 | Chapter 7

7-5 Attributes

Example 7-7

// Example 7-7.cs
// Calling native functions

using System.Runtime.InteropServices;

class PlatformInvokeTest
{

[method: DllImport("user32.dll")]
static extern int MessageBoxA(int h, string m, string c, int type);
static int Main()
{

return MessageBoxA(0, "Hello, World!", "My Message Box", 0);
}

}

Output:

This program will result in the message box shown in Figure 7-1.

Drill 7-5

Write a program to call one of the native functions of C++, such as

puts, which lives in the library msvcrt.dll.

Note: The function puts is used to display its string parameter, for

example, puts(myString).

Structs, Enums, and Attributes | 171

7-5 Attributes

Figure 7-1: The message
box.

http://www.abicomputer.net

7-5-5 Emulating Unions

It is possible to use attributes to emulate unions in C++, as shown in the

following example:

[type: StructLayout(LayoutKind.Explicit)]
public struct UnionStruct
{

[field: FieldOffset(0)] // offset #0
public int i;
[field: FieldOffset(0)] // offset #0
public double d;

}

In this example, two attributes are used:

[type: StructLayout(LayoutKind.Explicit)]
[field: FieldOffset(0)]

The first attribute targets the struct, and the second targets a field of the

struct. Notice that the words “type” and “field” in these attributes can be

omitted because they are obvious.

Using these two attributes, it is possible to store two numbers, an int

and a double, in the same memory location. The two numbers are different

in size but they both start at offset 0. It is possible, of course, to use any

offset, such as FieldOffset(2) or FieldOffset(5). It is also possible to store

any number of different types in the same location as long as you don’t use

them at the same time. In the following example, more types are added to

the union.

Example 7-8

// Example 7-8.cs
// Union emulation

using System;
using System.Runtime.InteropServices;

[StructLayout(LayoutKind.Explicit)]
public struct UnionStruct
{

[FieldOffset(0)]
public int i;
[FieldOffset(0)]
public double d;
[FieldOffset(0)]
public char c;

172 | Chapter 7

7-5 Attributes

[FieldOffset(0)]
public byte b;

}

class MyClass
{

static void Main()
{

UnionStruct u = new UnionStruct();

u.i = 13;
Console.WriteLine("Integer = {0}", u.i);

u.d = 12.34;
Console.WriteLine("Double = {0}", u.d);

u.c = (char)65;
Console.WriteLine("Character = {0}", u.c);

u.b = 127;
Console.WriteLine("Byte = {0}", u.b);

}
}

Output:

Integer = 13
Double = 12.34
Character = A
Byte = 127

Drill 7-6

You already know that a long number is stored in 8 bytes and an inte-

ger is stored in 4 bytes. This means that two integers can be stored in

the space of the long number. Write a program to demonstrate this

fact. Display the results in hexadecimal in order to indicate the con-

tent of each byte. For example, if the first integer is 5 and the second

is 7, the long number becomes:

700000005

This means that the two integers occupy the first and the fifth bytes

(notice that one byte is represented by two digits).

Structs, Enums, and Attributes | 173

7-5 Attributes

http://www.abicomputer.net

Summary

In this chapter:

� Structures were described in detail and you know how to declare and

use structs. You also know the difference between passing a struct and

passing a class to a method.

� You were introduced to the enumerations type and used it in various

examples. You also used some of the System.Enum structure to dis-

play the names of the enum elements.

� Finally, you saw a tour of attributes and learned how to use many pre-

defined attributes in your program in order to better control the pro-

gram entities.

174 | Chapter 7

Summary

Chapter 8

Interfaces

Contents:
� Declaring and using interfaces
� Using the is operator
� Using the as operator
� Hiding base class members
� Versioning
� Hiding interface members

8-1 What Is an Interface?

In daily life we deal with the interfaces of many electronic devices such as

TVs, iPods, and mobile phones. When you browse in a store looking for a

mobile phone, you don’t need to see inside to know its capabilities. By

looking at its interface you can see what it can do. For example, you can

tell if the phone has the ability to take pictures or record video clips. Also,

if the manufacturer decides to add or remove some features, it should be

reflected on the interface. Similarly, in programming you can tell by look-

ing at the interface what is contained in the class that implements this

interface. In other words, the interface is a contract that describes the

behavior of the class that implements this interface. Describing an interface

as a contract implies obligation. That means that a manufacturer cannot

add a camera button to a mobile phone without adding the implementing

electronic circuit that does the actual job internally. Similarly, if an inter-

face contains the name of a method, the class implementing this interface

is obligated to include the implementation of this method.

175

http://www.abicomputer.net

8-2 Declaring an Interface

Declare an interface by using the interface keyword as shown in this

example:

interface IMyInterface
{

// interface members
}

The declaration can be modified with a valid combination of access modi-

fiers or the new keyword. It can also be preceded by attributes. The

members of an interface can include:

� Methods

� Properties

� Indexers

� Events

The interface cannot, however, contain fields. Interface members are pub-

lic by default. You cannot use accessibility modifiers on them.

The members of an interface are the signatures of methods, properties,

indexers, or events. For example:

interface ICounter
{

void Count(int i);
int SetCounter();

}

As you can see in this declaration, the interface contains only the names,

types, and parameters of methods. This is similar to function prototypes in

C++. In the actual implementation, we will discuss the types that imple-

ment this interface.

An interface might implement one or more interfaces, as shown in the

following example:

interface IMyInterface: Interface1, Interface2
{

// interface members
}

In this example, IMyInterface implements both Interface1 and Interface2.

176 | Chapter 8

8-2 Declaring an Interface

8-3 Interface Implementation

The interface can be implemented by a class or a struct as shown in this

example:

class MyClass: IMyInterface1
{

// class implementation
}

By this declaration the class MyClass is obligated to implement all mem-

bers of the interface IMyInterface.

It is also possible for a class to implement more than one interface:

class MyClass: IMyInterface1, IMyInterface2
{

// class implementation
}

A class can also implement another class in addition to the interfaces:

class MyClass: MyBaseClass, IMyInterface1, IMyInterface2
{

// class implementation
}

In the following example, the class Point implements the interface IPoint.

Notice that all the fields are included in the class but none are included in

the interface.

Example 8-1

// Example 8-1.cs
// Interface example

using System;

interface IPoint
{

// Property signatures:
int Myx
{

get; set;
}

Interfaces | 177

8-3 Interface Implementation

http://www.abicomputer.net

int Myy
{

get; set;
}

}

class Point: IPoint
{

// Fields:
private int x;
private int y;

// Constructor:
public Point(int x, int y)
{

this.x = x;
this.y = y;

}

// Property implementation:
public int Myx
{

get {return x;}
set {x = value;}

}

public int Myy
{

get {return y;}
set {y = value;}

}
public static void DisplayMyPoint(IPoint myPoint)
{

Console.WriteLine("({0},{1})", myPoint.Myx, myPoint.Myy);
}

}

class MyClass
{

static void Main()
{

Point myPoint = new Point(12,300);
Console.Write("My point is created at: ");
Point.DisplayMyPoint(myPoint);

}
}

178 | Chapter 8

8-3 Interface Implementation

Output:

My point is created at: (12,300)

Notes about the preceding example:

1. If you don’t implement all the members of the interface, you get a

compilation error. Try commenting the properties (Myx and Myy) in

the class to see the compiler error message.

2. Notice that the class can contain members other than the members of

the interface, such as the method DisplayMyPoint.

3. Notice also that it is possible to pass a parameter of the type IPoint to

the method DisplayMyPoint. You can, of course, pass a parameter of

the type Point instead.

8-4 Explicit Interface Implementation

Consider a class, MyClass, that implements an interface, IMyInterface. It is

possible to implement the interface member, MyMethod, like this:

string IMyInterface.MyMethod()
{

// interface implementation
}

In this example, MyMethod is qualified by the interface name,

IMyInterface:

IMyInterface.MyMethod()

This is called explicit interface implementation. Assume that you created

an object from MyClass using the following statement:

MyClass mc = new MyClass();

You can also create an interface object by casting the class object:

IMyInterface mi = (IMyInterface) mc;

In this case, you can only access MyMethod through the interface object

mi. For example:

Console.Write(mi.MyMethod());

Attempting to access MyMethod through the class member mc would gen-

erate a compilation error:

Console.Write(mc.MyMethod()); // error

Interfaces | 179

8-4 Explicit Interface Implementation

http://www.abicomputer.net

So, when do you need to use this code? There are cases in which the use of

explicit interface implementation becomes necessary, such as when the

class is implementing two interfaces and both interfaces contain a method

named MyMethod. If the first interface object is mi1 and the second inter-

face object is mi2, accessing MyMethod through interface objects does not

cause any ambiguity. That is:

Console.Write(mi1.MyMethod());
Console.Write(mi2.MyMethod());

In fact, using the class object to access the method will cause ambiguity.

The following example demonstrates a temperature converter that con-

verts from Fahrenheit to Celsius and vice versa. The program contains two

interfaces: ITemp1 and ITemp2. Each contains a method named Convert.

The class TempConverter explicitly implements the two interfaces. In the

Main method, two interface objects, iFC and iCF, are used to access the

Convert method.

Example 8-2

// Example 8-2.cs
// Explicit interface implementation

using System;

public interface ITemp1
{

double Convert(double d);
}

public interface ITemp2
{

double Convert(double d);
}

public class TempConverter: ITemp1, ITemp2
{

double ITemp1.Convert(double d)
{

// Convert to Fahrenheit:
return (d * 1.8) + 32;

}

180 | Chapter 8

8-4 Explicit Interface Implementation

double ITemp2.Convert(double d)
{

// Convert to Celsius:
return (d - 32) / 1.8;

}
}

class MyClass
{

public static void Main()
{

// Create a class instance:
TempConverter cObj = new TempConverter();

// Create instances of interfaces
// Create a From-Celsius-to-Fahrenheit object:
ITemp1 iCF = (ITemp1) cObj;
// Create From-Fahrenheit-to-Celsius object:
ITemp2 iFC = (ITemp2) cObj;

// Initialize variables:
double F = 32;
double C = 20;

// Print results:
Console.WriteLine("Temperature {0} C in Fahrenheit: {1:F2}",

C, iCF.Convert(C));
Console.WriteLine("Temperature {0} F in Celsius: {1:F2}", F,

iFC.Convert(F));
}

}

Output:

Temperature 20 C in Fahrenheit: 68.00
Temperature 32 F in Celsius: 0.00

Drill 8-1

Modify the preceding example to accept a temperature from the key-

board in one of the two systems and then convert it and display it in

the other system.

Interfaces | 181

8-4 Explicit Interface Implementation

http://www.abicomputer.net

8-5 Using is to Test Types

The operator is is used to test the type of various objects at run time. It is

used in the following form:

expression is type

where:

type is a reference type.

expression is the object to be tested.

The result of this operation is either true or false.

For example, the following expression:

myObj is MyClass

is used to check if the object myObj is an instance of the class MyClass.

The result of the expression renders true if it is an instance of MyClass;

false otherwise.

Also, the expression:

myObj is IMyInterface

is used to check if the object myObj is an instance of a class that imple-

ments the interface IMyInterface. The result is either true or false.

In the following example, the operator is is used to check if the type of

an object is an instance of MyClass and the two interfaces I1 and I2.

Example 8-3

// Example 8-3.cs
// The is operator

using System;

interface I1
{
}

interface I2
{
}

class Class1: I1, I2
{
}

182 | Chapter 8

8-5 Using is to Test Types

class MyClass
{

static bool TestType(object obj)
{

if (obj is I1 & obj is I2 & obj is Class1)
return true;

else
return false;

}
public static void Main()
{

Class1 c = new Class1();
Console.WriteLine("The result of the test: {0}", TestType(c));

}
}

Output:

The result of the test: True

Drill 8-2

In the above example, change the declaration of Class1 from:

class Class1: I1, I2

to:

class Class1: I1

and see the result of the program run.

Also, replace “&” in the following condition:

(obj is I1 & obj is I2 & obj is Class1)

with “|”:

(obj is I1 | obj is I2 | obj is Class1)

and see the result.

Interfaces | 183

8-5 Using is to Test Types

http://www.abicomputer.net

8-6 Using as to Test Types

The operator as is used to convert an expression to a specified reference

type. It is used according to the form:

expression as type

where:

type is a reference type.

expression is the object to be converted.

If the conversion is successful, it returns the value of the expression; null

otherwise.

This expression is equivalent to casting expression with type except that

it doesn’t throw an exception if the conversion fails. The expression is

equivalent to the following conditional expression:

expression is type ? (type) expression : (type) null;

In the following example, the method TestType is used to test objects of

various types. Notice that only reference-type objects are converted.

Example 8-4

// Example 8-4.cs
// The as operator

using System;

public class MyClass
{

static void TestType(object o)
{

if (o as MyClass != null)
Console.WriteLine ("The object \"{0}\" is a class.", o);

else if (o as string != null)
Console.WriteLine ("The object \"{0}\" is a string.", o);

else
Console.WriteLine ("The object \"{0}\" is not a reference

type.", o);
}

static void Main()
{

MyClass mc = new MyClass();
string myString = "Hello, World!";
int myInt = 123;

184 | Chapter 8

8-6 Using as to Test Types

TestType(mc);
TestType(myString);
TestType(myInt);

}
}

Output:

The object "MyClass" is a class.
The object "Hello, World!" is a string.
The object "123" is not a reference type.

Drill 8-3

Modify the preceding example to display the following output:

The object "Hello, World!" is a string.
The object "123" is not a string. It is System.Int32.
The object "12.34" is not a string. It is System.Double.

8-7 Hiding Members of the Base Class

You’ve already used the new operator to create objects. Another use of the

new operator is to modify declarations of the inherited members in order to

hide members with the same names in the base class. Suppose that you

have a base class that contains a method called MyMethod:

public class MyBaseClass
{

public int myInt;
public void MyMethod() // MyMethod on the base class
{

// ...
}

}

When this class is inherited, the derived class will inherit all its members.

Suppose that you would like to declare a new member with the same name,

MyMethod, in the derived class. You can do that by using the new modi-

fier, as shown in this example:

public class MyDerivedClass: MyBaseClass
{

new public void MyMethod() // MyMethod on the derived class
{

// ...

Interfaces | 185

8-7 Hiding Members of the Base Class

http://www.abicomputer.net

}
}

The job of the new modifier here is to hide the member with the same

name in the base class. A method that uses the new modifier hides proper-

ties, fields, and types with the same name. It also hides the methods with

the same signatures. In general, declaring a member in the base class

would hide any members in the base class with the same name. If you

declare MyMethod in the above example without the new modifier, it still

works, but you will get a compiler warning:

'MyDerivedClass.MyMethod()' hides inherited member

'MyBaseClass.MyMethod()'. Use the new keyword if hiding was

intended.

Notice the following when you use the new modifier:

� You cannot use new and override in the same declaration. If you do

that you get the compiler error:

A member 'MyDerivedClass.MyMethod()' marked as override cannot

be marked as new or virtual.

� It is possible, though, to use virtual and new in the same declaration.

This emphasizes your intention to hide the member in the base class

and start a new point of specialization in the inheritance hierarchy.

8-8 Versioning

Using the new modifier to hide the inherited members is similar to overrid-

ing methods using the override modifier. Both are used to design a new

version of a program while maintaining backward compatibility with pre-

vious versions of the program. For example, assume that you are inheriting

a class produced by Acme Company called AcmeClass:

public class AcmeClass // Acme class
{

// ...
}
public class MyClass: AcmeClass // your class
{

// ...
}

186 | Chapter 8

8-8 Versioning

Suppose that you needed to add a method of your own named MyMethod,

like this:

public class MyClass: AcmeClass
{

public virtual MyMethod()
{

// The new method in your program.
}
// ...

}

Your program was working just fine until Acme produced a new version of

its program that includes a method called MyMethod, which does the same

work:

public class AcmeClass
{

public virtual MyMethod()
{

// The new method in Acme's program v2.0.
}
// ...

}

Now you have a problem. The solution is to just use the new modifier to

declare MyMethod in your program. This will emphasize your intention to

hide the method MyMethod in the second version of AcmeClass. For

example:

public class MyClass: AcmeClass
{

public new virtual MyMethod()
{

// ...
}

}

Problem solved.

You can, as an alternative, use the override modifier if you plan to

override MyMethod in the base class.

In the following example, the class MyDerivedClass inherits the class

MyBaseClass. Each class contains a member class called MyClass. In

order to hide MyClass in the base class, the new modifier is used in the

class declaration. This way, it becomes possible to access members in both

classes and use their members.

Interfaces | 187

8-8 Versioning

http://www.abicomputer.net

Example 8-5

// Example 8-5.cs
// Hiding members using the new modifier

using System;

public class MyBaseClass
{

public class MyClass
{

public int myInt = 123;

public virtual string MyMethod()
{

return "Hello from the base class!";
}

}
}

public class MyDerivedClass: MyBaseClass
{

// The following nested class hides the base class member:
new public class MyClass // notice the new modifier
{

public int myInt = 321;

public virtual string MyMethod()
{

return "Hello from the derived class!";
}

}

static void Main()
{

// Create an object from the "new" MyClass:
MyClass myObj1 = new MyClass();

// Create an object from the hidden MyClass:
MyBaseClass.MyClass myObj2 = new MyBaseClass.MyClass();

Console.WriteLine("Value from the 'new' MyClass: {0}",
myObj1.myInt);

Console.WriteLine("Value from the 'hidden' MyClass: {0}",
myObj2.myInt);

Console.WriteLine("Message from the 'new' MyClass: {0}",
myObj1.MyMethod());

188 | Chapter 8

8-8 Versioning

Console.WriteLine("Message from the 'hidden' MyClass: {0}",
myObj2.MyMethod());

}
}

Output:

Value from the 'new' MyClass: 321
Value from the 'hidden' MyClass: 123
Message from the 'new' MyClass: Hello from the derived class!
Message from the 'hidden' MyClass: Hello from the base class!

In the preceding example you created an object of each of the classes

named MyClass. Although each class contains a field and a method with

the same name as those in the other class, the new modifier was used only

once in declaring the class.

8-9 Hiding Interface Members

It is also possible to apply the same principle of hiding base class members

on interfaces. Suppose that you have two interfaces: IBase and IDerived.

As the name indicates, IDerived is derived from IBase. The following is a

declaration of a property M1 on the interface IBase.

interface IBase
{

int M1 { get; set; }
}

In the same program, you can declare a method with the same name, M1,

on the interface IDerived:

interface IDerived: IBase
{

new int M1();
}

With this declaration, the member M1 on the derived interface hides the

member M1 on the base interface. In this case, it is necessary to use

explicit interface implementation in any class that implements these

interfaces:

class MyClass: IDerived
{

private int m1;
// Explicit implementation of the property M1:
int IBase.M1
{

Interfaces | 189

8-9 Hiding Interface Members

http://www.abicomputer.net

get { return m1; }
set { m1 = value; }

}

// Explicit implementation of the method M1:
void IDerived.M1() { }

}

It is also possible to implement the property explicitly and the method nor-

mally, as shown in this example:

class MyClass: IDerived
{

private int m1;
// Explicit implementation of the property:
int IBase.M1
{

get { return m1; }
set { m1 = value; }

}

// Normal implementation of the method:
public void M1() { }

}

A third possibility is to implement the method explicitly and the property

normally, as shown below:

class MyClass: IDerived
{

private int m1;
// Normal implementation of the property:
public int M1
{

get { return m1; }
set { m1 = value; }

}

// Explicit implementation of the method:
void IDerived.M1() { }

}

In the following example, one of the explicit alternative implementations

of method and property is demonstrated.

190 | Chapter 8

8-9 Hiding Interface Members

Example 8-6

// Example 8-6.cs
// Hiding interface members

using System;

interface IBase
{

int M1 { set; get; }
}

interface IDerived: IBase
{

// Declare a method that hides the property
// on the IBase interface:
new void M1();

}

class MyClass: IDerived
{

private int x;

// Explicit implementation of the property:
int IBase.M1
{

get { return x; }
set { x = value; }

}

// Explicit implementation of the method:
void IDerived.M1()
{

Console.WriteLine("Hi, I am the M1 method!");
}

}

class MainClass
{

static void Main()
{

// Create a class object:
MyClass mc = new MyClass();

// Create an IDerived object:
IDerived mi1 = (IDerived)mc;

Interfaces | 191

8-9 Hiding Interface Members

http://www.abicomputer.net

// Create an IBase object:
IBase mi2 = (IBase)mc;

// Use the property:
mi2.M1=123;

// Call the method:
mi1.M1();

// Display the property:
Console.WriteLine("I am the M1 property. My value is {0}.",

mi2.M1);
}

}

Output:

Hi, I am the M1 method!
I am the M1 property. My value is 123.

Drill 8-4

Modify the preceding example to use an explicit implementation of

the property and normal implementation of the method. The output

should be the same as for the example.

Summary

In this chapter:

� You learned how to declare interfaces and interface members.

� You also learned how to implement an interface by a type or by another

interface.

� You now know when you need to use the explicit implementation of

interfaces and how to do so.

� You also learned how to use the is operator to test types, and how to

use the as operator to convert and test types.

� You now know how to design a new version of a program while main-

taining backward compatibility with previous versions.

� Finally, you learned about hiding members of base classes and inter-

faces and how to use the hidden members in your code.

192 | Chapter 8

Summary

Chapter 9

Exceptions

Contents:
� Errors and exceptions
� Throwing an exception
� Handling an exception
� Exceptions in file processing
� Using a finally block
� Defining your own exceptions
� Rethrowing an exception
� Tracing exceptions

9-1 Errors and Exceptions

Exceptions are run-time errors that can stop the program execution unless

they are handled properly. Exceptions are generated when certain condi-

tions occur in your program, such as dividing by zero, trying to open a file

that was erased, incorrect casting, or running out of memory. In such cases,

you deal with the exception by using the appropriate handler in order to

prevent the program from stopping. The handler is a block of code that

catches the exception and tries to continue the program execution. If the

appropriate handler is not available in your code, the default handler is

used and the program is terminated.

In C#, an exception is an object of the class System.Exception or one

of its subclasses, which represents an error that occurred during the pro-

gram execution. The keywords used in handling exceptions are throw,

catch, and finally. Handling exceptions requires using a special construct

that uses one of the following statements:

� throw: To throw or rethrow an exception.

� try-catch: To catch and handle the exception.

193

http://www.abicomputer.net

� try-finally: To clean up the resources after throwing the exception

regardless of whether or not the exception was caught.

� try-catch-finally: To catch and handle the exception and clean up

resources.

These statements are explained in the following sections.

9-2 Throwing an Exception

In this section, we deliberately throw an exception to show you what one

looks like. You can do this using the throw statement.

The throw statement takes the following form:

throw [expression];

where:

expression is the exception object.

Some of the exceptions that can be thrown by an application are:

� InvalidCastException

� OverFlowException

� ArgumentNullException

� ArithmeticException

� DivideByZeroException

When an exception is thrown, the execution pauses momentarily, searching

for the appropriate exception handler. If one is found, it handles the excep-

tion and the execution resumes; otherwise, the execution is terminated at

this point.

In the following example, you throw an exception object of the class

ArgumentNullException after assigning the value null to the variable

myString.

Example 9-1

// Example 9-1.cs
// Throw an exception

using System;

public class MyClass

194 | Chapter 9

9-2 Throwing an Exception

{
static void Main()
{

string myString = "Hello.";

// Print the first statement:
Console.Write("The string is {0}", myString);

myString = null;

if (myString == null)
{

throw new ArgumentNullException(); // throwing the exception
}

// The following line will not be executed:
Console.Write("myString is null.");

}
}

When you run this program, it first displays the text:

The string is Hello.

It then displays the following window:

This window contains the regular options that are available when a run-

time error occurs. When you click Debug, the following Just-in-Time

Debugger window appears on the screen.

Exceptions | 195

9-2 Throwing an Exception

Figure 9-1: The error window.

http://www.abicomputer.net

As you can see in Figure 9-2, the name of the exception that caused the ter -

mination of the application (ArgumentNullException) and the name of the

application (Ex9-1.exe) are indicated in the first two lines. This screen also

contains some details of the exception and the available debuggers. Click

No to skip the debugger and return to the program execution. You will then

see the following text:

Unhandled Exception: System.ArgumentNullException: Value cannot

be null.

at MyClass.Main()

The program execution is ended at this point. Notice that the last line of

code:

Console.Write("myString is null.");

will not be executed because it followed throwing the exception.

You can use the class System.Exception instead of the class

ArgumentNullException, in which case you get another message from the

program that says:

Unhandled Exception: System.Exception: Exception of type

'System.Exception' was thrown.

at MyClass.Main()

The name of the exception object always shows up in the result. This

example demonstrates the default handler, which is used when you don’t

catch the exception. In the following sections, you will learn how to catch

196 | Chapter 9

9-2 Throwing an Exception

Figure 9-2: The Just-in-Time Debugger window.

an exception and use the appropriate handler to deal with it in order to con -

tinue executing the application.

9-3 Catching an Exception

You can catch exceptions by using the try-catch statement, which contains

two blocks. The first is the try block, inside which the suspicious code is

inserted. It takes the form:

try
{

// The code to be tried.
}

The second block is the catch block, which handles the exception. It takes

the form:

catch [(declaration)]
{

// The handler code.
}

where:

declaration is the exception object declaration and is optional.

The two blocks are used together to build one statement. If you attempt to

use the try block alone, you will get the compilation error:

error CS1524: Expected catch or finally.

The catch block can be used without any parameters at all, in which case it

is used to catch any exceptions. It is also possible to use more than one

catch block. In this case, the try-catch statement takes the form:

try
{

//
}
catch (declaration-1)
{

// first handler
}
catch (declaration-2)
{

// second handler
}

Exceptions | 197

9-3 Catching an Exception

http://www.abicomputer.net

catch (declaration-3)
{

// third handler
}
...

When the program throws an exception, the run-time engine starts looking

for the suitable catch block that matches the exception. If the catch block is

found, the program resumes execution after handling the problem or dis-

playing the appropriate message that explains the problem that took place

during the program execution.

Example 9-2 demonstrates the following:

� Throwing the exception.

� Trying the suspicious code using the try block.

� Handling the exception by using the catch block.

Example 9-2

// Example 9-2.cs
// Handling an exception

using System;

class MyClass
{

public void MyMethod(string myString)
{

if (myString == null)
// Throwing the exception
throw(new ArgumentNullException());

}

public static void Main()
{

MyClass myClass = new MyClass();
// Trying the suspicious code:
try
{

string myString = null;
myClass.MyMethod(myString);

}
// Handling the exception:
catch (Exception e)

198 | Chapter 9

9-3 Catching an Exception

{
Console.WriteLine("The following exception is caught: \n{0}", e);

}

// Continue after handling the exception:
Console.WriteLine("Now the program continues...");

}
}

Output:

The following exception is caught:
System.ArgumentNullException: Value cannot be null.

at MyClass.Main()
Now the program continues...

Notice in the above example that the existence of the catch block itself was

enough to resume the program execution, regardless of the code it con-

tains. As you can see in the program, the catch block contains only a

printing statement to display some information about the exception and

that was enough to handle it and resume the execution. In real applications,

however, it becomes necessary to fix the problem that took place. If the

problem was, for example, running out of memory, it might be suitable to

warn the user to close some of the open applications and retry the

operation.

� Note Using the Exception class as a parameter in a catch block is equiv-
alent to not using a parameter at all.

That means:

catch (Exception) {}

is equivalent to:

catch {}

You can use a parameter, such as Exception e, if you would like to display
the exception text that is associated with the object e.

9-3-1 Organizing the Handlers

When you use more than one catch block, it is important to catch the most

specific exceptions before the least specific ones. If, for example, the most

specific exception is ArithmeticException, this exception should be the

first one to catch. Then you organize the rest of the handlers in order, end-

ing with the most general exception. For example:

Exceptions | 199

9-3 Catching an Exception

http://www.abicomputer.net

catch (ArithmeticException e) // first handler
{

//...
}
...
...
catch (Exception e) // last handler
{

// ...
}

Although the sequence of the exception handlers is totally up to your judg -

ment, you cannot have the general handler before the specific ones. If you

do that, you get the following compiler error:

error CS0160: A previous catch clause already catches all exceptions

of this or of a super type ('System.Exception').

In the following example, you try the expression y/x (where y = 0), which

throws the divide-by-zero exception. Two handlers are used, one that is a

specific exception (ArithmeticException) and another that is the general

exception (Exception).

Example 9-3

// Example 9-3.cs
// Exception hierarchy

using System;

class MyClass
{

static void Main()
{

int x = 0;
int y = 10;

try
{

int z = y/x;
}

// Catch the most specific exception:
catch (ArithmeticException e)
{

Console.WriteLine("Arithmetic Exception Handler: {0}", e);
}

200 | Chapter 9

9-3 Catching an Exception

// Catch the general exception:
catch (Exception e)
{

Console.WriteLine("General Exception Handler: {0}", e);
}

// Continue the program:
Console.WriteLine("Program continues...");

}
}

Output:

Arithmetic Exception Handler: System.DivideByZeroException: Attempted to
divide by zero.

at MyClass.Main()
Program continues...

Try removing the ArithmeticException handler in the above example and

see the result when the general handler deals with the exception.

Drill 9-1

Although it is possible to catch the divide-by-zero exception by using

the handler ArithmeticException, there is a more specific class to

deal with such exceptions — the DivideByZeroException class.

Try using this class in the preceding example with the other

classes. Change the order of the handlers to get the best sequence that

the compiler doesn’t complain about.

9-3-2 Sequence of Events in Handling Exceptions

When an exception is thrown, the run-time engine stops executing the code

and starts searching for a catch block with a matching handler. It then

selects the most suitable handler and executes its code. If the handler does

not exist in the current method, it looks for it in the other methods.

The following examples demonstrate two scenarios that are worth com-

paring. In the first one (9-4A), an exception is thrown and handled in the

same method (MyMethod2). In the second example (9-4B), an exception is

thrown in MyMethod1 and is handled in MyMethod2. Therefore, in the

second example, you can see how the methods are searched for the appro-

priate handler.

Exceptions | 201

9-3 Catching an Exception

http://www.abicomputer.net

Example 9-4A

// Example 9-4A.cs
// Sequence of events

using System;

class MyClass
{

static void Main()
{

Console.WriteLine("Main starts...");
MyClass mc = new MyClass();
mc.MyMethod1();

// Continue the program:
Console.WriteLine("Program ends.");

}

void MyMethod1()
{

Console.WriteLine("Starting MyMethod1.");
MyMethod2();
Console.WriteLine("Exiting MyMethod1.");

}

void MyMethod2()
{

// Entering MyMethod1:
Console.WriteLine("Starting MyMethod2.");

try
{

Console.WriteLine("Starting the try block.");
throw new Exception();
Console.WriteLine("Exiting the try block.");

}

catch
{

Console.WriteLine("Handling the exception.");
}

// Exiting MyMethod2:
Console.WriteLine("Exiting MyMethod2.");

}
}

202 | Chapter 9

9-3 Catching an Exception

Output:

In the following text, you can see the output of the statements that marked

the start and end of each method. This enables you to keep track of all the

events that took place in the program. Notice in this example that entering

MyMethod2 is followed by entering the try and catch blocks, and then

exiting the method.

Main starts...
Starting MyMethod1.
Starting MyMethod2. � entering the method
Starting the try block.
Handling the exception.
Exiting MyMethod2. � exiting the method
Exiting MyMethod1.
Program ends.

The following example demonstrates stack unwinding to search for a

handler.

Example 9-4B

// Example 9-4B.cs
// Sequence of events

using System;

class MyClass
{

static void Main()
{

Console.WriteLine("Main starts...");
MyClass mc = new MyClass();
mc.MyMethod1();
Console.WriteLine("Program ends.");

}

void MyMethod1()
{

Console.WriteLine("Starting Method1.");

try
{

Console.WriteLine("Starting the try block.");
MyMethod2();
Console.WriteLine("Exiting the try block.");

}

Exceptions | 203

9-3 Catching an Exception

http://www.abicomputer.net

catch
{

Console.WriteLine("Handling the exception.");
}

Console.WriteLine("Exiting Method1.");
}

void MyMethod2()
{

Console.WriteLine("Starting Method2.");
throw new Exception();
Console.WriteLine("Exiting Method2.");

}
}

Notice in the output that after entering the try block in MyMethod1, the

execution jumped to MyMethod2, looking for a handler.

Output:

Main starts...
Starting Method1.
Starting the try block.
Starting Method2.
Handling the exception.
Exiting Method1.
Program ends.

Notice in Examples 9-4A and 9-4B that the execution entered the try block

and displayed the sentence:

Starting the try block.

However, you don’t see the exiting statement from the try block that was

supposed to display:

Exiting the try block.

This means that the execution never returns back to the point where the

exception was thrown.

� Note When you compile these programs, you get a warning that there is
unreachable code in the program, which is expected. This code usually fol-
lows the statement:

throw new Exception();

204 | Chapter 9

9-3 Catching an Exception

9-4 Expected Exceptions in File Processing

In the following sections, the file protocols are introduced as well as the

expected exceptions that might occur when processing files.

9-4-1 Reading Text Files

There are specific protocols for opening and closing files using the .NET

methods. For example, to open a text file named “test.txt” for reading, do

the following:

1. Use the using directive System.IO.

2. Declare a file variable by using the StreamReader type:

StreamReader myFile;

3. Open the file using one of the following methods:

myFile = File.OpenText("test.txt");

OR

myFile = new StreamReader("test.txt");

4. Read the file using one of the following methods:

� Either line by line using the method ReadLine, and store each line

in a variable using a suitable loop:

string line = myFile.ReadLine();

� Or by reading the whole file as one string by using the method

ReadToEnd:

string file = myFile.ReadToEnd();

5. Display the content of the file by using one of the following methods:

� Either line by line using a suitable loop:

Console.WriteLine(line);

� Or as one string:

Console.WriteLine(file);

6. Close the file using the Close method:

myFile.Close();

Exceptions | 205

9-4 Expected Exceptions in File Processing

http://www.abicomputer.net

9-4-2 Writing and Appending Text Files

You can open a file for writing by using the StreamWriter class, as shown

in the following declaration:

StreamWriter myFile = new StreamWriter("test.txt");

You can also open a file for appending by using the following declaration:

StreamWriter myFile = new StreamWriter("test.txt", true);

� Note There are other ways to read or write files besides those men-
tioned above. We only introduced the most common methods. You can
read more information about the StreamReader and StreamWriter classes
on the Microsoft web site at http://msdn.microsoft.com.

9-4-3 Expected Exceptions

When you process files, an exception can be thrown if the file was not

found (FileNotFoundException). Therefore, it is recommended that you

put the file processing statements inside a try block. In the following exam-

ple, you read a text file called “test.txt,” and then you display it, line by

line, using a while loop. To handle the exceptions, two handlers are used:

one to handle the most specific exception, FileNotFoundException, and

one to handle the general exception.

Example 9-5

// Example 9-5.cs
// Processing files

using System;
using System.IO;

class MyClass
{

static void Main()
{

int counter = 0;
string line;

try
{

StreamReader file = File.OpenText("test.txt");
while((line = file.ReadLine()) != null)

206 | Chapter 9

9-4 Expected Exceptions in File Processing

{
Console.WriteLine (line);
counter++;

}
file.Close();

}
catch (FileNotFoundException)
{

Console.WriteLine(
"The file you are trying to open is not found.");

}
catch
{

Console.WriteLine("General catch statement.");
}

}
}

Assuming that the file is not on the hard disk, the program will display the

sentence in the first catch block.

Output:

The file you are trying to open is not found.

After you run the program, create the file “test.txt” or copy the source code

file to “test.txt” by using the following command:

Copy Ex9-5.cs test.txt

Then run the program again to see the result.

� Note The variables declared inside the try block cannot be accessed
from outside the block. Therefore, it is recommended that you declare your
variables in the Main method. You can then initialize them in the try block.

Drill 9-2

Write a program that performs the same tasks shown in Example 9-5

by reading the file with the statement ReadToEnd.

Exceptions | 207

9-4 Expected Exceptions in File Processing

http://www.abicomputer.net

9-5 The finally Block

The finally block is used with the try block, in which case, the statement is

called the try-finally statement. It can also be used with both try and

catch, in which case, the statement is called the try-catch-finally state-

ment. When using the finally block in your program, control is transferred

to that block regardless of whether or not the exception was handled. The

finally block is used to clean up the resources, such as closing the open

files.

9-5-1 The try-finally Statement

The try-finally statement takes the form:

try
{

// try-block
}
finally
{

// finally-block
}

where:

try-block contains the suspicious code to be tried.

finally-block contains the cleanup statements to be executed regardless of

the exception.

The following example demonstrates how the statements in the finally

block are executed. This program throws the exception InvalidCast-

Exception because it uses the cast int with an object of the type string

(which is an invalid cast). The finally block contains some statements that

are executed regardless of the thrown exception.

Example 9-6

// Example 9-6.cs
// try-finally example

using System;

public class MyClass
{

static void Main()

208 | Chapter 9

9-5 The finally Block

{
string myString = "Finally";
object myObject = myString;

try
{

// The following conversion is invalid.
// It throws an exception.
int myInt = (int)myObject;

}

finally
{

// The code in this block is always executed:
Console.WriteLine("The program continues and ends here:");
Console.WriteLine("My String is: {0}", myString);

}

// The following code will not be executed:
Console.WriteLine("Hello again!");

}
}

When you run the above example, the execution stops and the error-

reporting window pops up. Click Debug and then click No when the

exception window pops up. This will take you back to the command-line

environment to see the output message.

Output:

Unhandled Exception: System.InvalidCastException: Specified cast is not
valid.

at MyClass.Main()
The program continues and ends here: � the finally block is executed

here
My String is: Finally

Notice in the output that the code in the finally block was executed after

throwing the exception. However, the last statement in the program that

followed the finally block was not executed. This means that the exception

prevents control from being transferred to any part of the program except

the finally block.

Exceptions | 209

9-5 The finally Block

http://www.abicomputer.net

9-5-2 The try-catch-finally Statement

The try-catch-finally statement takes the form:

try
{

// try-block
}
catch
{

// catch-block
}
finally
{

// finally-block
}

where:

try-block contains the suspicious code to be tried.

catch-block contains the exception handler.

finally-block contains the cleanup statements to be executed regardless of

the exception.

This is the common form for using the finally keyword. As long as an

exception is expected to be thrown, it is best to handle it with the catch

block. You can, of course, use one or more catch blocks, as mentioned

earlier.

In the following example, a catch block is added to Example 9-6. This

way the scenario is completed by catching the exception and continuing

the program execution.

Example 9-7

// Example 9-7.cs
// try-catch-finally example

using System;

public class MyClass
{

static void Main()
{

string myString = "Try-Catch-Finally.";
object myObject = myString;

try

210 | Chapter 9

9-5 The finally Block

{
// The following conversion is invalid.
// It throws an exception.
int myInt = (int)myObject;

}
catch(InvalidCastException ex)
{

Console.WriteLine("The exception \"{0}\" was handled.", ex);
}

catch
{

Console.WriteLine("Unknown exception handled.");
}

finally
{

// The code in this block is always executed:
Console.Write("The program continues here: ");
Console.WriteLine("My String is: {0}", myString);

}

// The following code will always be executed:
Console.WriteLine("Goodbye!");

}
}

Output:

The exception "System.InvalidCastException: Specified cast is not valid.
at MyClass.Main()" was handled.

The program continues here: My String is: Try-Catch-Finally.
Goodbye!

Notice in this example:

1. The first catch block handled the exception InvalidCastException and

displayed the description of the exception.

2. The second catch block is the general catch block. It is used without

parameters this time, but because the job was accomplished by the

first catch block, it wasn’t executed.

3. The finally block displayed the continuation message in addition to

the value of the variable myString.

4. After handling the exception, the last statement was executed and dis-

played the message “Goodbye!” This is the main difference between

Example 9-6 and Example 9-7.

Exceptions | 211

9-5 The finally Block

http://www.abicomputer.net

Drill 9-3

As you now know, the main purpose of the finally block is to clean

up resources. Write a program that reads a text file and uses the

finally block to close the open file.

9-6 User-defined Exceptions

You can create an exception of your own by declaring it as a class derived

from the ApplicationException class. The benefit to the programmer is

the ability to add to the handlers whatever text is needed to explain in

detail the error that took place. It is obvious that the run-time engine

doesn’t know anything about the user-defined exception that your program

threw.

You can inherit the ApplicationException as shown in this example:

class MyCustomException: ApplicationException

A constructor with a string parameter is used to send it as a message to the

inherited class:

MyCustomException(string message): base(message)
{
}

The string parameter contains the message you would like to display when

the exception is thrown.

The following example demonstrates how to throw and handle user-

defined exceptions.

Example 9-8

// Example 9-8.cs
// Custom Exceptions

using System;

public class MyCustomException: ApplicationException
{

// The MyCustomException class constructor:
public MyCustomException(string message): base(message)
{
}

}

212 | Chapter 9

9-6 User-defined Exceptions

class MyClass
{

static void Main()
{

// Create an instance of MyCustomException:
MyCustomException e = new MyCustomException(
"which includes my custom message");
try
{

// Throwing the exception:
throw e;

}

catch(MyCustomException)
{

// Catching the exception:
Console.WriteLine(
"The exception \"{0}\" was handled successfully.", e);

}

catch
{

Console.WriteLine("Unknown exception handled.");
}

finally
{

// The code in this block is always executed:
Console.WriteLine("The program continues here.");

}

// Display a message after the finally block:
Console.Write("Execution ends.");

}
}

Output:

The exception "MyCustomException: which includes my custom message
at MyClass.Main()" was handled successfully.
The program continues here.
Execution ends.

As you can see in the program output, the custom message was displayed

with the exception. (Note that a real custom message should explain more

about the error.) Notice also that after the finally block was executed, the

statement at the end of the program was also executed to indicate that the

problem was solved successfully.

Exceptions | 213

9-6 User-defined Exceptions

http://www.abicomputer.net

9-7 Rethrowing Exceptions

Sometimes you need to rethrow an exception. Consider this scenario: An

exception handler is taking care of an exception inside some method, but

in order to get more information on the error, it has to throw the exception

to another method or back to the Main method to get this information or to

do further handling.

To rethrow an exception, use the keyword throw without parameters, as

shown in this example:

catch
{

throw;
}

It is also possible for the catch block to throw the same exception associ-

ated with a message that adds additional information about the problem:

catch (DivideByZeroException e)
{

throw (new DivideByZeroException("Dividing by zero occurred in
MyMethod()", e));

}

9-7-1 Rethrowing the Exception Back to Main

One of the possible situations is to throw the exception back to the Main

method. In Example 9-9 the following scenario takes place:

1. MyMethod1 is first invoked in Main.

2. MyMethod1 calls the method MyMethod2.

3. MyMethod2 throws the exception for the first time.

4. The exception is caught in MyMethod1, where some handling is

done.

5. MyMethod1 rethrows the exception.

6. The exception is caught in Main, where more handling is done.

You can see these events in the output of the example.

Example 9-9

// Example 9-9.cs
// Rethrowing exceptions

using System;

class MyClass

214 | Chapter 9

9-7 Rethrowing Exceptions

{
static void Main()
{

MyClass mc = new MyClass();

try
{

mc.MyMethod1(); // event #1
}
catch(Exception e)
{

Console.WriteLine("Caught in Main: {0}", e); // event #6
Console.WriteLine("More cleanup ...");

}
}

public void MyMethod1()
{

try
{

MyMethod2(); // event #2
}
catch(Exception)
{

Console.WriteLine("Caught in MyMethod1"); // event #4
Console.WriteLine("Cleanup chores ...");
// Rethrow the same exception:
throw; // event #5

}
}

public void MyMethod2()
{

throw new Exception("thrown by MyMethod2"); // event #3
}

}

Output:

Caught in MyMethod1
Cleanup chores ...
Caught in Main: System.Exception: thrown by MyMethod2

at MyClass.MyMethod2()
at MyClass.MyMethod1()
at MyClass.Main()

More cleanup ...

Exceptions | 215

9-7 Rethrowing Exceptions

http://www.abicomputer.net

9-7-2 Rethrowing by the Handler Block

In the following example, the exception is handled and rethrown back to

Main for more processing. In the example, you see the following events:

1. MyMethod is invoked from Main.

2. MyMethod generates the exception DivideByZeroException.

3. MyMethod catches the exception and rethrows it back to Main.

4. The exception is caught and handled in Main.

Example 9-10

// Example 9-10.cs
// Rethrowing exceptions by the handler

using System;

class MainClass
{

static void Main()
{

MyClass mc = new MyClass();
try
{

mc.MyMethod();
}
catch (Exception ex)
{

// Catch the rethrown exception:
Console.WriteLine("Rethrown exception is caught in

Main:\n{0}", ex);
}

}
}

class MyClass
{

int x = 0, y = 0;
public void MyMethod()
{

try
{

int z = x / y; // dividing by zero
}

216 | Chapter 9

9-7 Rethrowing Exceptions

catch (DivideByZeroException ex)
{

// Catch and Rethrow the same exception:
throw (new DivideByZeroException

("Dividing by zero occurred in MyMethod\n", ex));
}

}
}

Output:

Rethrown exception is caught in Main:
System.DivideByZeroException: Dividing by zero occurred in MyMethod
---> System.DivideByZeroException: Attempted to divide by zero.

at MyClass.MyMethod()
--- End of inner exception stack trace ---
at MyClass.MyMethod()
at MainClass.Main()

Notice that the sequence of events in the output starts from the moment the

rethrown exception was caught.

9-8 Using the StackTrace Property

StackTrace, a property of the Exception class, lets you keep track of the

exception object as it travels up the call stack looking for a matching han -

dler. The property retrieves a string that represents the trace of the method

calls when the current exception is thrown.

As you can see in the following example, which is a rewrite of Example

9-9, the output is simple and clear. We removed all the printing statements

whose purpose was to keep track of the program execution. Instead, the

following method is used:

Console.WriteLine("Caught exception:\n{0}", e.StackTrace);

The text “Caught exception” is the only text that you need to write. The

rest is generated by the StackTrace:

at MyClass.MyMethod2()
at MyClass.MyMethod1()
at MyClass.Main()

When you examine the program, you can see that this is the way exception

handling in a real application should be written.

Exceptions | 217

9-8 Using the StackTrace Property

http://www.abicomputer.net

Example 9-11

// Example 9-11.cs
// Using the StackTrace property

using System;

class MyClass
{

static void Main()
{

MyClass mc = new MyClass();

try
{

mc.MyMethod1(); // event #1
}

catch(Exception e)
{

Console.WriteLine("Caught exception:\n{0}", e.StackTrace);
// event #6

}
}

public void MyMethod1()
{

try
{

MyMethod2(); // event #2
}

catch(Exception)
{

// Rethrow the same exception:
throw; // event #5

}
}

public void MyMethod2()
{

throw new Exception(); // event #3
}

}

218 | Chapter 9

9-8 Using the StackTrace Property

Output:

Caught exception:
at MyClass.MyMethod2()
at MyClass.MyMethod1()
at MyClass.Main()

Drill 9-4

It is possible to use the handler to fix the problem that takes place

when the code throws an exception. Write a program that catches the

exception DivideByZeroException and solve the problem in the

catch block. Part of the handling should be reading a new number

from the keyboard to use as the denominator of the division and retry

evaluating the expression z = x/y. The output of the program should

be something like this:

A divide-by-zero occurred:
at MyClass.MyMethod(Int32 x)

Please enter the denominator of the division 'x': 2
The division: 10 / 2 = 5

Summary

In this chapter:

� You started by examining an exception and went through the succes-

sive screens that describe it.

� You learned how to use the try block to see if a suspicious code seg-

ment would throw an exception.

� You also learned how to use catch blocks that catch exceptions and

handle them so that the program can resume execution.

� You took a tour of file protocols and learned how to open a file for

reading, writing, or appending. You also learned about the expected

exceptions in file processing and how to catch them.

� You now know the purpose of using the finally block in exception han-

dling and how to build the exception construct by using the keywords

try, catch, and finally.

Exceptions | 219

Summary

http://www.abicomputer.net

� You learned how to create your own exceptions in order to include

detailed text about the caught exception.

� You also learned how to rethrow an exception and how to make use of

this feature to do further handling of the exceptions.

� Finally, you learned about the StackTrace property and how to use it in

displaying the call stack.

220 | Chapter 9

Summary

Chapter 10

Delegates and Events

Contents:
� Delegate definition
� Declaring and using delegates
� Adding and deleting delegates
� Anonymous methods
� Covariance and contravariance
� Events
� Using events in applications

10-1 What Is a Delegate?

A delegate is one of the reference types in C#. It is used to encapsulate a

method of a specific signature and pass it as its parameter. It is similar to a

function pointer in C++ except it is type-safe like all the elements of the

managed languages under the umbrella of .NET.

As the name indicates, the delegate does not work alone, but it delegates

the associated method to do its work.

10-2 Declaring Delegates

You can declare a delegate using the following form:

[modifiers] delegate result identifier ([parameters])

where:

modifiers is a valid combination of access modifiers in addition to the new

modifier.

result is the type of the delegate, which is the same as the type of the

encapsulated method.

221

http://www.abicomputer.net

identifier is the delegate name.

parameters is an optional list of parameters.

For example:

delegate void MyDelegate(object o1, object o2);

This delegate can encapsulate methods with the same signature, such as:

static void MyMethod(object o1, object o2) { ... }

Notice that with the new delegate features, covariance and contravariance,

some flexibility is provided in matching delegates and the associated meth-

ods. Covariance and contravariance are explained in Sections 10-8 and

10-9.

10-3 Creating a Delegate

To create a delegate, follow these steps:

1. Declare the delegate where you usually declare types (in a namespace

or a class). For example:

delegate void MyDelegate(object o1, object o2);

2. Declare the method that will be associated with the delegate. For

example:

public static void MyMethod(object id, object name) { ... }

Notice that the return type and parameter types are identical for both

the methods and the delegate (they are indicated by the boldface).

3. Create a delegate object:

MyDelegate delegObj = new MyDelegate(MyMethod);

Notice that the parameter of the delegate is the name of the encapsu-

lated method.

You can also create a delegate object without using the new oper-

ator, simply by assigning the method to the delegate:

MyDelegate delegObj = MyMethod;

10-4 Invoking the Delegate

Invoke the delegate using the same parameters you would use when calling

the associated method. You can invoke the delegate created in the preced-

ing section like this:

delegObj(119, "Jane Doe");

222 | Chapter 10

10-3 Creating a Delegate

Alternatively, you can invoke the delegate from a method, as shown in the

following example:

public static void CallDelegate(MyDelegate meth)
{

meth(119, "Jane Doe");
}

Notice that this method is using a parameter, meth, of the type

MyDelegate. It is obvious that the name of the method is not important, but

the signature is; it must have the same signature as the encapsulated

method, MyMethod.

You can also invoke the delegate by using the .NET method Invoke like

this:

delegObj.Invoke(119, "Jane Doe");

In this specific example, we used the modifier static, just to make things

simpler. However, delegates can use both instance and static methods.

In the following example, delegates are brought into action.

Example 10-1

// Example 10-1.cs
// Using delegates

using System;

// Declare a delegate:
delegate void MyDelegate(int n, string s);

class MainClass
{

static void Main()
{

// Instantiate the class:
MyClass obj = new MyClass();

// Instantiate the delegate:
MyDelegate d = new MyDelegate(obj.MyMethod);

// Invoke the delegate:
obj.CallDelegate(d);

}
}

class MyClass
{

// A method to invoke the delegate:

Delegates and Events | 223

10-4 Invoking the Delegate

http://www.abicomputer.net

public void CallDelegate(MyDelegate meth)
{

meth(119, "Jane Doe");
}

// The encapsulated method:
public void MyMethod(int id, string name)
{

Console.WriteLine("ID = {0}\nName = {1}", id, name);
}

}

Output:

ID = 119
Name = Jane Doe

Drill 10-1

Rewrite the preceding example without using the extra method:

public void CallDelegate(MyDelegate meth)

Instead, invoke the delegate directly by using the parameters of the

associated method.

10-5 Associating a Delegate with More Than One Method

The association between a delegate and a method is defined dynamically at

run time. In other words, the delegate doesn’t know, during the compila-

tion, which method it will encapsulate. What matters is the signature and

the return type of that method. This means that you can associate the same

delegate with more than one method in your program.

In the following example, two double methods are declared, one to cal-

culate the average and one to calculate the sum. A delegate of the type

double is declared and instantiated. The delegate object is associated with

each method and invoked, one at a time.

224 | Chapter 10

10-5 Associating a Delegate with More Than One Method

Example 10-2

// Example 10-2.cs
// Delegates

using System;

public class Calc
{

// Declare a delegate:
public delegate double Calculation(int x, int y, int z);

// Declare methods:
public static double Sum(int n1, int n2, int n3)
{

return n1 + n2 + n3;
}

public static double Average(int n1, int n2, int n3)
{

return (n1 + n2 + n3)/3;
}

public static void Main()
{

double result;

// Instantiate the delegate, associate it with Average:
Calculation myCalc = new Calculation(Average);

// Invoke the delegate:
result = myCalc(3,6,9);
Console.WriteLine("Average: {0}", result);

// Instantiate another object and associate it with Sum:
myCalc = new Calculation(Sum);

// Invoke the delegate:
result = myCalc(3,6,9);
Console.WriteLine("Sum: {0}", result);

}
}

Output:

Average: 6
Sum: 18

Delegates and Events | 225

10-5 Associating a Delegate with More Than One Method

http://www.abicomputer.net

10-6 Adding and Removing Delegates

Delegates can be combined by using the + operator to create a compound

delegate. Invoking the compound delegate invokes the constituent dele -

gates. The purpose of combining delegates is to encapsulate more than one

method by the same delegate. This operation is called multicasting. It is

also possible to remove a delegate from a compound delegate by using the

– operator. You can use += and –= to do the same thing.

Similarly, you can add and remove delegates by using the .NET meth-

ods Combine and Remove, which are members of the class

System.Delegate.

The following example demonstrates delegate multicasting.

Example 10-3

// Example 10-3.cs
// Adding and removing delegates

using System;

// Declare a delegate:
delegate void MyDelegate();

class MyClass
{

public void MyMethod1()
{

Console.Write("MyMethod #1 ");
}

public void MyMethod2()
{

Console.Write("MyMethod #2 ");
}

}

class MainClass
{

static void Main()
{

// Instantiate MyClass:
MyClass mc = new MyClass();

226 | Chapter 10

10-6 Adding and Removing Delegates

// Declare delegate object and reference MyMethod1:
MyDelegate d1 = new MyDelegate(mc.MyMethod1);

// Declare delegate object and reference MyMethod2:
MyDelegate d2 = new MyDelegate(mc.MyMethod2);

// Declare delegate d3 by adding d1 and d2.
// This will invoke both MyMethod1 and MyMethod2:
MyDelegate d3 = d1 + d2;

// Declare delegate d4 by removing d1 from d3.
// This will invoke MyMethod2 only:
MyDelegate d4 = d3 - d1;

Console.Write("Invoking d1, referencing ");
d1();
Console.Write("\nInvoking d2, referencing ");
d2();
Console.Write("\nInvoking d3, referencing ");
d3();
Console.Write("\nInvoking d4, referencing ");
d4();

}
}

Output:

Invoking d1, referencing MyMethod #1
Invoking d2, referencing MyMethod #2
Invoking d3, referencing MyMethod #1 MyMethod #2
Invoking d4, referencing MyMethod #2

Notes on the preceding example:

� In this example, the delegate d1 encapsulated MyMethod1. Also, the

delegate d2 encapsulated MyMethod2.

� Adding d1 to d2 to create d3 resulted in calling MyMethod1 and

MyMethod2 when d3 was invoked.

� Removing d1 from d3 resulted in calling MyMethod2 only when d3

was invoked.

� It is possible to use the shorthand assignment operators, += and –=, to

add and remove delegates. For example:

d1 += d2; // add d1 to d2 and assign the result to d1.
d3 -= d1 // subtract d1 from d3 and assign the result to d3.

Delegates and Events | 227

10-6 Adding and Removing Delegates

http://www.abicomputer.net

10-6-1 Using .NET Methods to Add and Remove Delegates

To add or remove delegates by using the .NET methods, use the following

statements:

// Combine d1 and 2, giving d3:
MyDelegate d3 = (MyDelegate)Delegate.Combine(d1, d2);
// Remove d1 from d3, giving d4:
MyDelegate d4 = (MyDelegate)Delegate.Remove(d3, d1);

When using .NET methods it is necessary to use casting to convert the

result to the delegate type.

� Note Using void as the delegate type in the previous examples was not
by accident. In fact, it is recommended over any other type as long as the
delegate encapsulates more than one method; otherwise, you cannot con-
trol the returned values from methods when you invoke the delegate.

Drill 10-2

Rewrite Example 10-3 using static methods and make sure you get

the same results.

10-7 Anonymous Methods

Anonymous methods, a new feature of C# 2005, enables you to pass a

code segment as a delegate parameter directly without declaring a separate

method. Consider the following delegate declaration:

delegate void MyDelegate(string s);

Instead of declaring a separate method, MyMethod, like this:

public void MyMethod(string s)
{

Console.WriteLine(s);
}

you can directly associate the delegate with the method’s code:

MyDelegate delegObject = delegate(string s) { Console.WriteLine(s); };

Notice the semicolon at the end of the block.

In the following example, a delegate using an anonymous method with

two object parameters is demonstrated.

228 | Chapter 10

10-7 Anonymous Methods

Example 10-4

// Example 10-4.cs
// Anonymous methods

using System;

class MyClass
{

// Declare a delegate:
delegate void MyDelegate(object o1, object o2);

static void Main()
{

// Instantiate the delegate using an anonymous method:
MyDelegate delegObject = delegate(object o1, object o2)
{

Console.WriteLine("{0} {1}", o1, o2);
};

// Invoke the delegate:
delegObject("My number is: ", 123);

}
}

Output:

My number is: 123

10-7-1 Outer Variables

Local variables that are used inside anonymous methods are called outer or

captured variables. The lifetime of an outer variable is the same as the life-

time of the delegate. While a regular local variable is removed from

memory right after the method exits, an outer variable is removed when the

delegate is garbage collected.

In the following example, a local variable is declared and captured by a

delegate; therefore, its lifetime is extended during the successive calls of

the delegate. The outer variable maintains its value across the multiple

calls of the delegate.

Delegates and Events | 229

10-7 Anonymous Methods

http://www.abicomputer.net

Example 10-5

// Example 10-5.cs
// Anonymous methods and outer variables

using System;

class MyClass
{

// Declare a delegate:
delegate void MyDelegate();

static void Main()
{

// Declare an outer variable:
int outerVar = 0;

// Instantiate the delegate using an anonymous method:
MyDelegate delegObject = delegate()
{

Console.WriteLine("My outer variable is now: {0}", ++outerVar);
};

// Invoke the delegate object several times:
for (int n=1; n <= 10; n++)

delegObject();
}

}

Output:

My outer variable is now: 1
My outer variable is now: 2
My outer variable is now: 3
My outer variable is now: 4
My outer variable is now: 5
My outer variable is now: 6
My outer variable is now: 7
My outer variable is now: 8
My outer variable is now: 9
My outer variable is now: 10

230 | Chapter 10

10-7 Anonymous Methods

10-7-2 Restrictions on Using Anonymous Methods

When using anonymous methods, you should be aware of the following

restrictions:

� The scope of an anonymous method is limited to its block. This means

that you cannot use any jump statements to transfer control outside the

method’s block. The opposite is not allowed either.

� An anonymous method cannot use the –= operator. If you need to

remove a named method from a multicast delegate, you must use

named methods.

� An anonymous method cannot use unsafe code inside its block.

� An anonymous method cannot be a function member.

� An anonymous method cannot use attributes.

� Anonymous methods cannot use ref or out with an outer variable.

� Note In Chapter 14, you will learn about lambda expressions, which
provide a concise syntax for writing anonymous methods. Lambda expres-
sions are known as a superset of anonymous methods.

10-8 Covariance

Covariance is a new feature that was added to C# 2005 to provide some

flexibility in matching the delegate type and the return type of the encapsu-

lated method. Instead of using the same type for both the delegate and the

method’s return value, covariance permits using a return type for the

method that specializes (is derived from) the type of the delegate.

In the following example, a delegate of the type Person encapsulates

two methods, MyMethodP and MyMethodE. MyMethodP has the return

type Person, which is the same type as the delegate. MyMethodE has the

return type Employee, which specializes Person — this is covariance.

Example 10-6

// Example 10-6.cs
// Covariance

using System;

public class Employee: Person {}

Delegates and Events | 231

10-8 Covariance

http://www.abicomputer.net

public class Person {}

class MyClass
{

// Declare a delegate:
delegate Person MyDelegate();

// The encapsulated method of type Person:
public Person MyMethodP()
{

Console.WriteLine("MyMethodP is called.");
return null;

}

// The encapsulated method of type Employee:
public Employee MyMethodE()
{

Console.WriteLine("MyMethodE is called.");
return null;

}

static void Main()
{

// Instantiate the class:
MyClass mc = new MyClass();

// Instantiate the delegate (regular case):
MyDelegate d1 = mc.MyMethodP;

// Instantiate the delegate (covariance case):
MyDelegate d2 = mc.MyMethodE;

// Invoke both delegates:
d1.Invoke();
d2.Invoke();

}
}

Output:

MyMethodP is called.
MyMethodE is called.

Notice in the preceding example the different way of instantiating dele-

gates without the new operator:

MyDelegate d1 = mc.MyMethodP;

Keep in mind that if the method is static, you don’t need to qualify it with

the object mc.

232 | Chapter 10

10-8 Covariance

10-9 Contravariance

Contravariance is another new feature added to C# 2005 in order to give

more flexibility in matching the signatures of the delegate and the encapsu-

lated method. Instead of using the same type of parameters, contravariance

allows using a method’s parameter of a type that specializes (is derived

from) the parameter of delegate.

The following example demonstrates both covariance and

contravariance. Four classes are declared: Person, Employee, Resident,

and Citizen. The class Employee specializes Person, and the class Citizen

specializes Resident. A delegate and the associated method are declared

like this:

delegate Person MyDelegate(Citizen c);
public static Employee MyMethod(Resident r)

The return type of the method (Employee) specializes the type of the dele-

gate (Person), which is covariance. The parameter of the delegate (Citizen)

specializes the parameter of the method (Resident), which is

contravariance.

Example 10-7

// Example 10-7.cs
// Contravariance

using System;

public class Person { }
public class Employee: Person { }
public class Resident { }
public class Citizen: Resident { }

class MyClass
{

// Declare a delegate:
delegate Person MyDelegate(Citizen c);

// The encapsulated method.
// Notice the return type and the parameters:
public static Employee MyMethod(Resident r)
{

Console.WriteLine("MyMethod is called.");
return null;

}

static void Main()

Delegates and Events | 233

10-9 Contravariance

http://www.abicomputer.net

{
// Instantiate the Citizen class:
Citizen citizen = new Citizen();

// Instantiate the delegate:
MyDelegate d = MyMethod;

// Invoke the delegates:
d.Invoke(citizen);

}
}

Output:

MyMethod is called.

Notice the declaration of the delegate object by assigning the method to it:

MyDelegate d = MyMethod;

which is an alternative to:

MyDelegate d = new MyDelegate(MyMethod);

10-10 Events

One of the most important uses of delegates is programming events, espe-

cially in the Windows environment. When you click a button in a window,

an event is fired. The response to that event may take several forms. It is

your job as a programmer to write the appropriate response to that event in

your application. For example, if you created a Windows forms application

and you started by adding a button to the application form, you can associ -

ate the button click to a specific result, such as writing some text in a text

box. In the following figure, you see the phrase “Hello, World!” written in

a text box as a result of clicking the button.

234 | Chapter 10

10-10 Events

Figure 10-1: Firing an
event with a button
click.

The code written in the background of this operation is the following

method:

private void button1_Click(object sender, EventArgs e)
{

textBox1.Text = "Hello, World!";
}

If you are familiar with programming Windows applications, you know

that the only piece of code you are required to provide here is:

textBox1.Text = "Hello, World!";

This line of code means, “When you click the button, write the phrase

“Hello, World!” in the text box object textBox1.” The method itself is pro-

vided by the IDE environment when you double-click the button in the

design mode.

When we discuss events, we use the terms sending (or firing) the event

and receiving (or handling) the event.

In the Windows environment there are many events that can be fired,

such as changing the text in a text box, moving to another control element,

and so forth. Receiving the event depends totally on the application you

are developing. The result can be playing a tune or sending a text message

in a message box.

10-10-1 Using Events in Applications

In the command-line environment, it is possible to use events in a variety

of applications, such as to simulate the action of clicking a mouse button.

To do that, follow these steps:

1. Declare a delegate to be used as a handler (or a receiver).

delegate void RightButtonDown(object sender, EventArgs e);

2. Then use this delegate name (RightButtonDown) as the type for the

event, which is declared with the event keyword. For example, call

the event (the sender) PressDown:

event RightButtonDown PressDown;

This registers the delegate as an event. When the event occurs, the delegate

is invoked.

The following example is a simulation of a bookstore’s sales to analyze

the sales situation by measuring the stock changes. The output of the pro-

gram gives a report like this:

2007 Sales Rate:
C# Books are up by 20

Delegates and Events | 235

10-10 Events

http://www.abicomputer.net

C++ Books are down by 11
...

This report is based on the inventory change of C# books by –20 (sales)

and C++ books by +11 (returns).

Example 10-8

// Example 10-8.cs
// Bookstore

using System;

class MyEventArgs: EventArgs
{

// Fields:
private string stock;
private int change;

// Properties:
public string MyStock
{

get { return stock; }
}
public int MyChange
{

get { return change; }
}

// Constructor:
public MyEventArgs(string s, int c)
{

stock = s;
change = c;

}
}

class Sender
{

public delegate void EventHandler(object source, MyEventArgs e);
public event EventHandler OnChange;

// Update database:
public void Update(string s, int c)
{

MyEventArgs e = new MyEventArgs(s,c);
if (OnChange != null)

OnChange(this, e);
}

236 | Chapter 10

10-10 Events

}

class Receiver
{

public Receiver(Sender s)
{

// Add the event:
s.OnChange += new Sender.EventHandler(OnStockChange);

}
void OnStockChange(object source, MyEventArgs e)
{

string upOrDown;
if (e.MyChange > 0)

upOrDown = "down";
else upOrDown = "up";

int ch = Math.Abs(e.MyChange);
Console.WriteLine("{0} {1} by {2}", e.MyStock, upOrDown, ch);

}
}

class MyClass
{

public static void Main()
{

Sender s = new Sender();
Receiver r = new Receiver(s);
// Print Results:
Console.WriteLine("2007 Sales Rate:");
s.Update("\tC# Books:", -20);
s.Update("\tC++ Books:", 11);
s.Update("\tVB .NET Books:", -15);
s.Update ("\tScience Fiction Books:", 120);

}
}

Output:

2007 Sales Rate:
C# Books: up by 20
C++ Books: down by 11
VB .NET Books: up by 15
Science Fiction Books: down by 120

Notes about the above example:

� The classes of the program are divided into Sender and Receiver in

addition to the class MyEventArgs.

Delegates and Events | 237

10-10 Events

http://www.abicomputer.net

� The MyEventArgs class is derived from the EventArgs class:

class MyEventArgs: EventArgs
{

// Fields:
private string stock;
private int stockChange;
...

}

In order to build this class, it is necessary to pass the arguments stock

and stockChange as shown in the constructor:

public MyEventArgs(string s, int c)
{

stock = s;
stockChange = c;

}

� The delegate is declared like this:

public delegate void EventHandler(object source, MyEventArgs e);

This way, the parameter e is holding the necessary information of the

sender when the inventory level changes. The event is declared by

using the delegate:

public event EventHandler OnstockChange;

� Notice that the Receiver class contains an object of the Sender class

(s). This object is used to add the event like this:

s.OnstockChange += new Sender.EventHandler(OnStockstockChange);

Notice that the only allowed operators are += and –=. For example, you

cannot use the following statement to add the event:

s.OnstockChange = new Sender.EventHandler(OnStockstockChange);

This statement releases any previous association of the event. What is

actually required is to add a new association.

� The method OnStockstockChange is used to receive and analyze the

inventory data. It also uses the parameters e and source:

void OnStockstockChange(object source, MyEventArgs e)

� The role of Main in this example is to pass the changes that took place

in the inventory to the Update method, which fires the event and han-

dles it.

238 | Chapter 10

10-10 Events

Drill 10-3

Write a program to simulate the mouse right-click and respond by

displaying an appropriate text message.

� Note In Chapter 14, you learn about generic delegate types (a new fea-
ture of C# 3.0), which can be used to construct delegates without the need
to explicitly declare them.

Summary

In this chapter:

� You learned how to declare, create, and invoke a delegate.

� You also know how to combine delegates to create a compound dele-

gate that encapsulates more than one method. You also learned how to

add delegates to and remove them from a compound delegate.

� You now know that you can use a delegate that encapsulates an

unnamed method (anonymous method).

� You learned about covariance and contravariance, new features that

were introduced with C# 2005.

� You took a tour of events and learned how to use them in your

applications.

Delegates and Events | 239

Summary

http://www.abicomputer.net

This page intentionally left blank.

Chapter 11

Collections and Iterators

Contents:
� Collections classes
� The Stack collection
� The Queue collection
� The ArrayList collection
� The SortedList collection
� The Hashtable collection
� Specialized collections
� The Linked List collection
� Using enumerators
� Iterators

11-1 Collections Classes

The namespaces System.Collections and System.Collections.Generic

introduced a large number of commonly used collections you can choose

from according to your application. Selecting the right collection is very

important to avoid problems that may arise when your application is

nearing completion.

The array has historically been the most common collection used by

developers. However, it has some disadvantages. The biggest disadvantage

of an array is that it is a static collection with a fixed size. Before .NET

2005, programmers, especially beginners, struggled when trying to change

the size of the array in the middle of a project. The only way to do that was

to copy the array to a new one and discard the old one. With .NET 2005,

the method Array.Resize solved this problem by doing this work for you

in the background. Arrays also have advantages over other collection

types. For example, you can access any element of the array randomly and

quickly by using the index of the element. Also, when you use dynamic

241

http://www.abicomputer.net

collections such as LinkedList and ArrayList collections, you can add

elements at run time without any size restrictions.

In the following sections, some of the most commonly used collections

of the System.Collections are introduced:

� Stack

� Queue

� ArrayList

� SortedList

� Hashtable

� ListDictionary

These collections implement the interface IEnumerable; therefore, you

can iterate over their members using the foreach loop, as explained later in

this chapter. Section 11-8 also introduces the non-generic Linked List col-

lection. In order to use foreach with this collection, you have to manually

enumerate the collection; this will be discussed in Section 11-10. In Chap-

ter 12, the generic LinkedList collection is introduced.

11-2 The Stack Collection

The Stack collection is distinguished as being “last-in, first-out” (LIFO col-

lection classes). When you insert some elements in the stack, the last

element pushed in is the first one that pops out. The capacity of a Stack

collection is the number of elements that can be stored in the collection.

The default initial capacity is 10. When you add more elements to the col-

lection, the capacity is automatically increased.

To try a simple and quick Stack program, use the following procedure:

1. Add the following directive to your application:

using System.Collections;

2. Declare the Stack collection with one of the constructors listed in

Table 11-1, such as:

Stack <stack-name> = new Stack();

3. Add elements to the collection by using the method Push.

4. Use the method Pop to remove and display the elements of the stack.

5. Use the method Peek to display the element at the top of the stack.

6. Display the elements by using a foreach loop, which is designed to

work with collections.

242 | Chapter 11

11-2 The Stack Collection

The following table shows other Stack methods and properties that you

can use in your applications.

� Note The Stack class implements the following interfaces:

IClonable
ICollection
IEnumerable

11-2-1 Stack Members

The following are the commonly used members of the Stack collection.

Table 11-1: Commonly used members of the Stack class

Property/Method Description Syntax

Public constructors Creates and initializes an empty
Stack collection with the default
capacity.

Stack()

Creates and initializes a Stack
collection with the elements of a
specified collection.

Stack(ICollection collection)

Creates and initializes a Stack
collection with an initial specified
capacity or the default capacity,
whichever is greater.

Stack(int capacity)

Clear Removes all items from the
collection.

public virtual void Clear()

Contains Checks if a specific item is in the
collection.

public virtual bool
Contains(object item)

Count Retrieves the number of items in
the collection.

public virtual int Count {get;}

Peek Returns the item at the top of the
collection without removing it.

public virtual object Peek()

Pop Removes and returns the item at
the top of the collection.

public virtual object Pop()

Push Inserts an item in the Stack
collection.

public virtual void Push(object
item)

ToArray Copies all the items in the
collection to an object array.

public virtual object[] ToArray()

For a list of all the members of the collection, see the Stack help file.

Collections and Iterators | 243

11-2 The Stack Collection

http://www.abicomputer.net

Example 11-1

In the following example, a Stack collection is initialized with four string

objects and then displayed using foreach. As you can see, the first inserted

item is the last one displayed.

// Example 11-1.cs
// Stack1

using System;
using System.Collections;

public class MyClass
{

public static void Main()
{

// Create a stack object:
Stack myStack = new Stack();

// Insert elements:
myStack.Push("out");
myStack.Push("first");
myStack.Push("in");
myStack.Push("Last");

// Display the elements:
foreach(object item in myStack)
{

Console.Write("{0} ", item);
}

}
}

Output:

Last in first out

Example 11-2

In the following example, a Stack collection is initialized with an array.

The items in the collection are removed one by one until it is empty. The

number of the remaining items and the item on the top of the collection are

displayed after each removal.

// Example 11-2.cs
// Stack2

using System;
using System.Collections;

244 | Chapter 11

11-2 The Stack Collection

public class MyClass
{

public static void Main()
{

// Declare an array collection:
string[] myArr = {"Tom", "Dick", "Harry"};

// Use the array to initialize a stack object:
Stack myStack = new Stack(myArr);

// Display the number of elements:
Console.WriteLine("The number of elements is: {0} ",

myStack.Count);

// Display all:
Console.Write("Elements: ");
foreach (object obj in myStack)

Console.Write(obj + " ");
Console.WriteLine();

// Display and remove items one by one:
for (int i = myStack.Count; i > 0; i--)
{

Console.WriteLine("\nTop element on the stack is now: {0}",
myStack.Peek());

Console.WriteLine("The number of elements is now: {0}",
myStack.Count);

Console.WriteLine("Element '{0}' has been removed from the
stack.", myStack.Pop());

}

// Display the number of elements:
Console.WriteLine("\nThe number of elements is now: {0} ",

myStack.Count);
}

}

Output:

The number of elements is: 3
Elements: Harry Dick Tom

Top element on the stack is now: Harry
The number of elements is now: 3
Element 'Harry' has been removed from the stack.

Top element on the stack is now: Dick
The number of elements is now: 2
Element 'Dick' has been removed from the stack.

Collections and Iterators | 245

11-2 The Stack Collection

http://www.abicomputer.net

Top element on the stack is now: Tom
The number of elements is now: 1
Element 'Tom' has been removed from the stack.

The number of elements is now: 0

Drill 11-1

Create a Stack collection that contains four elements. Display its

items, display and remove the item on the top, and then check if the

fourth element is in the stack. Finally, copy the remaining items to an

array and display it.

11-3 The Queue Collection

The Queue collection represents a “first-in, first-out” (FIFO) collection of

objects. When you insert some elements in the queue, the first element

inserted is the first one to be extracted. The capacity of a Queue collection

is the number of elements that can be stored in the collection. The default

initial capacity is 32. When you add elements to the collection, the capac -

ity is automatically increased. The growth factor is the number by which

the current capacity is multiplied when the capacity increases. Unless it is

set by the appropriate constructor, the growth factor takes the default value

2.0.

To create a simple and quick Queue collection program, use the follow-

ing procedure:

1. Add the following directive to your program:

using System.Collections;

2. Declare an empty Queue collection with the statement:

Queue <queue-name> = new Queue();

3. Add elements to the collection by using the method Enqueue.

4. Use the method Dequeue to remove and display the elements of the

queue.

5. Use the method Peek to display the element at the beginning of the

queue.

6. Display the elements by using a foreach loop, which is designed to

work with collections.

246 | Chapter 11

11-3 The Queue Collection

The following table lists other Queue methods and properties that you can

use in your applications.

� Note The Queue class implements the following interfaces:

IClonable
ICollection
IEnumerable

11-3-1 Queue Members

Table 11-2 lists the commonly used members of the Queue collection.

Table 11-2: Commonly used members of the Queue class

Property/Method Description Syntax

Public constructors Creates and initializes an empty
Queue collection with the default
capacity (32) and default growth
factor (2.0).

Queue()

Creates and initializes a Queue
collection with the elements of a
specified collection.

Queue(ICollection collection)

Creates and initializes a Queue
collection with an initial specified
capacity or the default capacity.

Queue(int capacity)

Creates and initializes a Queue
collection with an initial specified
capacity and a specified growth
factor.

Queue(int capacity, float growth)

Clear Removes all items from the
collection.

public virtual void Clear()

Contains Checks if a specific item is in the
collection.

public virtual bool
Contains(object item)

Count Retrieves the number of items in
the collection.

public virtual int Count {get;}

Dequeue Removes and returns the item at
the beginning of the collection.

public virtual object Dequeue()

Enqueue Inserts an item at the end of the
collection.

public virtual void Enqueue(object
item)

Peek Returns the item at the beginning
of the collection.

public virtual object Peek()

ToArray Copies all the items in the
collection to an object array.

public virtual object[] ToArray()

TrimToSize Sets the capacity of the collection
to the existing number of items.

public virtual void TrimToSize()

For a list of all the members of the collection, see the Queue help file.

Collections and Iterators | 247

11-3 The Queue Collection

http://www.abicomputer.net

Example 11-3

In the following example, a Queue collection is initialized with four ele-

ments and then displayed by using the foreach statement.

// Example 11-3.cs
// Queue1

using System;
using System.Collections;

public class MyClass
{

public static void Main()
{

// Create an empty Queue collection:
Queue myQueue = new Queue();

// Add items to the collection:
myQueue.Enqueue("First");
myQueue.Enqueue("in");
myQueue.Enqueue("first");
myQueue.Enqueue("out");

// Display the contents:
foreach(string item in myQueue)
{

Console.Write("{0} ", item);
}

}
}

Output:

First in first out

Example 11-4

In the following example, a Queue collection is initialized from an array

collection. The collection items are removed and displayed by using the

Dequeue method until the collection is empty. The number of items is dis-

played before and after the removal.

// Example 11-4.cs
// Queue2

using System;
using System.Collections;

248 | Chapter 11

11-3 The Queue Collection

public class MyClass
{

public static void Main()
{

// Declare an array collection:
string[] myArr = {"Tom", "Dick", "Harry"};

// Use the array to initialize a Queue object:
Queue myQueue = new Queue(myArr);

// Display the number of items:
Console.WriteLine("The number of items is: {0}",

myQueue.Count);

// Display and remove items:
while(myQueue.Count != 0)
{

Console.Write(myQueue.Dequeue() + " ");
}
Console.WriteLine("\nThe number of items is now: {0}",

myQueue.Count);
}

}

Output:

The number of items is: 3
Tom Dick Harry
The number of items is now: 0

Drill 11-2

The Queue collection is a collection of objects, which means that it

can contain both numbers and strings. To demonstrate this, create a

Queue collection and initialize it from an int array, and then create a

string array and add its elements to the collection. Copy the collec-

tion to an object array and display it.

Collections and Iterators | 249

11-3 The Queue Collection

http://www.abicomputer.net

11-4 The ArrayList Collection

An ArrayList collection is a dynamic array. You can add items to and

remove items from the collection at run time. The elements of an

ArrayList collection are not sorted automatically, but you can use the

ArrayList.Sort method to do that. The capacity of an ArrayList collec-

tion is the number of elements that can be stored in the collection. The

default capacity is 16. When you add more elements to the collection, the

capacity is automatically increased. You can set the capacity by using the

appropriate method shown in Table 11-3.

To create a simple and quick ArrayList collection program, use the fol-

lowing procedure:

1. Add the following directive to your program:

using System.Collections;

2. Declare an empty ArrayList collection with the statement:

ArrayList <ArrayList-name> = new ArrayList();

3. Add elements to the collection by using the method Add.

4. Display the elements by using a foreach loop, which is designed to

work with collections.

Table 11-3 lists other ArrayList methods and properties that you can use

in your applications.

� Note The ArrayList class implements the following interfaces:

IClonable
ICollection
IEnumerable
IList

11-4-1 ArrayList Members

The following table contains the commonly used members of the

ArrayList collection.

250 | Chapter 11

11-4 The ArrayList Collection

Table 11-3: Commonly used members of the ArrayList class

Property/Method Description Syntax

Public constructors Creates and initializes an empty
ArrayList with the default
capacity.

ArrayList()

Creates and initializes an
ArrayList with the elements of a
specified collection.

ArrayList(ICollection collection)

Creates and initializes an
ArrayList with an initial specified
capacity.

ArrayList(int capacity)

Add Adds an item to the end of the
collection.

public virtual int Add(object item)

Capacity Retrieves or sets the number of
items in the collection.

public virtual int Capacity {get;
set;}

Clear Removes all items from the
collection.

public virtual void Clear()

Contains Checks if a specific item is in the
collection.

public virtual bool
Contains(object item)

Count Retrieves the number of items in
the ArrayList collection.

public virtual int Count {get;}

IndexOf Retrieves the index of the first
matching item.

Retrieves the index of the first
matching item in the portion of
the collection starting at the
specified startingIndex.

Retrieves the index of the first
matching item in the portion of
the collection starting at the
specified startingIndex and
contains the specified number of
items.

public virtual int IndexOf(object
item)

public virtual int IndexOf(object
item, int startingIndex)

public virtual int IndexOf(object
item, int startingIndex, int
number)

Insert Inserts an item into the ArrayList
collection at the specified index.

public virtual void Insert(int index,
object item)

Item Retrieves or sets the value of an
item that corresponds to a
specified index (e.g.,
myList["003"]).

public virtual object this [int
index] {get; set;}

Remove Removes the first item that
matches the specified item.

public virtual void Remove(object
item)

RemoveAt Removes the item at the specified
index.

public virtual void RemoveAt(int
index)

RemoveRange Removes a range of items
specified by count and starting at
the specified index.

public virtual void
RemoveRange(int index, int
count)

Collections and Iterators | 251

11-4 The ArrayList Collection

http://www.abicomputer.net

Property/Method Description Syntax

Reverse Reverses the order of the items in
the ArrayList collection.

Reverses the order of the items in
a range specified by count and
starting at index.

public virtual void Reverse()

public virtual void Reverse(int
index, int count)

Sort Sorts the items in the collection.

Sorts the items in the collection by
using a comparer.

Sorts the items in the collection by
using a comparer, index, and
count.

public virtual void Sort()

public virtual void
Sort(IComparer comparer)

public virtual void Sort(int index,
int count, IComparer comparer)

ToArray Copies all the items in the
collection to an object array.

public virtual object[] ToArray()

TrimToSize Sets the capacity of the collection
to the existing number of items.

public virtual void TrimToSize()

For a list of all the members of the collection, see the ArrayList help file.

Example 11-5

In the following example, you initialize an empty ArrayList collection and

display its capacity. You then add five items to the collection and display

the number of items and the new capacity. You also sort the collection and

display the items before and after the sorting.

// Example 11-5.cs
// ArrayList

using System;
using System.Collections;

public class MyClass
{

public static void Main()
{

// Create an ArrayList:
ArrayList myArrayList = new ArrayList();

// Display the initial capacity:
Console.WriteLine("The initial capacity is: {0}",

myArrayList.Capacity);

// Initialize the list with some elements:
myArrayList.Add("SNL");
myArrayList.Add("Mad TV");
myArrayList.Add("Seinfeld");

252 | Chapter 11

11-4 The ArrayList Collection

myArrayList.Add("Everybody Loves Raymond");
myArrayList.Add("Married with Children");

// Display the number of items:
Console.WriteLine("The number of items: {0}", myArrayList.Count);

// Display the new capacity:
Console.WriteLine("The capacity is now: {0}",

myArrayList.Capacity);

// Display the elements in the list:
Console.WriteLine("\nThe contents of the ArrayList: ");
DisplayIt(myArrayList);

// Sort and display the list:
myArrayList.Sort();
Console.WriteLine("\nThe contents of the sorted ArrayList: ");
DisplayIt(myArrayList);

}

public static void DisplayIt(ArrayList myList)
{

foreach (object item in myList)
Console.WriteLine("{0}", item);

}
}

Output:

The initial capacity is: 0
The number of items: 5
The capacity is now: 8

The contents of the ArrayList:
SNL
Mad TV
Seinfeld
Everybody Loves Raymond
Married with Children

The contents of the sorted ArrayList:
Everybody Loves Raymond
Mad TV
Married with Children
Seinfeld
SNL

Collections and Iterators | 253

11-4 The ArrayList Collection

http://www.abicomputer.net

Drill 11-3

Add a second “SNL” item to the end of the collection in Example

11-5, and then use the method IndexOf to search for this item starting

at index 2.

11-5 The SortedList Collection

The SortedList collection is similar to the ArrayList, but it is sorted by a

key. The data in the SortedList consists of key/value entries. The data can

be accessed either by keys or indexes. The default capacity of the

SortedList is 16.

To create a simple and quick SortedList collection, use the following

procedure:

1. Add the following directive to your program:

using System.Collections;

2. Declare an empty SortedList collection with the statement:

SortedList <SortedList-name> = new SortedList();

3. Add elements to the collection by using the method Add.

4. Display the elements by using a foreach loop, which is designed to

work with collections.

Table 11-4 lists other SortedList methods and properties that you can use

in your applications.

� Note The SortedList class implements the following interfaces:

IClonable
ICollection
IEnumerable
IDictionary

11-5-1 SortedList Members

The following table contains the commonly used members of the

SortedList class.

254 | Chapter 11

11-5 The SortedList Collection

Table 11-4: Commonly used members of the SortedList class

Property/Method Description Syntax

Public constructors Creates and initializes an empty
SortedList collection with the
default capacity.

SortedList()

Creates and initializes a
SortedList with the elements of a
specified dictionary collection and
sorted according to the
IComparable interface
implemented by each key.

SortedList(IDictionary collection)

Creates and initializes an empty
SortedList collection with an initial
default capacity and sorted
according to the specified
comparer.

SortedList(IComparer comparer)

Add Adds an item to the collection
with the specified key.

public virtual void Add(object key,
object item)

Capacity Retrieves or sets the capacity of a
collection.

public virtual int Capacity {get;
set;}

Clear Removes all items from the
collection.

public virtual void Clear()

Contains Checks if a specific key is in the
SortedList collection.

public virtual bool
Contains(object key)

ContainsKey Same as Contains. public virtual bool
ContainsKey(object key)

ContainsValue Checks if a specific item is in the
collection.

public virtual bool
ContainsValue(object item)

Count Retrieves the number of items in
the collection.

public virtual int Count {get;}

GetByIndex Retrieves the item at the specified
index.

public virtual object
GetByIndex(int index)

GetKey Retrieves the key at the specified
index.

public virtual object GetKey(int
index)

IndexOfKey Retrieves the index of a key. public virtual int
IndexOfKey(object key)

Item Retrieves or sets the item at the
specified key (e.g., myList["003"]).

public virtual object this [object
key] {get; set;}

Remove Removes the first item that
matches the specified key.

public virtual void Remove(object
key)

RemoveAt Removes the item at the specified
index.

public virtual void RemoveAt(int
index)

For a list of all the members of the collection, see the SortedList help file.

Collections and Iterators | 255

11-5 The SortedList Collection

http://www.abicomputer.net

� Note SortedList does not allow duplicate keys. If you use the same key
for two elements, the program throws an exception.

Example 11-6

In the following example, you create a SortedList collection and initialize

it with the keys and names of five TV shows. You then display the number

of items and the capacity. You also display the items of the list, which are

sorted according to the key.

// Example 11-6.cs
// SortedList

using System;
using System.Collections;

public class MyClass
{

public static void Main()
{

// Create an ArrayList:
SortedList myList = new SortedList();

// Initialize the list with some items:
myList.Add("003","SNL");
myList.Add("002","Mad TV");
myList.Add("004","Seinfeld");
myList.Add("001","Married with Children");
myList.Add("006","Everybody Loves Raymond");

// Display the number of items:
Console.WriteLine("The number of items is: {0}", myList.Count);

// Display the capacity:
Console.WriteLine("The capacity is: {0}", myList.Capacity);

// Display the items in the list:
Console.WriteLine("The contents of the list: ");
Console.WriteLine("Key\t Name");
for (int i = 0; i < myList.Count; i++)
{

Console.WriteLine("{0}:\t {1}",
myList.GetKey(i), myList.GetByIndex(i));

}
Console.WriteLine();

}
}

256 | Chapter 11

11-5 The SortedList Collection

Output:

The number of items is: 5
The capacity is: 16
The contents of the list:
Key Name
001: Married with Children
002: Mad TV
003: SNL
004: Seinfeld
006: Everybody Loves Raymond

Drill 11-4

Create a collection similar to the collection in the above example and

then do the following:

1. Use the method IndexOfKey to get the index of a specific key.

2. Find the item that corresponds to that key by using the Item

method.

3. Search for a specific item by using the method ContainsValue.

11-6 The Hashtable Collection

The Hashtable collection is a collection of key/value entries. The entries

are sorted according to the hash code of the key. Items in a Hashtable are

of the type DictionaryEntry, where each entry has a key and a value. The

capacity of a Hashtable is the number of items that can be stored in the

Hashtable. The default initial capacity for a Hashtable is zero. When you

add items to it, the capacity is automatically increased.

To create a simple and quick Hashtable program, use the following

procedure:

1. Add the following directive to your program:

using System.Collections;

2. Declare an empty Hashtable collection with the statement:

Hashtable <Hashtable-name> = new Hashtable();

3. Add elements to the collection by using the method Add.

Collections and Iterators | 257

11-6 The Hashtable Collection

http://www.abicomputer.net

4. Display the elements by using a foreach loop, which is designed to

work with collections. When you display items of a Hashtable, you

can use the DictionaryEntry object like this example (see also the

ListDictionary example in the next section):

foreach (DictionaryEntry de in myHashtable)
Console.WriteLine("{0} {1}", de.Key, de.Value);

You can also use the Keys property to display values that correspond to

each key. For example:

foreach (string k in myHashtable.Keys)
Console.WriteLine("{0} {1}", k, myHashtable[k]);

The following table lists other Hashtable methods and properties that you

can use in your applications.

� Note The Hashtable class implements the following interfaces:

IClonable
ICollection
IDictionary
IEnumerable
ISerializable
IDeserializationCallback

11-6-1 Hashtable Members

The following table contains the commonly used members of the

Hashtable class.

Table 11-5: Commonly used members of the Hashtable class

Property/Method Description Syntax

Public constructors Creates and initializes an empty
Hashtable collection with the
default capacity and load factor.

Hashtable()

Creates and initializes a
Hashtable collection with an
initial specified capacity and the
default load factor.

Hashtable(int capacity)

Creates and initializes a
Hashtable collection with an
initial specified capacity and
specified loadFactor.

Hashtable(int capacity, float
loadFactor)

Add Adds an item with a specified key
and value to the collection.

public virtual void Add(object
key, object value)

Clear Removes all items from the
collection.

public virtual void Clear()

258 | Chapter 11

11-6 The Hashtable Collection

Property/Method Description Syntax

Contains Checks if a specified key is in the
collection.

public virtual bool
Contains(object key)

ContainsKey Same as Contains. public virtual bool
ContainsKey(object key)

ContainsValue Checks if a specified value is in
the collection.

public virtual bool
Contains(object value)

Count Retrieves the number of items in
the collection.

public virtual int Count {get;}

Item Retrieves or sets the value of an
item that corresponds to a
specified key (e.g., myList["003"]).

public virtual object this [object
key] {get; set;}

Keys Retrieves an ICollection
containing the keys in the
collection.

public virtual ICollection Keys
{get;}

Remove Removes an item with a specified
key from the collection.

public virtual void Remove(object
key)

Values Retrieves an ICollection
containing the values in the
collection.

public virtual ICollection Values
{get;}

For a list of all the members of the collection, see the Hashtable help file.

Example 11-7

In the following example, a Hashtable collection is initialized with the

area codes for some of the states in the U.S. The area codes and the states

are displayed.

// Example 11-7.cs
// Hashtable

using System;
using System.Collections;
public class MyClass
{

public static void Main()
{

// Creates a Hashtable object:
Hashtable AreaCodeHash = new Hashtable();

// Initializes the Hashtable.
AreaCodeHash.Add("201", "New Jersey");
AreaCodeHash.Add("337", "Louisiana");
AreaCodeHash.Add("425", "Washington");
AreaCodeHash.Add("415", "California");
AreaCodeHash.Add("503", "Oregon");

Collections and Iterators | 259

11-6 The Hashtable Collection

http://www.abicomputer.net

AreaCodeHash.Add("489", "Texas");

// Displays the contents of the Hashtable.
DisplayIt(AreaCodeHash);

// Display the number of elements:
Console.WriteLine("Number of elements: {0}", AreaCodeHash.Count);

}

public static void DisplayIt(Hashtable AreaCodeHash)
{

Console.WriteLine("Area Code\tState");
foreach (string k in AreaCodeHash.Keys)

Console.WriteLine("{0, -16}{1}", k, AreaCodeHash[k]);
}

}

Output:

Area Code State
337 Louisiana
489 Texas
425 Washington
503 Oregon
415 California
201 New Jersey
Number of elements: 6

Drill 11-5

Create a Hashtable collection for the zip codes of cities in your state,

then display all the entries and the city that corresponds to a specified

zip code in this format: ZipCodeHash["98006"]. The output should

look something like:

Zip Code City
98501 Olympia
98101 Seattle
98006 Bellevue
98201 Everett
98040 Mercer Island
98033 Kirkland

The city that corresponds to zip code "98006": Bellevue

260 | Chapter 11

11-6 The Hashtable Collection

11-7 Specialized Collections

There are some specialized collections in the .NET Framework class

library that are used for specific purposes. They are available in the Sys-

tem.Collections.Specialized namespace.

The following table lists some of the common specialized collections.

Table 11-6: Commonly used specialized collections

Collection Description

HybridDictionary Implements the IDictionary interface by using a ListDictionary while
the collection contains a small number of elements (10 or less).
When the number of elements increases, it switches to a Hashtable.

NameValueCollection A collection of keys and values that can be accessed either with the
key or with the index. Both keys and values are strings.

OrderedDictionary A collection of key/value entries. The items in this collection are
DictionaryEntry type objects.

StringCollection A collection of strings whose items can be accessed using a
zero-based integer index.

StringDictionary A string collection that implements a Hashtable. Both keys and
values are strings.

The ListDictionary (a HybridDictionary with a few items) collection is

demonstrated in the following section.

11-7-1 The ListDictionary Collection

The ListDictionary collection implements the IDictionary interface using

a singly-linked list. It is recommended for small collections that contain

less than 10 items.

11-7-2 ListDictionary Members

The following table lists the commonly used members of the

ListDictionary class.

Table 11-7: Commonly used members of the ListDictionary class

Property/Method Description Syntax

Public constructors Creates an empty ListDictionary
collection with the default
comparer.

ListDictionary()

Creates an empty ListDictionary
collection with a specified
comparer.

ListDictionary(IComparer
comparer)

Add Adds an item with a specified key
and value to the collection.

public void Add(object key, object
value)

Collections and Iterators | 261

11-7 Specialized Collections

http://www.abicomputer.net

Property/Method Description Syntax

Clear Removes all items from the
collection.

public void Clear()

Contains Checks if a specified key is in the
collection.

public bool Contains(object key)

CopyTo Copies the collection to a
one-dimensional array at the
specified index.

void CopyTo(Array array, int
index)

Count Retrieves the number of entries in
the collection.

public int Count {get;}

Item Retrieves or sets the value of an
item that corresponds to a
specified key (e.g., myLD["Learn
J#"]).

public object this [object key]
{get; set;}

Keys Retrieves an ICollection of the
keys contained in the collection.

public ICollection Keys {get;}

Remove Removes an item with a specified
key from the collection.

public void Remove(object key)

Values Retrieves an ICollection of the
values contained in the collection.

public ICollection Values {get;}

For a list of all the members of the collection, see the ListDictionary help

file.

Example 11-8

In this example, you create a ListDictionary collection and initialize it

with names of books and their corresponding prices, and then you display

its contents by using a foreach statement. Notice that the foreach loop is

using the DictionaryEntry structure that contains both the key and the

value of the current dictionary entry.

// Example 11-8.cs
// ListDictionary collection

using System;
using System.Collections;
using System.Collections.Specialized;

public class LDClass
{

public static void Main(string[] args)
{

// Create an empty ListDictionary object:
ListDictionary myLD = new ListDictionary();

// Initialize the ListDictionary collection:
myLD.Add("Learn Pascal", "$39.95");

262 | Chapter 11

11-7 Specialized Collections

myLD.Add("Learn Pascal in Three Days", "$19.95");
myLD.Add("Learn C in Three Days", "$19.95");
myLD.Add("Learn J#", "$35.95");
myLD.Add("Learn C#", "$39.95");

// Display the contents:
DisplayIt(myLD);

}

public static void DisplayIt(ListDictionary myLD)
{

string s = "\t\t\t\t";
Console.WriteLine("Book{0}Price\n", s);
foreach (DictionaryEntry book in myLD)

Console.WriteLine("{0,-32}{1}", book.Key, book.Value);
}

}

Output:

Book Price

Learn Pascal $39.95
Learn Pascal in Three Days $19.95
Learn C in Three Days $19.95
Learn J# $35.95
Learn C# 2005 $39.95

Drill 11-6

Modify the example above to use the Values and Keys properties to

do the following:

1. Display all the values in the collection. Use a foreach statement

like this:

foreach (string value in myLD.Values) ...

2. Display all the keys in the collection. Use a foreach statement like

this:

foreach (string key in myLD.Keys) ...

3. Use the Keys property as an index for the items in the collection.

Use a statement like the following to display the same output as

that of Example 11-8:

foreach (string key in myLD.Keys)
Console.WriteLine("{0, -32}{1}", key, myLD[key]);

Collections and Iterators | 263

11-7 Specialized Collections

http://www.abicomputer.net

11-8 The Linked List Collection

Before .NET 2005, the linked list was not part of the System.Collections

namespace. Programmers had to design the linked list from scratch. After

.NET 2005, the generic doubly-linked list became part of the System.Col-

lection.Generic namespace, providing programmers with a number of

methods and properties that made their jobs easier.

Example 11-9

This example demonstrates how to build and display a non-generic linked

list. The linked list class contains a class called Node and a field of the

type Node (head), which represents the head of the linked list. The Node

class contains two fields: one field that points to the next node in the

linked list (next) and another that contains the data (item). Remember that

this linked list collection cannot use the foreach statement to iterate

through its items without using an enumerator. In the next section, the

same example will be revisited to demonstrate how to use iterators with

this linked list.

// Example 11-9.cs
// Linked list

using System;

public class LL
{

public Node head, current;
public class Node
{

public Node next;
public int item;

}
}
class MyClass
{

static void Main(string[] args)
{

// Create a linked list with a null pointer:
LL ll = new LL();
ll.head = null;

// Build the linked list:
Console.WriteLine("Building the list:");
for (int i = 1; i <= 5; i++)
{

// Create the current node:

264 | Chapter 11

11-8 The Linked List Collection

ll.current = new LL.Node();
// Assign to current node:
ll.current.item = i * 10;
ll.current.next = ll.head;
// Move current to head:
ll.head = ll.current;
Console.WriteLine(ll.current.item + " ");

}

// Traverse the linked list:
ll.current= ll.head;
Console.WriteLine("\nTraversing the list:");
while (ll.current != null)
{

// Move to next node:
Console.WriteLine(ll.current.item + " ");
ll.current = ll.current.next;

}
}

}

Output:

Building the list:
10
20
30
40
50

Traversing the list:
50
40
30
20
10

11-9 Using Enumerators

Enumerators are used to iterate through a collection. They can only be

used to read data from a collection and cannot modify the collection. Enu-

merators are created by implementing the interfaces IEnumerable and

IEnumerator. As you noticed in the previous sections, all System.Collec-

tions collections implement the IEnumerable interface. That is why you

can iterate through these collections using a foreach loop. In fact, the

foreach loop is recommended for reading data from collections because it

hides the complexity of enumerators.

Collections and Iterators | 265

11-9 Using Enumerators

http://www.abicomputer.net

To enumerate a collection, implement the IEnumerable interface,

which exposes the enumerator. The method GetEnumerator, the only pub-

lic member of the IEnumerable interface, returns an enumerator of the

type IEnumerator, which is used to iterate through the collection.

The IEnumerator interface contains two abstract methods, MoveNext

and Reset, and a property called Current:

object Current {get;}
bool MoveNext()
void Reset()

Here is a brief description of the IEnumerator interface members:

� The Current property retrieves the current item in the collection.

� The MoveNext method moves the enumerator to the next item in the

collection.

� The Reset method moves the enumerator to the initial position before

the first item in the collection.

To read the collection, start by calling MoveNext in order to move the enu-

merator to the first item in the collection, then use Current to read the

item. Each consequent read should be preceded by calling MoveNext.

When the enumerator is located before the first item or after the last ele-

ment in the collection, MoveNext returns false and the value of Current

becomes undefined. Using Current in one of these positions throws an

exception. If the collection is changed (by another thread, for instance)

during this process by adding, deleting, or modifying items, the enumerator

is invalidated.

The following example applies these rules to enumerate a user-defined

collection.

Example 11-10

// Example 11-10.cs
// Using enumerators

using System;
using System.Collections;

// Declare the collection:
public class MyCollection: IEnumerable
{

string[] items;
public MyCollection()
{

items = new string[4] {"This", "is", "my", "collection."};
}

266 | Chapter 11

11-9 Using Enumerators

// Implement the GetEnumerator() method:
IEnumerator IEnumerable.GetEnumerator()
{

return new MyEnumerator(this);
}

// Implement the members of IEnumerator:
public class MyEnumerator: IEnumerator
{

int pointer;
MyCollection myColl;
public MyEnumerator(MyCollection c)
{

myColl = c;
pointer = -1;

}

// Implement Reset:
public void Reset()
{

pointer = -1;
}

// Implement MoveNext:
public bool MoveNext()
{

pointer++;
if (pointer > myColl.items.Length - 1)

return false;
return true;

}

// Implement the Current property on IEnumerator:
object IEnumerator.Current
{

get
{

return (myColl.items[pointer]);
}

}
}

}

class MyClass
{

public static void Main(string[] args)

Collections and Iterators | 267

11-9 Using Enumerators

http://www.abicomputer.net

{
MyCollection myColl = new MyCollection();

// Display the collection:
foreach (string item in myColl)
{

Console.Write(item + " ");
}
Console.WriteLine();

}
}

Output:

This is my collection.

Example 11-11

This example is a rewrite of Example 11-8 that uses an enumerator based

on the IDictionaryEnumerator interface. The IDictionaryEnumerator

is used to enumerate the elements of a non-generic dictionary. It contains

the Entry property that gets both the key and the value of the current dic-

tionary entry.

// Example 11-11.cs
// Using enumerators with collections.

using System;
using System.Collections;
using System.Collections.Specialized;

public class LDClass
{

public static void Main(string[] args)
{

// Create an empty ListDictionary object:
ListDictionary myLD = new ListDictionary();

// Initialize the ListDictionary collection.
myLD.Add("Learn Pascal", "$39.95");
myLD.Add("Learn Pascal in Three Days", "$19.95");
myLD.Add("Learn C in Three Days", "$19.95");
myLD.Add("Learn J#", "$35.95");
myLD.Add("Learn C#", "$39.95");

// Display the contents of the collection:
DisplayIt(myLD);

}

268 | Chapter 11

11-9 Using Enumerators

// Display the contents by using the enumerator:
public static void DisplayIt(IDictionary myLD)
{

IDictionaryEnumerator myEnumerator = myLD.GetEnumerator();
string s = "\t\t\t\t";
Console.WriteLine("Book{0}Price\n", s);
while (myEnumerator.MoveNext())

Console.WriteLine("{0,-32}{1}", myEnumerator.Key,
myEnumerator.Value);

}
}

Output:

Book Price

Learn Pascal $39.95
Learn Pascal in Three Days $19.95
Learn C in Three Days $19.95
Learn J# $35.95
Learn C# $39.95

11-10 Iterators

As you might have noticed in the previous section, implementing the

IEnumerator interface can be difficult, especially with complex enumera-

tions. For this reason, C# 2005 introduced iterators to solve the problem by

standardizing the enumerator implementation.

An iterator is used to iterate through a collection and return an ordered

sequence of values of the same type. The backbone of an iterator is the

yield statement, which specifies the returned value. One way to create an

iterator is to implement the GetEnumerator method of the IEnumerable

interface as shown in the following example:

class MyClass
{

public string[] item = {"One", "Two", "Three"};
public IEnumerator GetEnumerator()
{

for (int i = 0; i < item.Length; i++)
yield return item[i];

}
}

The yield return statement here is used to return the Current property of

the item. The MoveNext method calls the next yield return until all the

Collections and Iterators | 269

11-10 Iterators

http://www.abicomputer.net

items of the enumeration are returned. The presence of the

GetEnumerator method makes the class enumerable, which means that

you can use the foreach statement to display the enumeration values:

MyClass mc = new MyClass();
foreach (string item in mc)
{

Console.WriteLine(item);
}

Another way to create an iterator is to use a named iterator by declaring a

method that returns the IEnumerable interface. In this case, there is no

need to implement the GetEnumerator method. For example:

public string[] item = {"One", "Two", "Three"};
public IEnumerable MyIterator() // named iterator
{

for (int i = 0; i < item.Length; i++)
yield return item[i];

}

With this iterator block, you can use the iterator method MyIterator to dis-

play the items of the collection:

MyClass mc = new MyClass();
foreach (string item in mc.MyIterator())
{

Console.WriteLine(item);
}

11-10-1 The Iterator Blocks

The iterator block, which can be a method, property, or operator method,

contains the logic for enumerating a collection. The iterator block contains

yield return statements, but no return statements are allowed in the block.

The iterator block has some restrictions, though:

� It cannot be an anonymous method.

� It cannot appear in a try block with a catch clause or in a finally block.

� An iterator method must return an IEnumerable or IEnumerator

interface.

� An iterator method cannot have ref or out parameters.

� An iterator method cannot exist in an unsafe block.

270 | Chapter 11

11-10 Iterators

11-10-2 The yield Statement

The yield statement is used in an iterator block to iterate through a collec-

tion. It takes one of the following forms:

yield return expression;
yield break;

In the first form, the yield return is used to evaluate and return expression,

which is the value of the iterator object. The yield return statement is used

to return the Current property of the item.

In the second form, yield break is used to end the enumeration.

It is possible to use more than one yield return in the same iterator to

return several values, as shown in this example:

public class MyClass
{

public IEnumerable MyIterator()
{

yield return "Hi there!";
yield return "I am your iterator.";
yield return "I can return";
yield return "as many items as required.";

}
public static void Main()
{

MyClass mc = new MyClass();
foreach (string item in mc.MyIterator())
Console.Write(item + " ");

}

Example 11-12

This example is a modification of Example 11-9, which contained a

non-generic linked list. In this example, an iterator is used to enumerate the

linked list and traverse it using the foreach loop.

// Example 11-12.cs
// Using an iterator with non-generic linked list

using System;
using System.Collections;

public class LL
{

public Node head, current;
public class Node

Collections and Iterators | 271

11-10 Iterators

http://www.abicomputer.net

{
public Node next;
public int item;

}

// Create a named iterator:
public static IEnumerable myColl(LL ll)
{

while (ll.current != null)
{

yield return ll.current.item;

// Move to next node:
ll.current = ll.current.next;

}
}
static void Main(string[] args)
{

// Create a LL with a null pointer:
LL ll = new LL();
ll.head = null;

// Build the list:
Console.WriteLine("Building the list:");
for (int i = 1; i <= 5; i++)
{

// Create the current node:
ll.current = new LL.Node();
// Assign to current node:
ll.current.item = i * 10;
ll.current.next = ll.head;
// Move current to head:
ll.head = ll.current;
Console.WriteLine(ll.current.item + " ");

}
// Traverse the list using foreach:
Console.WriteLine("\nTraversing the list:");
foreach(int i in myColl(ll))

Console.WriteLine(i);
}

}

272 | Chapter 11

11-10 Iterators

Output:

Building the list:
10
20
30
40
50

Traversing the list:
50
40
30
20
10

Drill 11-7

Rewrite Example 4-7 from Chapter 4 to create an iterator that iterates

through the collection of prime numbers between 1 and 10 and dis-

play its items.

Summary

In this chapter:

� You learned about the collection classes in the namespace

System.Collections.

� You learned how to use the most common collection classes such as

Stack, Queue, ArrayList, SortedList, and Hashtable.

� You were introduced to the specialized collections in the namespace

System.Collections.Specialized and used the ListDictionary

collection.

� You learned how to build and traverse a non-generic linked list

collection.

� You also learned how to create enumerators by implementing the inter-

faces IEnumerable and IEnumerator, and how to use them to iterate

through a collection.

Collections and Iterators | 273

Summary

http://www.abicomputer.net

� You learned about iterators, and used them to enumerate a non-generic

linked list and traverse it using the foreach loop.

� In working with iterator blocks, you learned how to use the yield

return statement to return the Current property of an item, and the

yield break statement to end the enumeration.

274 | Chapter 11

Summary

Chapter 12

Generics

Contents:
� Definition of generics
� The common generic collection classes in the

.NET class library
� The common generic collection interfaces in the

.NET class library
� Creating generic classes
� Creating generic methods
� Using the default keyword
� Using constraints
� Generic delegates
� Generic interfaces
� Benefits and limitations of generics

12-1 What Are Generics?

Generics, a new feature that was added to C# 2005, enable the programmer

to design classes or function members and postpone the definition of types

until the class is instantiated. By adding this feature, C# made a big step in

code reuse, especially in the field of collections.

When you use a collection such as ArrayList, you store the items as

objects because the type object can hold any kind of data. Consider this

example where you store some double numbers in a Stack collection:

Stack myStack = new Stack ();
myStack.Push (4.5);
myStack.Push (2.1);
myStack.Push (3.2);

275

http://www.abicomputer.net

When you create this list, the compiler automatically boxes the double

numbers to convert them to the object type. When you retrieve the data,

you have to cast the numbers to the double type. For example:

foreach(object obj in myList)
Console.WriteLine((double)obj * 3.14);

If the elements of the stack include mixed types, such as double and

string, casting would be a problem. For example, you can add the follow-

ing item to the Stack collection:

myStack.Push ("This is my string item");

When you try to cast this item as you did with the previous item, the pro-

gram throws an InvalidCastException exception.

Before generics, if you needed a stack of integers or strings, you had to

create a collection for each type. Now, you can create one generic collec-

tion useful for any type, and postpone specifying the actual type until you

create your objects. Instead of using the namespace System.Collections,

use the namespace System.Collections.Generic, which includes a generic

Stack.

Here is an example of using the generic Stack collection:

Stack<double> myStack = new Stack<double>();
Stack<int> myStack = new Stack<int>();
Stack<string> myStack = new Stack<string>();

In these examples, you just determined the type on instantiating the Stack

class.

The syntax of the generic Stack class looks like this:

public class Stack<T> { }

The letter T, which is called the type parameter, can be replaced on

instantiating the class with a type argument, which can be any strong type

such as int, double, and so forth. It is a common convention to use the let-

ter T for a type parameter. If a type is using more than one type parameter,

the name of each type starts with a T, such as <T1, T2> or <TKey,

TValue>.

You can create generic types, methods, properties, delegates, and

interfaces.

� Note A type can be either generic or concrete. Concrete types do not
use type parameters, while generic types are distinguished by using type
parameters.

276 | Chapter 12

12-1 What Are Generics?

12-2 Using Generic Collections

Before you learn how to create your own generic classes, interfaces, meth-

ods, and delegates, you may want to take a look at some of the generic

collection classes in the .NET Framework class library and learn how to

use them.

In addition to the non-generic collections you learned about in Chapter

11, the namespace System.Collections.Generic provides interfaces,

classes, and structures that allow you to create strongly typed collections

that provide more type safety and performance than their counterparts of

the non-generic collections. It is recommended that you use generic collec-

tions whenever possible since all the non-generic collections have

equivalent generic collections.

In the following sections, you are introduced to the following generic

collections:

� List<T>

� Dictionary<TKey, TValue>

� LinkedList<T>

You also learn about the following interfaces:

� ICollection<T>

� IDictionary<TKey, TValue>

12-3 List<T>

The List generic collection is equivalent to ArrayList. They both behave

like an array as they both use indexes for their elements.

The generic List collection implements the following generic interfaces:

� IList<T>

� ICollection<T>

� IEnumerable<T>

It also implements the following non-generic interfaces:

� IList

� ICollection

� IEnumerable

Generics | 277

12-2 Using Generic Collections

http://www.abicomputer.net

To create a simple generic List collection, use the following procedure:

1. Add the following directive to your program:

using System.Collections.Generic;

2. Declare an empty List collection with the statement:

List <type-argument> list-name = new List<type-argument>();

The type-argument can be any value or reference data type, such as

string, or any of the value types. For example:

List <string> list-name = new List<string>();

3. Add elements to the collection by using the method Add.

4. Display the elements by using a foreach loop, which is designed to

work with collections.

5. To access a specific item, use its index number. For example:

Console.Write(list-name[3]);

Table 12-1 lists other List<T> methods and properties that you can use in

your applications.

12-3-1 List<T> Members

The following table contains the commonly used members of the List<T>

class.

Table 12-1: Commonly used members of the List<T> class

Property/Method Description Syntax

Public constructors Creates and initializes an empty
List with the default capacity.

public List()

Creates and initializes a List with
the elements of a specified
collection.

public List(IEnumerable<T>
collection)

Creates and initializes a List with
an initial specified capacity.

public List(int capacity)

Add Adds an item to the end of the
collection.

public void Add(T item)

Capacity Retrieves or sets the number of
items in the collection.

public int Capacity {get; set;}

Clear Removes all items from the
collection.

public void Clear()

Contains Checks if a specific item is in the
collection.

public bool Contains(T item)

Count Retrieves the number of items in
the List collection.

public int Count {get;}

278 | Chapter 12

12-3 List<T>

Property/Method Description Syntax

IndexOf Retrieves the index of the first
matching item.

Retrieves the index of the first
matching item in the portion of
the collection starting at the
specified index to the end of the
list.

Retrieves the index of the first
matching item in the portion of
the collection starting at the
specified index and contains the
specified number of items.

List.IndexOf (T)

List.IndexOf (T, Int32)

List.IndexOf (T, Int32, Int32)

Insert Inserts an item into the List
collection at the specified index.

public void Insert(int index, T
item)

Item Retrieves or sets the value of an
item that corresponds to a
specified index (e.g.,
myList["003"]).

public T this [int index] {get; set;}

Remove Removes the first item that
matches the specified item.

public bool Remove(T item)

RemoveAt Removes the item at the specified
index.

public void RemoveAt(int index)

RemoveRange Removes a range of items
specified by count and starting at
the specified index.

public void RemoveRange(int
index, int count)

Reverse Reverses the order of the items in
the List collection.

Reverses the order of the items in
a range specified by count and
starting at index.

public void Reverse()

public void Reverse(int index, int
count)

Sort Sorts the items in the collection
by using the default comparer.

Sorts the items in the collection
by using a specified
System.Comparison.

Sorts the items in the collection
by using a specified comparer.

Sorts the items in the range
specified by index, and count
using a specified comparer.

public void Sort()

public void Sort(Generic
Comparison)

public void Sort(Generic
IComparer)

public void Sort(int index, int
count, Generic IComparer)

ToArray Copies all the items in the
collection to an array.

public T[] ToArray()

TrimExcess Sets the capacity of the collection
to the existing number of items.

public void TrimExcess()

Generics | 279

12-3 List<T>

http://www.abicomputer.net

Example 12-1

In the following example, you create an empty generic List collection and

initialize it with some string items, and then you display the collection.

You also use the methods Insert and Remove to insert and remove items

from the collection, and you use the Item property to display an item at a

specific index.

// Example 12-1.cs
// List<T> example

using System;
using System.Collections.Generic;

class MyClass
{

static void Main()
{

// Declare the list:
List<string> myList = new List<string>();

// Build the list:
myList.Add("Dylan");
myList.Add("Isabella");
myList.Add("Eve");
myList.Add("Angelina");

// Display items:
DisplayIt(myList);

// Add a new item:
myList.Insert(3,"Bill");
Console.WriteLine("Adding Bill...");

// Display items:
DisplayIt(myList);

// Search the list for the item "Bill":
bool test = myList.Contains("Bill");
Console.WriteLine("Is \"Bill\" in the list? {0}", test);

// Remove "Bill" and then search for it:
myList.Remove("Bill");
Console.WriteLine("Removing Bill...");

test = myList.Contains("Bill");
Console.WriteLine("Is \"Bill\" in the list now? {0}", test);
Console.WriteLine();

280 | Chapter 12

12-3 List<T>

// Display items:
DisplayIt(myList);

// Display item #2:
Console.WriteLine("Item number 2: {0}", myList[2]);

}

// Display the list:
static void DisplayIt(List<string> myL)
{

foreach(string name in myL)
{

Console.WriteLine(name);
}
Console.WriteLine();

}
}

Output:

Dylan
Isabella
Eve
Angelina

Adding Bill...
Dylan
Isabella
Eve
Bill
Angelina

Is "Bill" in the list? True
Removing Bill...
Is "Bill" in the list now? False

Dylan
Isabella
Eve
Angelina

Item number 2: Eve

Drill 12-1

Create a List collection that contains some strings, then sort the list

and display it. Next, copy the List to an array and display it.

Generics | 281

12-3 List<T>

http://www.abicomputer.net

12-4 Dictionary<TKey, TValue>

The generic Dictionary collection resembles the non-generic Hashtable

collection. The collection stores entries in the form of key/value pair

objects by using the generic structure KeyValuePair<TKey, TValue>.

The Dictionary collection stores values in a sub-collection called

ValueCollection and the keys in a sub-collection called KeyCollection.

You can retrieve each sub-collection separately. Keys must be unique and

cannot be null; values don’t have to be unique and can be null.

The Dictionary class implements the following generic interfaces:

� IDictionary<TKey, TValue>

� ICollection<KeyValuePair<TKey, TValue>>

� IEnumerable<KeyValuePair<TKey, TValue>>

It also implements the following non-generic iterfaces:

� IDictionary

� ICollection

� IEnumerable

� ISerializable

� IDeserializationCallback

To create a simple generic Dictionary collection, follow this procedure:

1 Add the following directive to your program:

using System.Collections.Generic;

2. Declare an empty Dictionary collection with the statement:

Dictionary<type-argument1, type-argument2 > dictionary-name =
new Dictionary<type-argument1, type-argument2>();

The type-argument1 and type-argument2 represent the key and the

value type for the items in the Dictionary collection. They can be any

value or reference data type. For example:

Dictionary<int, string> myDictionary = new Dictionary
<int, string>();

3. Add elements to the collection by using the Add method. For

example:

myDictionary.Add(10, "Apples");

282 | Chapter 12

12-4 Dictionary<TKey, TValue>

4. Display the elements by using a foreach loop and the KeyValuePair

element type. For example:

foreach(KeyValuePair<int, string> mD in myDictionary)
{

Console.WriteLine("Key = {0}, Value = {1}",
mD.Key, mD.Value);

}

5. To access a specific value, use its Item property. For example:

Console.Write(myDictionary[3]);

The following table lists other Dictionary<TKey, TValue> methods and

properties that you can use in your applications.

12-4-1 Dictionary<TKey, TValue> Members

Table 12-2: Commonly used members of the Dictionary<TKey, TValue> class

Property/Method Description Syntax

Public constructors Creates and initializes an empty
generic Dictionary collection with
the default equality comparer for
the key type.

public Dictionary()

Creates and initializes an empty
generic Dictionary collection with
an initial specified capacity and
the default equality comparer for
the key type.

public Dictionary(int capacity)

Creates and initializes a generic
Dictionary collection with the
elements of a specified
IDictionary and the default
equality comparer for the key
type.

public
Dictionary(IDictionary<TKey,
TValue> dictionary)

Add Adds an item with a specified key
and value to the collection.

public void Add(TKey key, TValue
value)

Clear Removes all items from the
collection.

public virtual void Clear()

ContainsKey Checks if a specified key is in the
collection.

public bool ContainsKey(TKey
key)

ContainsValue Checks if a specified value is in
the collection.

public bool
ContainsValue(TValue value)

Count Retrieves the number of
key/value entries in the collection.

public int Count {get;}

Item Retrieves or sets the value of an
item that corresponds to a
specified key (e.g.,
myDictionary[33] or
yourDictionary["Cherry"]).

public TValue this [TKey key]
{get; set;}

Generics | 283

12-4 Dictionary<TKey, TValue>

http://www.abicomputer.net

Property/Method Description Syntax

Keys Retrieves the KeyCollection that
contains the keys of the
collection.

public KeyCollection Keys {get;}

Remove Removes an item with a specified
key from the collection.

public bool Remove(TKey key)

TryGetValue Retrieves the value associated
with a specified key.

public bool TryGetValue(TKey
key, out TValue value)

Values Retrieves the ValueCollection that
contains the values of the
collection.

public ValueCollection Values
{get;}

Example 12-2

This example creates an empty Dictionary collection and initializes it with

some key/value entries. Keys represent fruit types and values represent the

corresponding prices. The contents of the collection are displayed, and

then the collection is searched for two types of fruit: cherries and oranges.

The oranges are then removed and the collection is searched again for

oranges; the appropriate message is displayed in each case.

// Example 12-2.cs
// Dictionary collection example

using System;
using System.Collections.Generic;

public class Example
{

public static void Main()
{

// Create an empty Dictionary collection:
Dictionary<string, double> myDictionary =

new Dictionary<string, double>();

// Add some elements to the dictionary.
// Assume keys are fruit and values are prices.
// Prices can be duplicates.
myDictionary.Add("Apples", 0.30);
myDictionary.Add("Oranges", 0.50);
myDictionary.Add("Cherries", 0.44);
myDictionary.Add("Peaches", 0.50);

// Display items by using the KeyValuePair type:
foreach(KeyValuePair<string, double> mD in myDictionary)
{

Console.WriteLine("{0,-20}{1:C}", mD.Key, mD.Value);

284 | Chapter 12

12-4 Dictionary<TKey, TValue>

}

// Search for "Cherries," and if found display the price:
SearchForItem(myDictionary, "Cherries");

// Search for "Oranges," and if found display the price:
SearchForItem(myDictionary, "Oranges");

// Remove "Oranges":
myDictionary.Remove("Oranges");
Console.WriteLine("Oranges removed...");

// Search for "Oranges," and if found display the price:
SearchForItem(myDictionary, "Oranges");

}

// A method to search for a specific key in the Dictionary collection:
static void SearchForItem(Dictionary<string, double> myDictionary,

string s)
{

if (myDictionary.ContainsKey(s))
Console.WriteLine("{0} are in the store. The price is {1:C}.",

s, myDictionary[s]);
else

Console.WriteLine("{0} are not in the store now. Please check
back later.", s);

}
}

Output:

Apples $0.30
Oranges $0.50
Cherries $0.44
Peaches $0.50
Cherries are in the store. The price is $0.44.
Oranges are in the store. The price is $0.50.
Oranges removed...
Oranges are not in the store now. Please check back later.

Drill 12-2

Create a generic Dictionary collection that contains some key/value

entries, and then create two collections from the Dictionary collec-

tion, one that contains the values and one that contains the keys.

Display the contents of each collection.

Generics | 285

12-4 Dictionary<TKey, TValue>

http://www.abicomputer.net

12-5 LinkedList<T>

The generic linked list is a doubly-linked list where each node points to the

next node and to the previous node. When you compare this linked list to

the non-generic linked list introduced in Chapter 11, you realize that

although it’s more sophisticated than the non-generic version, the generic

linked list is easier to build and manipulate. (Remember also that you have

to build the non-generic linked list from scratch because it is not supported

by the .NET class library.) The nodes of the generic linked list are of the

type LinkedListNode<T>. Each element of the LinkedListNode collection

contains a value and a reference to its LinkedList. It also contains a refer-

ence to the next node and to the previous node.

The LinkedList<T> collection implements the following generic

interfaces:

� ICollection<T>

� IEnumerable<T>

It also implements the following non-generic interfaces:

� ICollection

� IEnumerable

� ISerializable

� IDeserializationCallback

To create a simple generic LinkedList collection, follow this procedure:

1. Add the following directive to your program:

using System.Collections.Generic;

2. Declare an empty LinkedList collection with the statement:

LinkedList<type-argument> list-name = new
LinkedList<type-argument>();

The type-argument can be any value or reference data type such as

string, or any of the value types. For example:

LinkedList<string> myLinkedList = new LinkedList<string>();

3. Add nodes to the collection by using the methods AddBefore,

AddAfter, AddFirst, or AddLast.

4. You can also remove nodes from the collection by using the methods

Remove, RemoveFirst, or RemoveLast.

286 | Chapter 12

12-5 LinkedList<T>

5. Display the elements by using a foreach loop. For example:

foreach (string name in myLinkedList)
{

Console.WriteLine(name);
}

6. To check for the existence of a specific value, use the method Con-

tains. For example:

Console.Write(myLinkedList.Contains("Tom"));

Tables 12-3 and 12-4 list other LinkedList<T> and LinkedListNode<T>

methods and properties that you can use in your applications.

12-5-1 LinkedList<T> Members

The following table contains the commonly used members of the

LinkedList<T> class.

Table 12-3: Commonly used members of the LinkedList<T> class

Property/Method Description Syntax

Public constructors Creates and initializes an empty
LinkedList.

public LinkedList()

Creates and initializes a
LinkedList with the elements of a
specified collection.

public LinkedList(IEnumerable<T>
collection)

AddAfter Adds a node containing the
specified value after a specified
existing node.

public LinkedListNode<T>
AddAfter(LinkedListNode<T>
node, T value)

AddBefore Adds a node containing the
specified value before a specified
existing node.

public LinkedListNode<T>
AddBefore(LinkedListNode<T>
node, T value)

AddFirst Adds a node containing the
specified value at the beginning
of the LinkedList.

public LinkedListNode<T>
AddFirst(T value)

AddLast Adds a node containing the
specified value at the end of the
LinkedList.

public LinkedListNode<T>
AddLast(T value)

Clear Removes all the nodes from the
LinkedList.

public void Clear()

Contains Determines if a specific value is
in the LinkedList.

public bool Contains(T value)

Count Retrieves the number of nodes in
the LinkedList collection.

public int Count {get;}

Find Finds the first node that contains
the matching value.

public LinkedListNode<T> Find(T
value)

FindLast Finds the last node that contains
the matching value.

public LinkedListNode<T>
FindLast(T value)

Generics | 287

12-5 LinkedList<T>

http://www.abicomputer.net

Property/Method Description Syntax

First Retrieves the first node in the
LinkedList.

public LinkedListNode<T> First
{get;}

Remove Removes the first occurrence of
value from the LinkedList.

public bool Remove(T value)

RemoveFirst Removes the first node from the
LinkedList.

public void RemoveFirst()

RemoveLast Removes the last node from the
LinkedList.

public void RemoveLast()

Last Retrieves the last node in the
LinkedList.

public LinkedListNode<T> Last
{get;}

ToArray Copies the LinkedList to an array
starting at the specified index.

public void CopyTo(T[] array, int
index)

12-5-2 LinkedListNode<T> Members

The following table contains the commonly used members of the

LinkedListNode<T> class.

Table 12-4: Commonly used members of the LinkedListNode<T> class

Property/Method Description Syntax

Public constructors Creates and initializes a new
instance of the LinkedListNode
class with the specified value.

public LinkedListNode(T value)

List Retrieves the LinkedList object to
which the LinkedListNode points.

public LinkedList<T> List {get;}

Next Retrieves the next node in the
LinkedList.

public LinkedListNode<T> Next
{get;}

Previous Retrieves the previous node in the
LinkedList.

public LinkedListNode<T>
Previous {get;}

Value Retrieves or sets the value stored
in the node.

public T Value {get; set;}

Example 12-3

The following example demonstrates the use of the LinkedList<T> and

LinkedListNode<T> collections. An empty linked list is created and ini-

tialized with some names, and then some nodes are removed and added.

The example also shows how to search and display the contents of a spe-

cific node by using the properties of the LinkedListNode<T> class.

// Example 12-3.cs
// Generic LinkedList

using System;
using System.Collections.Generic;

288 | Chapter 12

12-5 LinkedList<T>

public class LinkedList
{

public static void Main()
{

// Create an empty LinkedList collection that stores strings:
LinkedList<string> myLinkedList = new LinkedList<string>();

// Build the list:
myLinkedList.AddFirst("Tom");
myLinkedList.AddAfter(myLinkedList.First, "Dick");
myLinkedList.AddLast("Harry");
myLinkedList.AddBefore(myLinkedList.Last, "and");

// Display the list:
Display(myLinkedList);

// Remove and add nodes:
myLinkedList.Remove("Dick");
myLinkedList.Remove("and");
myLinkedList.AddBefore(myLinkedList.Last, "and");

// Display it after removing 2 nodes:
Display(myLinkedList);

// Find the LinkedListNode that contains "Harry":
LinkedListNode<string> myNode = myLinkedList.Find("Harry");

// Display the value in the current node:
Console.WriteLine(

"The value in the current node is \"{0}.\"", myNode.Value);
}

// Display a LinkedList object:
private static void Display(LinkedList<string> myLL)
{

foreach (string name in myLL)
{

Console.Write(name + " ");
}
Console.WriteLine();

// Display the number of items:
Console.WriteLine(

"The number of nodes is now {0}.", myLL.Count);
}

}

Generics | 289

12-5 LinkedList<T>

http://www.abicomputer.net

Output:

Tom Dick and Harry
The number of nodes is now 4.
Tom and Harry
The number of nodes is now 3.
The value in the current node is "Harry."

Drill 12-3

Create a string array with three names, such as John, Paul, and Mary,

and then initialize a LinkedList collection from the array elements.

Add to the collection three other names, such as Tom, Dick, and

Harry. Display the collection and the number of nodes. The output

should be something like:

Paul John Mary Tom Dick and Harry
The number of nodes is 7.

12-6 ICollection<T>

The generic ICollection interface defines methods that manipulate generic

collections. It is the base interface for generic classes in the namespace

System.Collections.Generic. The ICollection interface implements the

following interfaces:

� IEnumerable<T>

� IEnumerable

12-6-1 ICollection Members

The following table lists the public properties and methods of the

ICollection interface.

Table 12-5: The members of the ICollection<T> interface

Property/Method Description Syntax

Add Adds an item to the ICollection. void Add(T item)

Clear Removes items from the
ICollection.

void Clear()

Contains Checks if an ICollection contains
a specific item.

bool Contains(T item)

CopyTo Copies the items of an ICollection
to an array starting at the
specified index.

void CopyTo(T[] array, int index)

290 | Chapter 12

12-6 ICollection<T>

Property/Method Description Syntax

Count Retrieves the number of objects
contained in an ICollection.

int Count {get;}

IsReadOnly A Boolean value that indicates if
the ICollection is read-only.

bool IsReadOnly {get;}

Remove Removes the first occurrence of
an item from the ICollection.

bool Remove(T item)

12-7 IDictionary<TKey, TValue>

The IDictionary interface defines methods that manipulate generic collec-

tions that contain key/value pairs. The IDictionary interface implements

the following interfaces:

� ICollection<KeyValuePair<TKey, TValue>>

� IEnumerable<KeyValuePair<TKey, TValue>>

� IEnumerable

Elements of IDictionary are stored in the form of KeyValuePair objects.

Key/value pairs are enumerated, but there is no particular sort order. A key

must be unique and may or may not be permitted to be null depending on

the implementation. A value can be a null and does not have to be unique.

12-7-1 IDictionary Members

The following table lists the public properties and methods of the

IDictionary interface.

Table 12-6: The members of the IDictionary<TKey, TValue> interface

Property/Method Description Syntax

Add Adds an item with the specified
key and value to the IDictionary
collection.

void Add(TKey key, TValue value)

ContainsKey Checks if an IDictionary
collection contains an item with a
specified key.

bool ContainsKey(TKey key)

Item Retrieves or sets the item
corresponding to a specific key.

TValue this [TKey key] {get; set;}

Keys Retrieves the ICollection that
contains the Keys of the
IDictionary collection.

ICollection<TKey> Keys {get;}

Remove Removes the item with a specified
key from the IDictionary
collection.

bool Remove(TKey key)

Generics | 291

12-7 IDictionary<TKey, TValue>

http://www.abicomputer.net

Property/Method Description Syntax

TryGetValue Retrieves a Boolean value that
indicates whether the value
associated with the specified key
exists in the IDictionary collection.

bool TryGetValue(TKey key, out
TValue value)

Values Retrieves the ICollection that
contains the Values of the
IDictionary collection.

ICollection<TValue> Values
{get;}

12-8 Creating Your Own Generic Classes

You can create a generic class by using one or more type parameters. For

example, you can declare a class like this:

class MyClass<T>

where:

T is the type parameter.

The type parameter, as mentioned earlier, is a placeholder for a type. When

you instantiate the class, replace the type parameter with a type argument

(a strong type). For example:

MyClass<string> c1 = new MyClass<string>();
MyClass<int> c2 = new MyClass<int>();

In the first instance the type parameter T is replaced with string; in the

second instance it is replaced with int.

The type parameter can be used inside the class to define members. For

example:

private T myField;

When you create instances of the class, such as c1 and c2 above, the field

myField of the instance c1 can accept strings, while myField of the

instance c2 accepts integers.

� Note The generic types are also called constructed types. A constructed
type that is using type parameters is called an open constructed type, while
a constructed type that is using type arguments is called a closed con-
structed type. The type parameters of an open constructed type are called
unbound generic parameters, while the type arguments of a closed con-
structed type are called bound generic parameters.

292 | Chapter 12

12-8 Creating Your Own Generic Classes

Example 12-4

The following is a complete example of a generic class with a field and

property that use its type parameter.

// Example 12-4.cs
// Generic classes

using System;

class MyClass<T>
{

// Generic field:
private T myField;

// Generic property:
public T MyProperty
{

get { return myField; }
set { myField = value; }

}
}

class MainClass
{

static void Main()
{

// Instantiate a string object:
MyClass<string> c1 = new MyClass<string>();

// Instantiate an int object:
MyClass<int> c2 = new MyClass<int>();

// Assign values to properties:
c1.MyProperty = "John";
c2.MyProperty = 123;

// Display results:
Console.WriteLine("{0}, {1}", c1.MyProperty, c2.MyProperty);

}
}

Output:

John, 123

As you can see in the above example, using type parameters enabled you

to create one class that does the work of two classes. When you

instantiated the class, you created two versions: one for integers and one

Generics | 293

12-8 Creating Your Own Generic Classes

http://www.abicomputer.net

for strings. In other words, you were able to reuse the class code without

using casts or boxing. Using generics increases the efficiency and

type-safety of code.

12-9 Generic Methods

You can create a generic method by using one or more type parameters

after the method’s name. For example:

void MyMethod<T>(T var1, T var2) { ... }

The type parameter can be used in the method’s parameters or inside the

method’s body. The following generic method swaps two variables of the

type T, which can be replaced by any strong type when you use the

method.

void Swap<T>(ref T var1, ref T var2)
{

T temp;
temp = var1;
var1 = var2;
var2 = temp;

}

12-9-1 Generic Methods inside Generic Classes

A generic method can live inside a generic or non-generic class. However,

if the generic method lives inside a generic class and uses the same type

parameter as the containing class, its type parameter will hide the type

parameter of the class. The compiler will issue a warning in this case. To

avoid this warning, you can use a different identifier for each type parame-

ter. For example:

class MyClass<T>
{

...
void MyMethod<U>()
{

...
}

}

294 | Chapter 12

12-9 Generic Methods

� Note Non-generic methods that belong to generic classes can use the
type parameters of the class. For example:

class<T> MyClass
{

void MyMethod(T var1, T var2) { ... }
}

12-9-2 Overloading Generic Methods

Generic methods can be overloaded based on signature or arity (the num-

ber of type parameters on a method). You can also overload generic and

non-generic methods of the same name if the methods are different in type

parameters. For example, the following methods can exist in the same

class:

MyMethod<U>() { ... }
MyMethod<U, V>() { ... }
MyMethod() { ... }

� Note If you have two overloaded methods, one non-generic and one
using type parameters, the non-generic method will be called in case of
possible ambiguity.

Example 12-5

This example demonstrates the generic Swap method used to swap two

variables of any type. As you can see in the example, the method is used

once to swap two integers (x and y) and once to swap two strings (a and b).

// Example 12-5.cs
// The generic "Swap" method

using System;

class MyClass
{

// Generic method to swap two variables:
static void Swap<T>(ref T var1, ref T var2)
{

T temp;
temp = var1;
var1 = var2;
var2 = temp;

}

Generics | 295

12-9 Generic Methods

http://www.abicomputer.net

static void Main()
{

int x = 33;
int y = 44;
string a = "Hello";
string b = "World!";

// Display the integer variables before and after swapping:
Console.WriteLine("Before swapping: x = {0}, y = {1}", x, y);
Swap<int>(ref x, ref y);
Console.WriteLine("After swapping: x = {0}, y = {1}", x, y);

// Display the string variables before and after swapping:
Console.WriteLine("Before swapping: a = {0}, b = {1}", a, b);
Swap<string>(ref a, ref b);
Console.WriteLine("After swapping: a = {0}, b = {1}", a, b);

}
}

Output:

Before swapping: x = 33, y = 44
After swapping: x = 44, y = 33
Before swapping: a = Hello, b = World!
After swapping: a = World!, b = Hello

Notice that the Swap method is used here as a member of a non-generic

class. This is one way to do it, but you can also declare it like this:

public class MyClass<T>
{

public void Swap(ref T var1, ref T var2)
{

...
}

}

You should notice, however, that you cannot place the Main method in this

class; otherwise, you get the warning: ‘MyClass<T>.Main()’: an entry

point cannot be generic or in a generic type . You can, in this case, create a

second class to contain the Main method.

296 | Chapter 12

12-9 Generic Methods

12-10 Using the default Keyword

If you don’t know in advance whether the type you are creating will be a

reference or value type, you might run into some problems. Consider this

example:

void MyMethod<T>(T myVar)
{

myVar = null;
...

}

When you compile this code, the compiler will issue the following error:

Cannot convert null to type parameter ‘T’ because it could be a value type.

Consider using ‘default(T)’ instead. To resolve this issue, you can use the

default keyword, like this:

void MyMethod<T>(T myVar)
{

myVar = default(T);
...

}

If T is going to be a reference type, it will be assigned the default value for

reference types, which is null. If T is going to be a value type, it will be

assigned the default value of value types, which is zero for all numeric

types. If T will be a struct, its members are treated in the same way and

will be initialized either with zero or null, depending on whether the mem-

ber is a value type or a reference type.

12-11 Using Constraints

It is possible to enforce rules on type parameters by defining constraints.

When you instantiate the class by using a type argument that does not con-

form to the rules specified in the constraint, the compiler will issue an

error. You can specify a constraint by using the contextual keyword where,

as shown in the following examples:

class MyClass<T> where T: IEnumerable { ... }
class MyClass<T, U> where T: IComparable

where U: MyBaseClass { ... }
class MyClass<T> where T: class, IComparable<T>, new() { ... }

The first example indicates that the parameter type, T, implements the

IEnumerable interface. The second example uses two type parameters,

with a constraint on each one. The constraint on T indicates that it will

Generics | 297

12-10 Using the default Keyword

http://www.abicomputer.net

implement IComparable; the constraint on U indicates that it will use

objects of the type MyBaseClass or objects derived from it.

The third example uses three constraints on the same type parameter T.

Constraints are applied to both generic types and generic methods.

12-11-1 Types of Constraints

Constraints are divided into several types, as shown in the following table.

Table 12-7: Types of constraints

Constraint Comment

where T: struct T must be a value type (except the nullable types).

where T: class T must be a reference type.

where T: <base class> T must be, or inherit from, a base class.

mult1where T: <interface> T must be, or implement, an interface (generic or
non-generic). Implementing more than one interface is
allowed.

where T: new() T must have a public parameterless constructor. The new
constraint, if used with other constraints, must be the last one
specified in the list.

where T: T1 T1 must be the same as, or derived from, T. This is called a
naked type constraint.

12-11-2 When to Use Constraints

When you use type parameters with a generic type, it can be replaced by

any type that inherits from System.Object. This is fine if you are not plan-

ning to do any operations other than simple method calls or variable

assignment. In some cases, you may plan to use the type parameter in a

specific way. For example, by using the following base class constraint:

public MyClass<T> where T: MyBaseClass { ... }

you can use objects of MyBaseClass, or objects inherited from it, as type

arguments. Another example is when you would like to use the type

parameter as an Array type and enumerate it using the foreach loop. In

this case, you need to use a constraint on the type parameter to make it

implement the IEnumerable interface, which is required by the foreach

loop:

public class MyClass<T> where T: IEnumerable { ... }

Using this constraint defines your plan in using the type parameter T. With-

out using this constraint, the compiler cannot automatically predict this

plan. In general, using constraints enables you to do more specialized oper-

ations on type parameters.

298 | Chapter 12

12-11 Using Constraints

Example 12-6

This example demonstrates the scenario of using the type parameter as an

Array type, and enumerating the array by using the foreach loop. Notice

that if you remove the constraint, the program won’t compile and you get

the compiler error: foreach statement cannot operate on variables of type

‘T’ because ‘T’ does not contain a public definition for ‘GetEnumerator.’

// Example 12-6.cs
// Constraints

using System;
using System.Collections;

public class MyClass<T> where T: IEnumerable
{

public void MyMethod(T myArray)
{

Console.Write("The array elements are: ");
foreach(int x in myArray)
{

Console.Write("{0} ", x);
}

}
}
public class MainClass
{

static void Main()
{

int[] myArray = { 11, 22, 33, 44 };
MyClass<int[]> mc = new MyClass<int[]>();
mc.MyMethod(myArray);

}
}

Output:

The array elements are: 11 22 33 44

Drill 12-4

Create a generic class whose type parameter is using a class,

Employee, as a constraint. Employee has two properties: Name and

ID. The generic class contains two members: a stack of strings and a

non-generic method that uses the type parameter of the class. The

method is used to push and pop the properties of an Employee object.

Store the properties of two employees and display them.

Generics | 299

12-11 Using Constraints

http://www.abicomputer.net

12-12 Generic Delegates

You can create a generic delegate that uses its own type parameters. For

example:

delegate void MyDelegate<T1, T2>(T1 id, T2 name);

The encapsulated method can be a non-generic method:

public void MyMethod(int id, string name) { ... }

As with other generic types or methods, when you instantiate the delegate,

you must provide the type arguments:

MyDelegate<int, string> d =
new MyDelegate<int, string>(mc.MyMethod);

You can also create a delegate that uses the type parameters of the enclos-

ing class:

class MyClass<T1, T2>
{

// Declare a delegate:
delegate void MyDelegate(T1 id, T2 name);
...

}

Again, provide the type arguments on instantiating the delegate:

// Instantiate the class:
MyClass<int, string> mc = new MyClass<int, string>();
// Instantiate the delegate:
MyClass<int, string>.MyDelegate delg =

new MyClass<int, string>.MyDelegate(mc.MyMethod);

Example 12-7

This example, which demonstrates generic delegates, is a rewrite of Exam-

ple 10-1. It declares a delegate, MyDelegate, defined within a generic

class, MyClass. The delegate and the associated method, MyMethod, use

the T1 and T2 type parameters of the class.

// Example 11-7.cs
// Generic delegates

using System;

class MyClass<T1, T2>
{

// Declare a delegate:
public delegate void MyDelegate(T1 n, T2 s);

300 | Chapter 12

12-12 Generic Delegates

// Declare the encapsulated Method:
public void MyMethod(T1 id, T2 name)
{

Console.WriteLine("ID number = {0}\nName = {1}", id, name);
}

}

class MainClass
{

static void Main()
{

// Instantiate the class:
MyClass<int, string> mc = new MyClass<int, string>();

// Instantiate the delegate:
MyClass<int, string>.MyDelegate delg =

new MyClass<int, string>.MyDelegate(mc.MyMethod);

// Invoke the delegate:
delg.Invoke(911, "Angelina Abolrous");

}
}

Output:

ID number = 911
Name = Angelina Abolrous

Drill 12-5

Rewrite the above example using a delegate with type parameters.

12-13 Generic Interfaces

Declaring a generic interface is similar to declaring a generic class. When

you implement a generic interface you must follow the same rules for

inheriting a generic class. You saw earlier some of the generic interfaces

implemented by generic types or used as constraints. You can also use mul-

tiple interface constraints on the same type. For example:

class Queue<T> where T: IEnumerable<T>, IComparable<T>

Generics | 301

12-13 Generic Interfaces

http://www.abicomputer.net

Closed constructed interfaces can be implemented by concrete classes. For

example:

interface MyInterface<T>
class MyClass: MyInterface<double>

Generic interfaces can also use one or more type parameters:

interface MyInterface<T1, T2>

It is possible for generic classes to implement open or closed constructed

interfaces. For example:

interface MyInterface<T>
interface YourInterface<U>
class YourClass<T>: MyInterface<T>, YourInterface<string>

Example 12-8

This example demonstrates a simple application for generic interfaces

using an array with type parameters. Notice that when you implement the

IEnumerable<T> interface, you have to implement both generic and

non-generic GetEnumerator. For example:

IEnumerator IEnumerable.GetEnumerator()

and

IEnumerator<T> GetEnumerator()

This is because IEnumerable<T> inherits from IEnumerable.

// Example 12-8.cs
// Generic interfaces

using System;
using System.Collections;
using System.Collections.Generic;

public class MyClass<T>: IEnumerable<T>
{

public T[] myArray = new T[5];

// Implementation of the IEnumerable.GetEnumerator()
IEnumerator IEnumerable.GetEnumerator()
{

return GetEnumerator();
}

// Implementation of IEnumerator<T> GetEnumerator()
public IEnumerator<T> GetEnumerator()

302 | Chapter 12

12-13 Generic Interfaces

{
for (int i = 0; i < myArray.Length; i++)

yield return myArray[i];
}
public void Initialize(int[] myArray)
{

for (int i = 0; i < myArray.Length; i++)
{

myArray[i] = i * 2;
}

}
public void Initialize(double[] myArray)
{

// Initialize:
for (int i = 0; i < myArray.Length; i++)
{

myArray[i] = i * 3.14;
}

}
}
public class MainClass
{

static void Main()
{

// Create instances:
MyClass<int> mc = new MyClass<int>();
MyClass<double> mc1 = new MyClass<double>();

// Initialize objects:
mc.Initialize(mc.myArray);
mc1.Initialize(mc1.myArray);

// Display results:
Console.WriteLine("The integer array elements are: ");
foreach (int i in mc.myArray)

Console.Write("{0} ", i);
Console.WriteLine("\nThe double array elements are: ");
foreach (int i in mc1.myArray)

Console.Write("{0:F2} ", i);
}

}

Output:

The integer array elements are:
0 2 4 6 8
The double array elements are:
0.00 3.00 6.00 9.00 12.00

Generics | 303

12-13 Generic Interfaces

http://www.abicomputer.net

12-14 Benefits of Using Generics

� With generic types, the items do not require boxing when added to the

collection or casting when retrieved.

� Using generics eliminated a lot of programming overhead. For exam-

ple, you don’t need to create a class for each item type. Type parame-

ters are dynamically replaced at run time.

� Using generic types increases performance by eliminating the boxing

and unboxing of collection items. The difference is significant with

large collections.

� Generic types reduce the memory consumption as a result of fewer

boxing operations.

� Generic code is easier to read and maintain.

� Generics provide a code pattern implementation that is reusable.

� In general, using generic types maximizes type safety and performance.

12-15 Limitations of Using Generics

The following are some limitations when using generics:

� You cannot use a generic Main method.

� Properties, indexers, and attributes cannot be generic.

� You cannot use generic types in the unsafe code.

� Operator methods cannot be generic methods.

Summary

In this chapter:

� You were introduced to generics, an important feature of C# 2005.

� You had a tour of the most common collection classes and interfaces in

the namespace System.Collections.Generic.

� You learned how to create you own generic classes, methods, delegates,

and interfaces.

� In working with generics, you learned how to use the default keyword

to add more flexibility to type parameters.

� You also learned how to define and use constraints to enforce rules on

your type parameters.

� Finally, you learned about the benefits and limitations of generics.

304 | Chapter 12

12-14 Benefits of Using Generics

Chapter 13

Visual Studio Essentials

Contents:
� Using the integrated development

environment (IDE)
� Starting a new application
� Creating and using console applications
� The main features of the IDE
� Compiling and executing a project
� Creating and building library projects
� Referencing a library in an application
� Using Windows applications
� Using web site applications
� Important features of the Code Editor

13-1 Using the Integrated Development Environment

In this chapter, you’ll get a quick introduction to Visual Studio, which is

the tool for building and compiling projects in the integrated development

environment (IDE).

You will learn about the important features of the IDE and types of

applications you can develop in Visual Studio. The tour will not cover

everything because Visual Studio capabilities cannot be covered in one

chapter. This tour, however, is enough for you to learn how to use Visual

Studio in building C# applications.

When you run Visual Studio, you start with the Start Page, which con-

tains the following main sections:

� Recent Projects

� MSD SQL Server

305

http://www.abicomputer.net

� Getting Started

� Visual Studio Headlines

These sections contain a lot of information on the important features of

Visual Studio 2005. The Start Page also contains a menu and toolbars at

the top of its window, which you can use in writing code and building your

applications.

13-2 Starting a New Application

Visual Studio saves applications in the form of solutions, which may con-

sist of one or more projects.

To start a new application, do the following:

1. Open the File menu.

2. Select New.

3. Select Project.

The New Project window shown in Figure 13-1 opens on your screen.

4. In the New Project window, select the project type from the Project

types pane. Also select the template you are going to use from the

Templates pane. As you can see in the figure above, Visual C# is cho-

sen as a project type.

306 | Chapter 13

13-2 Starting a New Application

Figure 13-1: Starting a new project.

The templates indicate the types of applications available in Visual Studio,

which are:

� Windows Application

� Class Library

� Windows Control Library

� Console Application

� Crystal Reports Application

� Device Application

� Excel Workbook

� Outlook Add-in

If you are familiar with the previous version of Visual Studio, you will

notice the new options added to the templates. These templates are called

the standard templates. When you expand the C# item in the Project types

pane, you will see more templates. Some of these templates are explained

in the following sections.

� Note The programs used in this book can be compiled and run either in
the command-line environment or as console applications in the IDE.

13-3 Creating and Using Console Applications

To create a console application project, do the following:

1. Select Console Application from the Templates pane of the New Pro-

ject window.

2. Before you press Enter (or click OK), notice the following:

a. The default name of the application is ConsoleApplication (fol-

lowed by 1, 2, 3, etc.). You can change it by typing a new name in

the Name text box.

b. The default location of the application is: “C:\Documents and Set-

tings\<user-name>\My Documents\Visual Studio 2005\Projects.”

You can change this by typing a new path in the Location text

box.

c. The default name of the solution is the same as the project name.

You can give the solution a different name by changing the text in

the Solution Name text box.

3. Click OK after you accept or change the default settings.

4. After clicking OK, you are transferred to the Code Editor, which con-

tains the machine-generated code as shown in Figure 13-2.

Visual Studio Essentials | 307

13-3 Creating and Using Console Applications

http://www.abicomputer.net

The machine-generated code includes:

� The using directives for the following namespaces:

� System

� System.Collections.Generic

� System.Text

� The ConsoleApplication1 namespace (assuming that you accepted the

default project name).

� The Program class (you can change this name as appropriate).

� The Main method (empty).

You can compile and run this “empty” project just for testing (compilation

is explained in Section 13-5, “Compiling and Running Projects”) and, of

course, you might modify it by adding your code to it. It is also possible to

replace the entire content with a new C# program written in Notepad.

Notice that when you use Notepad to write a program, however, you will

miss out on the Code Editor’s useful IntelliSense feature, which is

explained later in this chapter.

308 | Chapter 13

13-3 Creating and Using Console Applications

Figure 13-2: The Code Editor for a new console application project.

13-4 The Main Features of the IDE

In Figure 13-2, you can see the default windows and tabs of the IDE:

� The Code Editor tab in the upper-left window, which is used for writing

the program code. It contains the current code file, which is Program.cs

in this case. Notice that there is a second tab in this window for the

Start Page, from which you started.

� The Error List window at the bottom of the screen.

� The Solution Explorer window in the upper-right portion of the screen.

� The Properties window in the lower-right corner.

These are explained in more detail in the following sections.

13-4-1 The Solution Explorer

The Solution Explorer window shares space with the Class View window.

Solution Explorer shows the folders and files of the project, while Class

View shows the same details in the form of classes and class members.

Both windows are shown in Figure 13-3.

Visual Studio Essentials | 309

13-4 The Main Features of the IDE

Figure 13-3: The Solution Explorer and the Class View windows.

http://www.abicomputer.net

The Solution Explorer window contains several toolbar buttons, as shown

in Figure 13-4.

Following is a description of each toolbar button in the Solution Explorer

window:

� Properties: Shows the properties of the selected object in the Proper-

ties window.

� Show All Files: Displays the hidden files of the project.

� Refresh: Refreshes the current view.

� View Code: Displays the source code of the current project in the Code

Editor window.

� View Class Diagram: Displays the project graphically in the form of

classes and members, as shown in Figure 13-5. The figure shows the

current constituents of the machine-generated code, which consists of

the Program class and the Main method. With actual applications you

would expect more details.

� Note There are no major changes in the IDE features when running
console applications, but more features are added to other application
types such as Windows and web applications.

310 | Chapter 13

13-4 The Main Features of the IDE

Figure 13-4: Toolbar buttons of Solution
Explorer.

Figure 13-5: The class diagram.

13-4-2 The Properties Window

The Properties window is below the Solution Explorer window. If it is not

open, you can display it by choosing Properties Window from the View

menu. This window shows information about the currently selected item in

the Solution Explorer. For example, in the following figure the file Pro-

gram.cs is selected and the Properties window displays its properties

(name, path, and so forth). With some applications, such as Windows

applications, changing the properties directly affects your code.

13-4-3 The Error List Window

This portion of the screen is shared by other windows such as the Output

and Task List windows. If the Error List window is not open, you can dis-

play it by choosing Error List from the View menu. As you can see in the

following figure, this window shows the errors and warnings that resulted

from compiling the code file of Example 5-12 (some errors and warnings

are added deliberately). The errors are indicated by the red circular icon,

while the warnings are indicated by the yellow triangular icon.

Visual Studio Essentials | 311

13-4 The Main Features of the IDE

Figure 13-6: The Properties
window.

Figure 13-7: The Error List window.

http://www.abicomputer.net

13-5 Compiling and Running Projects

You can compile and execute all kinds of applications in this environment,

except for library projects, which can only be compiled. Library projects

are referenced and used in other projects.

To compile and run a project, do the following:

1. To only compile a project, choose Build ConsoleApplication1 from

the Build menu (see Figure 13-8). Unless there are errors in your

code, you should see the message “Build succeeded” at the bottom of

the screen. If there are errors, they would show up in the Error List

window.

2. To compile and run a project, choose Start Without Debugging from

the Debug menu (see Figure 13-9). Although you can use Start

Debugging to compile and run any application, you should use Start

Without Debugging for console applications. This option keeps the

Console screen open until you press any key to continue. You might

also use the shortcut keys F5 and Ctrl+F5 to access these commands.

� Note You can also click the menu button to the left of an option, such as
the button to compile and execute programs. This button is equivalent
to the Start Debugging option.

312 | Chapter 13

13-5 Compiling and Running Projects

Figure 13-8: The Build menu options.

Figure 13-9: The Debug menu
options.

13-6 Using an Existing Application

To open an application that already exists on the hard disk, do the

following:

1. Open the File menu.

2. Select Open.

3. Select Project/Solution. When the Open Project window appears,

you should see the solution file (with the extension .sln) in the target

folder.

4. Double-click the solution file to open the solution.

In Figure 13-10, the code of the file Ex5-12.cs is displayed in the Code

Editor.

You can also use Class View to see the inheritance hierarchy, as shown in

Figure 13-11.

Visual Studio Essentials | 313

13-6 Using an Existing Application

Figure 13-10: Example 5-12 in the Code Editor window.

http://www.abicomputer.net

As an alternative to opening the solution file, you can open the project file

(.csproj) located in the subfolder (Ex5-12), as shown in the following fig-

ure. Visual Studio will automatically recognize the solution and load it.

13-7 Creating and Using Library Projects

The only difference between a console application project and a class

library project is that the class library project doesn’t contain the Main

method; therefore, it cannot be executed. It can only be compiled and used

as part of another application.

To create a library project, do the following:

1. Open the File menu.

2. Select New.

3. Select Project.

4. Select Class Library from the Templates window, and then accept

the default name (ClassLibrary followed by 1, 2, and so forth) or

enter a new name for the library. You might also change the Location

at this step, if you so wish.

314 | Chapter 13

13-7 Creating and Using Library Projects

Figure 13-11: Class View of Example 5-12.

Figure 13-12: The solution file and
the project folder.

5. Clicking the OK button transfers you to the Code Editor where you

can start writing your code or paste previously created code in the

Code Editor window.

The following figure shows the Code Editor for the class library named

ClassLibrary1. The code represents a method that returns the factorial of a

number (see Example Ex4-5a.cs).

To use this class library, start a console application, such as ConsoleAppli-

cation2, and write the code that will use the factorial method (you can use

the file Ex4-5b.cs for this purpose).

To link your code to the class library, do the following:

1. Open the Project menu.

2. Select Add Reference. The Add Reference window appears.

3. Select the Browse tab and open the Debug folder of ClassLibrary1.

Visual Studio Essentials | 315

13-7 Creating and Using Library Projects

Figure 13-13: Starting a class library project.

Figure 13-14: Writing the code for a class library.

http://www.abicomputer.net

4. Select the ClassLibrary1.dll as shown in Figure 13-15.

5. Click OK and ClassLibrary1 appears in the Solution Explorer win-

dow under the References node. The project screen should look

something like the following figure. Notice that the fully qualified

name is ClassLibrary1.Class1.Factorial.

6. Run the project by choosing Start Without Debugging or pressing

Ctrl+F5.

13-8 Windows Application Projects

Although Windows applications are not covered in this book, in this sec-

tion we take a quick look at how they are created.

To start a Windows forms application, do the following:

1. Open the File menu.

2. Select New.

3. Select Project.

4. Select Windows Application.

You will then be transferred to the design view (Form1.cs[Design]), which

contains the Windows form (Form1), as shown in Figure 13-17. You can

build the form by dragging control elements from the Toolbox and

316 | Chapter 13

13-8 Windows Application Projects

Figure 13-15: Adding a reference to the
project.

Figure 13-16: The class library reference in the Solution Explorer window.

dropping them on the form. Visual Studio will then record your actions and

generate the necessary code in the background.

The following figure shows the main features of the Windows Applica-

tion environment. Notice also the form file (Form1.cs) in the Solution

Explorer window. This file contains the form and the machine-generated

code. You can switch between the form in the design view and the

machine-generated code in the code view, as explained in the next section.

You can add your code to the machine-generated code as you build your

application.

When you click the Toolbox, it opens to reveal its list of controls, which

are grouped in categories as shown in Figure 13-18. By expanding a cate -

gory you can see the controls it contains.

Visual Studio Essentials | 317

13-8 Windows Application Projects

Figure 13-17: The Windows Application environment.

Figure 13-18: The Toolbox categories.

http://www.abicomputer.net

13-8-1 Switching between Design and Code Views

To switch to the code view, do the following:

1. Double-click the surface of Form1 or right-click it and select View

Code. You can also select Code from the View menu, or press F7.

When you switch to the code view, you see the Form1.cs tab at the

top of the Code Editor.

2. To go back to the design view, click the Form1.cs [Design] tab, or

select Designer from the View menu.

The machine-generated code for an empty project contains all the common

using directives necessary for a Windows application. It also contains the

WindowsApplication1 namespace, the partial class Form1, and the

Form1_Load method.

13-8-2 Creating a Simple Windows Application

To create a simple Windows forms application, do the following:

1. Open the File menu.

2. Select New.

3. Select Project.

4. From the Templates pane, select Windows Application.

5. Type the application name and location or accept the defaults (the

default name is Windows Application1, 2, or 3, and so forth).

6. Drag a TextBox and a Button and drop them on the form’s surface.

This will create a text box with the default name textBox1 and a but-

ton with the default name button1.

7. Double-click the button. This will transfer you to the code page

(Forms1.cs). Add the highlighted code shown below to the body of

the button1_Click method:

private void button1_Click(object sender, EventArgs e)
{

}

To run the Windows application, do the following:

1. Press Ctrl+F5 or select Start Without Debugging from the Debug

menu.You will see the window that contains the button and the empty

text box.

2. When you click the button, the string “Hello, World!” will be dis-

played in the text box, as shown in Figure 13-19.

318 | Chapter 13

13-8 Windows Application Projects

textBox1.Text = "Hello, World!";

13-8-3 Using More Than One Form in the Windows
Application

You can use more than one form in the same application. To do that, follow

these steps:

1. Open the Project menu.

2. Click Add Windows Form (or Add New Item). The Add New Item

dialog box appears.

3. Select Windows Form from the Add New Item dialog box.

The following figure shows a project that contains two forms. The second

form is called Form2.

Visual Studio Essentials | 319

13-8 Windows Application Projects

Figure 13-19: Running the simple Win-
dows forms application.

Figure 13-20: A Windows application project with two forms.

http://www.abicomputer.net

13-9 Web Site Applications

Although web site applications are not covered in this book, let ’s take a

quick look at how such applications are created.

To create a web site application, do the following:

1. Open the File menu.

2. Select New.

3. Select Web Site.

The dialog box shown in Figure 13-21 opens on your screen. The screen

shows the templates for various types of web site applications in addition

to the Language, the Location, and the path of the project. The default

name for the application is WebSite1, 2, 3, and so forth. You can accept the

default or change it as you like.

Web site applications can be created from the installed project templates:

� ASP.NET Web Site: For ASP.NET applications.

� ASP.NET Web Service: For web service applications.

� Personal Web Site Starter Kit: For creating an ASP.NET starter web site

with an initial home page.

� Empty Web Site: For creating a web application from scratch (no

templates).

� ASP.NET Crystal Reports Web Site: For creating a web site that uses

the Crystal Reports feature.

320 | Chapter 13

13-9 Web Site Applications

Figure 13-21: Starting a web site application.

When you start an ASP.NET web site application, Visual Studio creates

three files for you:

� Default.aspx: An HTML file that represents the web form.

� Default.aspx.cs: A C# file that contains the Page_Load method.

� Web.config: An XML file used to configure your application.

13-9-1 Creating a Simple Web Site Application

To create a simple web site application, do the following:

1. Open the File menu.

2. Select New.

3. Select Web Site.

4. From the Templates area, select ASP.NET Web Site. Select a name

and location for the project or accept the defaults.

5. The program starts with the HTML file shown in Figure 13-22. To

switch to the design view that contains the web form, click the Design

tab below the code area.

6. When you switch to design view, the web form will be totally empty.

Drag a Button and a TextBox from the Toolbox and drop them on the

web page. The web page will look similar to Figure 13-23.

Visual Studio Essentials | 321

13-9 Web Site Applications

Figure 13-22: The file Default.aspx in a web site application.

http://www.abicomputer.net

7. Double-click the button to be transferred to the body of the method

button1_Click in the file Default.aspx.cs. Modify the method by add-

ing the following highlighted code to its body (notice that the method

is initially empty):

protected void button1_Click(object sender, EventArgs e)
{

}

To execute the web page, do the following:

1. Press Ctrl+F5 or select Start Without Debugging from the Debug

menu. Internet Explorer will open, and you will see the button and the

empty text box on the web page.

2. When you click the button, the string “Hello, World!” will be dis-

played in the text box, as shown in Figure 13-24.

322 | Chapter 13

13-9 Web Site Applications

Figure 13-23: The web page after adding the controls.

Figure 13-24: Running the web site application.

TextBox1.Text = "Hello, World!";

13-10 Other Project Templates

In addition to standard projects and web site projects, you can select other

project templates such as:

� Smart Device Application: Includes templates for the Smartphone and

Pocket PC.

� SQL Server Project: For creating database applications using SQL

Server 2005.

� Starter Kit Project: Includes a complete application ready for you to

load, build, and customize. This might be a good place to start.

13-11 Features of the Code Editor

The Code Editor of Visual Studio 2005 includes new features and enhance-

ments. In this section, we’ll discuss the most important features that can

help you in building your console projects.

13-11-1 IntelliSense

IntelliSense helps developers speed up the typing process by providing a

completion list that contains types, members, keywords, and so forth. For

example, when you type the word “new” and press the Spacebar, a

drop-down list appears containing all the expected items that can follow

the word “new,” as you can see in Figure 13-25. Notice in this specific

example that IntelliSense is also smart, as it highlighted the most expected

text (Employee). When you press Tab or Enter, the selected word is added

for you.

When you write a method from the .NET class library such as Write or

WriteLine, the IntelliSense feature provides you with parameter info

when you type the left parenthesis (as shown in Figure 13-26). Parameter

info for a method contains the different signatures and method overloads.

Use the arrows to see all the overloads.

Visual Studio Essentials | 323

13-10 Other Project Templates

Figure 13-25: The drop-down list.

http://www.abicomputer.net

Sometimes you may forget to add a using directive or to qualify a member.

When you hover over the underlined item that generated the error, you see

the text of the error message, as shown in Figure 13-27.

IntelliSense provides a quick way to fix these errors without being dis-

tracted from the original task you were doing. Right-click the underlined

item and select Resolve from the shortcut menu. The Resolve option pro-

vides two solutions in this particular case: either to add the using directive

(using System here) to the file or to qualify the name by adding System to

the method name.

You can also use the smart tag menu, which is accessed by clicking the lit-

tle red box that follows the unbound type. When you click the smart tag

you will see the smart tag menu, which provides the same solutions.

324 | Chapter 13

13-11 Features of the Code Editor

Figure 13-26: The parameter info.

Figure 13-27: The error message.

Figure 13-28: The Resolve menu options.

Figure 13-29: The smart tag menu.

13-11-2 Code Snippets

This feature saves programmers a lot of time they would otherwise spend

typing, by allowing the reuse of previously written code. You can choose

from three available options when you right-click the Code Editor window:

� Insert Snippet

� Surround With

� Refactor

These three options are explained below.

13-11-2-1 Insert Snippet

This option is used to insert one of the common snippets used by develop-

ers, such as the conditional or iteration statements. When you choose

Insert Snippet from the shortcut menu, you get two choices:

� Office Development

� C#

By selecting C#, you see the drop-down list shown in Figure 13-30, which

contains the snippet names.

When you click the name of the snippet, the code is inserted at the cursor

position, as shown in Figure 13-31.

Visual Studio Essentials | 325

13-11 Features of the Code Editor

Figure 13-30: The snippet drop-down list.

Figure 13-31: The for snippet.

http://www.abicomputer.net

As you can see in Figure 13-31, the snippet contains the syntax of the for

loop, but you have to provide the length value and you may also want to

change the name of the counter variable.

13-11-2-2 Surround With

The Surround With feature is another way to insert a snippet. For example,

if you already have the statement:

Console.WriteLine ("Hello!");

you can surround it with a for loop by highlighting the statement and

selecting the menu option Surround With. The statement will be sur-

rounded by the for loop, as shown in Figure 13-32.

13-11-2-3 Refactor

The Refactor option is the first option in the shortcut menu. It leads to a

submenu that contains many options, as you can see in Figure 13-33.

Refactoring include tasks such as renaming variables and changing

method names or signatures. For a small program, it is okay to do these

tasks manually. But for large applications, such tasks are not only time-

intensive but they also invite bugs to the application, especially if the prod -

uct is close to the end of the development cycle.

For the purpose of this chapter, we are not going to cover everything in the

Refactor menu, but here is one example of how it works. Assume that you

have a private field like this:

private string companyName;

326 | Chapter 13

13-11 Features of the Code Editor

Figure 13-32: Surrounding with for.

Figure 13-33: The Refactor submenu.

To use the Encapsulate Field option, do the following:

1. Highlight the field and right-click to display the Refactor menu.

2. Select Encapsulate Field. The following window appears.

3. By clicking OK, the changes shown in Figure 13-34 will be made to

the code.

4. Review the code changes and click Apply.

Visual Studio Essentials | 327

13-11 Features of the Code Editor

Figure 13-34: The Encapsulate Field window.

Figure 13-35: The Preview Reference Changes window.

http://www.abicomputer.net

The following code will replace the field declaration in your program:

public string CompanyName
{

get { return companyName; }
set { companyName = value; }

}

Following is a brief description of each of the refactoring operations:

� Rename: Renames a variable or method in the application.

� Extract Method: Creates a new method that encapsulates the high-

lighted code.

� Encapsulate Field: Creates a property based on the highlighted private

field (see the example above).

� Extract Interface: Extracts an interface from a type.

� Promote Local Variable to Parameter: Converts a local variable to a

parameter of the current method.

� Remove Parameters: Removes a method parameter. The Remove

Parameters window opens, which allows you to preview and apply the

changes.

� Reorder Parameters: Reorders the parameters of a method. The Reor-

der Parameters window opens, which allows you to preview and apply

the changes.

Summary

In this chapter:

� You learned enough about the IDE to build and run the applications

introduced in this book.

� You learned how to use the Code Editor to write code, and how to build

an application and check the compilation result.

� You also learned about the main features of Windows and web site

applications.

� Finally, you learned about some features that can speed up your appli-

cation development when you use the IDE, such as IntelliSense and

Code Snippets.

328 | Chapter 13

Summary

Chapter 14

C# 3.0 Features

Contents:
� Implicitly typed local variables
� Object initializers
� Extension methods
� Anonymous types
� Implicitly typed arrays
� Lambda expressions
� Func delegate types
� Query expressions
� Expression trees

14-1 Installing C# 3.0

This chapter discusses the features of the upcoming release of C# that was

published with the Community Technology Preview (CTP) of Microsoft

Visual Studio Code Name “Orcas.” Orcas is the next-generation develop-

ment tool for Windows Vista, the 2007 Office System, and the web.

In order to get started with the new compiler, you can install the Lan-

guage Integrated Query (LINQ) features included with the C# 3.0 compiler

from:

http://go.microsoft.com/fwlink/?LinkId=88254

When you install the LINQ features, it will add a new node (LINQ Pre-

view) to the Visual Studio IDE as shown in Figure 14-1.

329

http://www.abicomputer.net

To start a new project in C# 3.0 you can select one of the available project

types:

� LINQ Console Application

� LINQ Library

� LINQ Windows Application

� LINQ WinFX Application

In this chapter’s examples, we use the LINQ Console Application option to

create the projects. We also use LINQ Library in one example. When you

create a LINQ console application, you will see a new set of namespaces in

your project:

using System;
using System.Collections.Generic;
using System.Text;
using System.Query;
using System.Xml.XLinq;
using System.Data.DLinq;

330 | Chapter 14

14-1 Installing C# 3.0

Figure 14-1: The LINQ features added to the C# compiler in Visual Studio.

14-1-1 Using the Command Line

To compile a program using the command-line environment, use the fol-

lowing command:

C:\Program Files\LINQ Preview\Bin\Csc.exe
/reference:"C:\Program Files\LINQ Preview\Bin\System.Data.DLinq.dll"
/reference: System.dll
/reference:"C:\Program Files\LINQ Preview\Bin\System.Query.dll"
/target:exe Program.cs

where:

Program is the name of the C# file to compile.

To compile a library, use the switch /target:library instead of /target:exe.

14-1-2 Installing Visual Studio (Orcas)

You can also read about Orcas and download the Visual Studio CTP from

the web site:

http://go.microsoft.com/fwlink/?LinkId=88253

It is recommended in this case to use Virtual PC.

� Note The examples in this chapter are provided as C# text files (.cs). The
easiest way to compile an example is to paste its text file into a LINQ con-
sole application and run it by using the menu option Start Debugging or
Start Without Debugging.

14-2 Implicitly Typed Local Variables

You can declare a variable with the var keyword and let the compiler infer

the type from the expression used to initialize the variable. For example:

var myVariable = 1.25;
var yourVariable = "Hello, World!";
var myArray = new int[] { 1, 2, 4, 8, 64 };

The C# compiler can infer that the type of myVariable is double, the type

of yourVariable is string, and that of myArray is int. In other words, the

three statements above generate the same result as the following

statements:

double myVariable = 1.25;
string yourVariable = "Hello, World!";
int myArray = new int[] { 1, 2, 4, 8, 64 };

C# 3.0 Features | 331

14-2 Implicitly Typed Local Variables

http://www.abicomputer.net

There are a few restrictions on using implicitly typed local variables

though:

� You must initialize the variables. For example:

var myVariable; // error: not initialized

� The variable initializer cannot be null. For example:

var yourVariable = null; // error: null value

� You cannot use object or collection initializers (explained in Section

14-3). For example:

var myArray = { 1, 2, 4, 8, 64 };

� Note It is obvious that if there is a type called var in the same scope, this
type will be used in the declaration.

Example 14-1

// Example 14-1.cs
// Implicitly typed local variables

using System;
using System.Collections.Generic;
using System.Text;
using System.Query;
using System.Xml.XLinq;
using System.Data.DLinq;

namespace ImplicitlyTypedVariables
{

class MyClass
{

static void Main(string[] args)
{

var myVariable = 1.25;
var yourVariable = "Hello, World!";
var myArray = new int[] { 1, 2, 4, 8, 64 };

Console.WriteLine(myVariable);
Console.WriteLine(yourVariable);
foreach (var x in myArray)
Console.WriteLine(x);

}
}

}

332 | Chapter 14

14-2 Implicitly Typed Local Variables

Output:

1.25
Hello, World!
1
2
4
8
64

14-2-1 Examine the Assembly

It is interesting at this point to see what the compiler has created for you in

the background. Run ILDASM on the executable file generated from the

compilation (ImplicitlyTyped.exe) by using the following command line:

ILDASM AnonTypes.exe

Notice that you have to issue this command from the directory in which the

executable file exists.

You can then see the compiled assembly tree, as shown in the following

figure.

If you double-click the Main node, shown highlighted in the figure above,

you will display the IL language of the Main class. Here you can see that

the appropriate types were actually created, that is, float 64, string, and

int32[].

C# 3.0 Features | 333

14-2 Implicitly Typed Local Variables

Figure 14-2: The class tree of the file ImplicitlyTyped.exe.

http://www.abicomputer.net

14-3 Object Initializers

Sometimes you spend a lot of time writing a lot of redundant code to

declare constructors that do the same job. Object initializers can be used to

initialize types without writing explicit constructors. For example, consider

the Point class with two properties, X and Y:

class Point
{

int x, y;
public int X
{

get { return x; }
set { x = value; }

}
public int Y
{

get { return y; }
set { y = value; }

}
}

334 | Chapter 14

14-3 Object Initializers

Figure 14-3: The generated IL for the Main
class.

When you instantiate this class you normally write the following code:

Point p = new Point();
p.X = 10;
p.Y = 20;

Instead, you can create and initialize a Point object like this:

Point p = new Point { X = 10, Y = 20 }; // object initializer

Or even like this:

var p = new Point { X = 10, Y = 20 }; // object initializer

With complex fields, such as a square or a rectangle whose corners are

located at the points p1 and p2, you can create the Rectangle class as

follows:

public class Rectangle
{

Point p1; Point p2;
public Point ULcorner { get { return p1; } set { p1 = value; } }
public Point LRcorner { get { return p2; } set { p2 = value; } }

}

You can create and initialize the Rectangle object like this:

var rectangle = new Rectangle {
ULcorner = new Point { X = 0, Y = 0 },
LRcorner = new Point { X = 10, Y = 20 }

};

� Note Notice the semicolon at the end of the object initializer block.

Example 14-2

// Example 14-2.cs
// Object initializers

using System;
using System.Collections.Generic;
using System.Text;
using System.Query;
using System.Xml.XLinq;
using System.Data.DLinq;

namespace ObjectInitializer
{

public class Point
{

int x, y;
public int X

C# 3.0 Features | 335

14-3 Object Initializers

http://www.abicomputer.net

{
get { return x; }
set { x = value; }

}
public int Y
{

get { return y; }
set { y = value; }

}
public class Rectangle
{

Point p1; Point p2;
public Point ULcorner { get { return p1; } set { p1 = value; } }
public Point LRcorner { get { return p2; } set { p2 = value; } }

}

static void Main(string[] args)
{

// Point object initializer:
var p = new Point { X = 10, Y = 20 };

// Rectangle object initializer:
var rectangle = new Rectangle
{

ULcorner = new Point { X = 0, Y = 0 },
LRcorner = new Point { X = 10, Y = 20 }

};

Console.WriteLine("Objects created successfully.");
}

}
}

Output:

Objects created successfully.

14-3-1 Initializing Collections

A collection such as a generic List can be initialized like this:

List<string> names = new List<string> { Dylan, Angelina, Isabella };

This initialization has the same effect as using the Add method with each

collection element. Consider the following C# 2.0 example:

336 | Chapter 14

14-3 Object Initializers

Example 14-3

// Example 14-3.cs
// Initializing collections – C# 2.0

using System;
using System.Collections;
using System.Collections.Generic;
using System.Text;

namespace InitCollections
{

public class Authors
{

string author;
List<string> booksInPrint = new List<string>();
public string Author { get { return author; } set { author =

value; } }
public List<string> BooksInPrint { get { return booksInPrint; } }

}

class MyClass
{

static void Main(string[] args)
{

List<Authors> authorsList = new List<Authors>();
Authors c1 = new Authors();
c1.Author = "Dylan Combel";
c1.BooksInPrint.Add("ISBN: 555-62280-58");
c1.BooksInPrint.Add("ISBN: 555-71180-59");
authorsList.Add(c1);
Authors c2 = new Authors();
c2.Author = "Isabella Abolrous";
c2.BooksInPrint.Add("ISBN: 555-72390-88");
c2.BooksInPrint.Add("ISBN: 555-65412-77");
authorsList.Add(c2);
Console.WriteLine(c1.Author + ":\n" + c1.BooksInPrint[0] +

"\n" + c1.BooksInPrint[1]);
Console.WriteLine(c2.Author + ":\n" + c2.BooksInPrint[0] +

"\n" + c2.BooksInPrint[1]);
}

}
}

C# 3.0 Features | 337

14-3 Object Initializers

http://www.abicomputer.net

Output:

Dylan Combel:
ISBN: 555-62280-58
ISBN: 555-71180-59
Isabella Abolrous:
ISBN: 555-72390-88
ISBN: 555-65412-77

In C# 3.0, you can write less code to express the same concept:

static void Main(string[] args)
{

var authorsList = new List<Authors> {
new Authors { Author = "Dylan Combel",

BooksInPrint = { "ISBN: 555-62280-58", "ISBN: 555-71180-59" } },
new Authors { Author = "Isabella Abolrous",

BooksInPrint = { "ISBN: 555-72390-88", "ISBN: 555-65412-77" }
};

}

The following is the complete C# 3.0 example, which outputs the same

result as that of Example 14-3.

Example 14-4

// Example 14-4.cs
// Initializing collections – C# 3.0

using System;
using System.Collections.Generic;
using System.Text;
using System.Query;
using System.Xml.XLinq;
using System.Data.DLinq;

namespace InitCollections
{

public class Authors
{

string author;
List<string> booksInPrint = new List<string>();
public string Author { get { return author; } set { author =

value; } }
public List<string> BooksInPrint { get { return booksInPrint; } }

static void Main(string[] args)
{

var authorsList = new List<Authors> {
new Authors { Author = "Dylan Combel",

BooksInPrint = { "ISBN: 555-62280-58", "ISBN: 555-71180-59" }

338 | Chapter 14

14-3 Object Initializers

},
new Authors {Author = "Isabella Abolrous",

BooksInPrint = { "ISBN: 555-72390-88", "ISBN: 555-65412-77" }
}

};

// Display the first author and his books:
Console.WriteLine(authorsList[0].Author + ":\n" +

authorsList[0].BooksInPrint[0] + "\n" +
authorsList[0].BooksInPrint[1]);

// Display the second author and her books:
Console.WriteLine(authorsList[1].Author + ":\n" +

authorsList[1].BooksInPrint[0] + "\n" +
authorsList[1].BooksInPrint[1]);

}
}

}

Output:

Dylan Combel:
ISBN: 555-62280-58
ISBN: 555-71180-59
Isabella Abolrous:
ISBN: 555-72390-88
ISBN: 555-65412-77

14-4 Extension Methods

You can extend both regular types and constructed types by adding addi -

tional static methods, which can be invoked in the same way you invoke

instance methods.

To create an extension method, declare it as a static method in a static

class. The first parameter of an extension method must be the keyword

this. The following is an example of an extension method to convert the

temperature from Fahrenheit to Celsius.

namespace MyNameSpace
{

public static class MyClass
{

public static double ConvertToCelsius(this double fahrenheit)
{

return ((fahrenheit – 32) / 1.8);
}

}

C# 3.0 Features | 339

14-4 Extension Methods

http://www.abicomputer.net

Compile the code above as a library by using the option LINQ Library in

Visual Studio or by using the command line with the switch /target:library.

In order to use an extension method, reference its library and import its

namespace by using the using directive. In the current example, you must

import MyNameSpace:

using MyNameSpace;

Now it is possible to invoke the extension method, ConvertToCelsius, as

if it is an instance method:

double fahrenheit = 98.7;
double Celsius = fahrenheit.ConvertToCelsius();

which is the same as using the static method:

double Celsius = MyClass.ConvertToCelsius(fahrenheit);

Notice that instance methods have precedence over extension methods.

Notice also, in nested namespaces, the extension methods in the inner

namespace have higher precedence over the ones in the outer namespace.

� Note Using extension methods is not recommended except in cases
where instance methods are not available.

Extension members such as properties, events, and operators are not
currently supported.

14-5 Anonymous Types

The C# compiler can create an anonymous type by using the properties in

an object initializer. For example, consider the following declaration:

var book1 = new { Title = "Organic Babies", ISBN = "5-1234-5678-x" };

This declaration creates and initializes an object with the values of the two

properties, Title and ISBN. The compiler automatically creates an anony-

mous type and infers the types of the properties from the object initializer.

It also creates the private fields associated with these properties and the

necessary set and get accessors. When the object is instantiated, the prop-

erties are set to the values specified in the object initializer.

The following example declares one anonymous type and displays its

contents.

340 | Chapter 14

14-5 Anonymous Types

Example 14-5

// Example 14-5.cs
// Anonymous types

using System;
using System.Collections.Generic;
using System.Text;
using System.Query;
using System.Xml.XLinq;
using System.Data.DLinq;

namespace AnonTypes
{

class MyClass
{

static void Main(string[] args)
{

// Declare an anonymous type:
var obj1 = new { Title = "Organic Babies", ISBN =

"5-1234-5678-x" };

// Display the contents:
Console.WriteLine("Title: {0}\nISBN: {1}", obj1.Title,

obj1.ISBN);
Console.ReadLine();

}
}

}

Output:

Title: Organic Babies
ISBN: 5-1234-5678-x

In order to see the class tree, run ILDASM on the executable file generated

from the compilation (AnonTypes.exe) by using the following command

line:

ILDASM AnonTypes.exe

Notice that you have to issue this command from the directory in which the

executable file exists. You will then see the compiled assembly tree, as

shown in the following figure.

C# 3.0 Features | 341

14-5 Anonymous Types

http://www.abicomputer.net

When you examine Figure 14-4, you can see the class <Projection>f__0

that was created as well as the private fields _ISBN and _Title. You will

also notice the two properties ISBN and Title along with their set and get

accessors. If you double-click one of the properties, you will reveal the

code behind it. For example, double-clicking the Title property displays

the code shown in Figure 14-5.

342 | Chapter 14

14-5 Anonymous Types

Figure 14-4: The class generated by an anony-
mous type in Example 14-5.

Figure 14-5: The code behind the Title property in Example 14-5.

14-5-1 Using Multiple Anonymous Types

Now consider the following change to Example 14-5, where you create

two similar types:

static void Main(string[] args)
{

// Declare two similar anonymous types:
var book1 = new { Title = "Organic Babies", ISBN = "5-1234-5678-x" };
var book2 = new { Title = "Best Games for Kids", ISBN =

"6-1234-5678-y" };
// Display the contents:
Console.WriteLine("Title = {0}\nISBN = {1}", book1.Title, book1.ISBN);
Console.WriteLine("Title = {0}\nISBN = {1}", book2.Title, book2.ISBN);

}

This code would display the following output:

Title = Organic Babies
ISBN = 5-1234-5678-x
Title = Best Games for Kids
ISBN = 6-1234-5678-y

By examining the compiled assembly for this code, you will get the same

result shown in Figure 14-4 because the two types are identical. If you cre-

ated two different types, however, you will notice that the compiler will

create two classes. For example, the following code declares two different

anonymous types:

static void Main(string[] args)
{

// Declare two different anonymous types:
var book1 = new { Title = "Organic Babies", ISBN = "03-56789-xxx" };
var book2 = new { Title = "Best Games for Kids", Price = 34.99 };

// Display the contents:
Console.WriteLine("Title: {0}\nISBN: {1}", book1.Title, book1.ISBN);
Console.WriteLine("Title: {0}\nPrice: {1}", book2.Title, book2.Price);

}

The expected output from this code is:

Title: Organic Babies
ISBN: 03-56789-xxx
Title: Best Games for Kids
Price: 34.99

Now examine the compiled assembly shown in Figure 14-6 and notice that

there are two classes: one contains the ISBN and Title properties, and the

other contains the Price and Title properties.

C# 3.0 Features | 343

14-5 Anonymous Types

http://www.abicomputer.net

14-6 Implicitly Typed Arrays

The implicitly typed local variables can be extended to declaring arrays.

By examining the members of an array in the initialization expression, the

compiler can infer the type of the array elements.

The following is the regular C# 2.0 code to declare variables of different

types:

int a = new[] { 1, 2, 4, 8, 16, 32, 64 };
double b = new[] { 3, 3.14, 2.7 };
bool c = new [] { true, false };
string d = new[] { "Hello,", "world!" };

In C# 3.0, you don’t have to declare the array types explicitly. Just use the

keyword var and let the compiler infer the type of the array elements:

var intArray = new[] { 1, 2, 4, 8, 16, 32, 64 };
var doubleArray = new[] { 3, 3.14, 2.7 };
var boolArray = new[] { true, false };
var stringArray = new[] { "Hello,", "world!" };

344 | Chapter 14

14-6 Implicitly Typed Arrays

Figure 14-6: Two classes created by two differ-
ent anonymous types.

Example 14-6

// Example 14-6.cs
// Implicitly typed arrays

using System;
using System.Collections.Generic;
using System.Text;
using System.Query;
using System.Xml.XLinq;
using System.Data.DLinq;

namespace ImplicitlyTypedArrays
{

class MyClass
{

static void Main(string[] args)
{

// Declare some implicitly typed arrays:
var intArray = new[] { 1, 2, 4, 8, 16, 32, 64 };
var doubleArray = new[] { 3, 3.14, 2.7 };
var boolArray = new[] { true, false };
var stringArray = new[] { "Hello,", "world!" };

// Display array elements:
foreach(var x in intArray) Console.Write(x + " ");

Console.WriteLine();
foreach(var x in doubleArray) Console.WriteLine(x);
foreach(var x in boolArray) Console.Write(x + " ");

Console.WriteLine();
foreach(var x in stringArray) Console.Write(x);

}
}

}

Output:

1 2 4 8 16 32 64
3
3.14
2.7
True False
Hello, world!

C# 3.0 Features | 345

14-6 Implicitly Typed Arrays

http://www.abicomputer.net

14-7 Lambda Expressions

Lambda expressions provide a concise syntax for writing anonymous

methods. The C# 3.0 specification describes lambda expressions as a

superset of anonymous methods.

14-7-1 Using Anonymous Methods in C# 2.0

In Chapter 10, you used delegates that encapsulate a block of code, which

is called an anonymous method.

In C# 2.0, you can write a delegate using an anonymous method, as

shown in this example:

public delegate int MyDelegate(int n);
class MyClass
{

static void Main()
{

// Anonymous method that returns the argument multiplied by 5:
MyDelegate delegObject1 = new MyDelegate(

delegate(int n) { return n * 5; }
);
// Display the result:
Console.WriteLine("The value is: {0}", delegObject1(5));

}
}

This program outputs the value 25.

14-7-2 Using Lambda Expressions in C# 3.0

In C# 3.0 this feature is extended to lambda expressions, which are used in

many functional languages such as Lisp.

� Note For more information on functional languages, see
http://en.wikipedia.org/wiki/Functional_programming_language.

Using a lambda expression you can use a simpler syntax to achieve the

same goal:

// Lambda expression that returns the argument multiplied by 5:
MyDelegate delegObject2 = (int n) => n * 5;

The token “=>” used in this syntax is called the lambda operator. You can

also use an abbreviated form like this:

MyDelegate delegObject2 = n => n * 5;

346 | Chapter 14

14-7 Lambda Expressions

The following example demonstrates the two approaches (the anonymous

method and the lambda expression) to return the argument multiplied by 5.

Example 14-7

// Example 14-7.cs
// Lambda expressions

using System;
using System.Collections.Generic;
using System.Text;
using System.Query;
using System.Xml.XLinq;
using System.Data.DLinq;

namespace Lambda
{

public delegate int MyDelegate(int n);

class MyClass
{

static void Main()
{

// Anonymous method that returns the argument multiplied by 5:
MyDelegate delegObject1 = new MyDelegate(

delegate(int n) { return n * 5; }
);

// Display the result:
Console.WriteLine("The value using an anonymous method is: {0}",

delegObject1(5));

// Using lambda expression to do the same job:
MyDelegate delegObject2 = (int n) => n * 5;
// or:
// MyDelegate delegObject2 = n => n * 5;

// Display the result:
Console.WriteLine("The value using a lambda expression is: {0}",

delegObject2(5));
Console.ReadLine();

}
}

}

Output:

The value using an anonymous method is: 25
The value using a lambda expression is: 25

C# 3.0 Features | 347

14-7 Lambda Expressions

http://www.abicomputer.net

14-7-3 Using Two Arguments in a Lambda Expression

A lambda expression can use two arguments, especially when you are

using the Standard Query Operators. Let us start by declaring the follow-

ing delegate that uses two arguments:

public delegate int MyDelegate(int m, int n);

You can instantiate the delegate by using a lambda expression like this:

MyDelegate myDelegate = (x, y) => x * y;

You can then invoke the delegate and display the result as follows:

Console.WriteLine("The product is: {0}", myDelegate(5, 4));
// output: 20

� Note The Standard Query Operators is an API used to query .NET
arrays and collections. The API contains methods declared in the
System.Query.Sequence static class in the assembly System.Query.dll.
Examples of Standard Query Operators are Average and Count.

This feature is enhanced with languages that support extension
methods, lambda expressions, and native query syntax, such as C# 3.0.

You can find more information on the Standard Query Operators as
well as the Microsoft specification on the web site:
http://www.hookedonlinq.com/StandardQueryOperators.ashx.

In the next section, we discuss a simpler way of using delegates and com-

pare it to using lambda expressions.

14-8 Func Delegate Types

Language Integrated Query (LINQ) defined a number of parameterized

generic delegate types in the System.Query.Func namespace. Those

generic delegate types can be used to construct delegates without the need

to explicitly declare a delegate. These generic delegates are:

public delegate TR Func<TR>();
public delegate TR Func<T0, TR>(T0 a0);
public delegate TR Func<T0, T1, TR>(T0 a0, T1 a1);
public delegate TR Func<T0, T1, T2, TR>(T0 a0, T1 a1, T2 a2);
public delegate TR Func<T0, T1, T2, T3, TR>(T0 a0, T1 a1, T2 a2, T3 a3);

When a single type parameter is used, as in the first delegate, this type

parameter (TR) represents the return type of the delegate. In all the other

delegates, the type parameters (T0, T1, and so forth) are the types of the

arguments, while the last type parameter (TR) is the return type of the dele-

gate. These delegate types are used in the Standard Query Operators.

348 | Chapter 14

14-8 Func Delegate Types

You can use these types to declare and instantiate a delegate, like this:

Func<int, int, int> myFuncDelegate = (a, b) => a * b;

In the following example, a lambda expression and a Func delegate are

used to multiply two arguments. They both output the same result, but the

latter doesn’t use the explicit delegate declaration.

Example 14-8

// Example 14-8.cs
// Comparison between lambda expressions and Func delegates.

using System;
using System.Collections.Generic;
using System.Text;
using System.Query;
using System.Xml.XLinq;
using System.Data.DLinq;

namespace LambdaAndFunc
{

// Declare a delegate:
public delegate int MyDelegate(int m, int n);

class MyClass
{

static void Main(string[] args)
{

// Instantiate the delegate using a lambda expression:
MyDelegate myDelegate = (x, y) => x * y;

// Invoke the delegate and display the result:
Console.WriteLine("The product from the lambda expression is:

{0}", myDelegate(5, 4));

// Using the Func delegate type.
// Notice that no delegate declaration is needed:
Func<int, int, int> myFuncDelegate = (a, b) => a * b;
Console.WriteLine("The product from the Func delegate is: {0}",

myFuncDelegate(5, 4));
}

}
}

C# 3.0 Features | 349

14-8 Func Delegate Types

http://www.abicomputer.net

Output:

The product from the lambda expression is: 20
The product from the Func delegate is: 20

14-9 Query Expressions

The main goal of LINQ is to bridge the gap between programming lan-

guages and databases. With the LINQ extensions it is possible to write

SQL or XML queries in your C# code.

� Note At the time this book was written, LINQ was still under develop-
ment, and it is expected to undergo more changes in the final version.

The following example demonstrates a query expression that uses a string

array called names.

Example 14-9

// Example 14-9.cs
// Query Expressions

using System;
using System.Collections.Generic;
using System.Text;
using System.Query;
using System.Xml.XLinq;
using System.Data.DLinq;

namespace QueryExpressions
{

class MyClass
{

static void Main()
{

string[] names = { "Hazem", "Pille", "Isabella", "Angelina",
"Sally", "Craig", "Dylan" };

IEnumerable<string> myVariable = from name in names
where name.Length > 5
orderby name
select name;

foreach (string item in myVariable)
Console.WriteLine(item);
Console.ReadLine();

}

350 | Chapter 14

14-9 Query Expressions

}
}

Output:

Angelina
Isabella

Consider the following statement, which contains a query expression:

IEnumerable<string> myVariable = from name in names
where name.Length > 5
orderby name
select name;

A query expression starts with the from clause and ends with either a

select or group clause. The variable myVariable, in this example, is

referred to as the range variable. This variable is never explicitly declared.

Its type, which is string in this case, is inferred from the context. This vari-

able goes out of scope after the query expression has been executed.

The names array is called the source collection. It should implement

either the IEnumerable or IQueryable interface. In this example, the

string array implements IEnumerable.

The query expression is in fact translated to explicit syntax, which is:

IEnumerable<string> expr = names
.Where(s => s.Length >= 5)
.OrderBy(s => s)
.Select(s => s);

You can use this syntax instead and you would get the same result.

In some cases, the underlying method calls include a chain of query

operators that use extension methods, lambda expressions, and expression

trees. Therefore, the syntax of the query expression hides this complex

code in the background and gives you syntax that is easy to understand and

use.

14-10 Expression Trees

By using expression trees, you can represent a lambda expression as data

instead of code. That is, if a lambda expression can be converted to a dele -

gate of the type “D”, it can also be converted to an expression tree of type

System.Query.Expression<D>.

C# 3.0 Features | 351

14-10 Expression Trees

http://www.abicomputer.net

The following two lines represent a lambda expression, once as code

and once as data:

Func<int,int> fnDel = n => n * 5; // Code
Expression<Func<int,int>> expTree = n => n * 5; // Data

In the first statement, the delegate fnDel references a method that returns

the argument multiplied by 5. In the second statement, the expression tree

expTree references a data structure that describes the expression “n * 5.”

� Note The specification of the expression trees was not finished at the
time of this book’s publication and was not available for the Community
Technology Preview.

Summary

In this chapter:

� You took a tour of the new C# 3.0 features and the LINQ project that

was introduced in the Community Technology Preview.

� You learned how to add the C# 3.0 compiler to Visual Studio. You also

learned that you can use the command line for compiling programs or

installing the new Visual Studio CTP from the Microsoft web site.

� Using C# 3.0, you learned how to declare implicitly typed variables by

using the keyword var.

� You also learned how to initialize objects and collections without

repeating the details of constructors.

� You learned that the C# compiler can create an anonymous type by

using the properties in an object initializer. The compiler can also infer

the type of the array elements by examining the members of an array in

the initialization expression.

� You used lambda expressions to declare and invoke delegates in a sim-

pler syntax than that used in anonymous methods.

� You also learned about generic delegate types that can be used to con-

struct delegates without the need to explicitly declare a delegate.

� Finally, you took a quick tour of query expressions and expression

trees. Both help to bridge the gap between programming languages and

databases.

352 | Chapter 14

Summary

Appendix

Answers to Drills

// Drill 2-1.cs

// WriteLine and Write

using System;

class HelloWorld
{

static void Main()
{

// Using WriteLine:
Console.WriteLine("Hello, World!");
Console.WriteLine("Hello, C# user!");

// Using Write:
Console.Write("Hello, World!");
Console.Write("Hello, C# user!");

}
}

/*
Output:
Hello, World!
Hello, C# user!
Hello, World!Hello, C# user!
*/

// Drill 2-2.cs

// Adding two integers

using System;

class MyClass
{

static void Main()
{

int myInt = 123;

353

http://www.abicomputer.net

int yourInt = 123;
int sum = myInt + yourInt;

Console.Write("The sum = "+ sum.ToString());
}

}

/*
Output:
The sum = 246
*/

// Drill 3-1.cs

// Increment operator

using System;

class ArithmeticOperators
{

public static void Main()
{

int x = 10;
int y = 100;
int z = y;
y = y++ + x;
Console.WriteLine(y);
z = ++z + x;
Console.WriteLine(z);

}
}

/*
Output:
110
111
*/

// Drill 3-2.cs

// Get types 1

using System;

class MyTypes
{

static void Main()
{

Console.WriteLine(123.GetType());
Console.WriteLine(3.14.GetType());

}

354 | Appendix

}

/*
Output:
System.Int32
System.Double
*/

// Drill 3-3.cs

// Get types 2

using System;

class MyTypes
{

static void Main()
{

decimal myDc = 23.4M;
float myFl = 23.4F;
double myDb = 23.4;

Console.Write("myDc ={0}\nmyFl ={1}\nmyDb ={2}",
myDc.GetType(), myFl.GetType(), myDb.GetType());

}
}

/*
Output:
myDc = System.Decimal
myFl = System.Single
myDb = System.Double
*/

// Drill 3-4.cs

// Get types 3

using System;

class MyClass
{

static void Main()
{

Console.WriteLine(9223372036854775808L.GetType());
Console.WriteLine(123UL.GetType());
Console.WriteLine(4294967296L.GetType());
Console.WriteLine(4294967290U.GetType());

}
}

Answers to Drills | 355

http://www.abicomputer.net

/*
Output:
System.UInt64
System.UInt64
System.Int64
System.UInt32
*/

// Drill 3-5.cs

// Strings

using System;

class UnicodeChars
{

static void Main()
{

string a = "\u0041";
string b = "\u0042";
string c = "\u0043";

Console.WriteLine("{0}, {1}, and {2} are the first three letters.",
a, b, c);

}
}

/*
Output:
A, B, and C are the first three letters.
*/

// Drill 4-1.cs

// Character Tester

using System;

public class CharTester
{

public static void Main()
{

Console.Write("Please enter a character: ");
char yourChar = (char) Console.Read();

if (Char.IsLower(yourChar))
Console.WriteLine("The letter {0} is lowercase.", yourChar);

else if (Char.IsUpper(yourChar))
Console.WriteLine("The letter {0} is uppercase.", yourChar);

else
Console.WriteLine("The character {0} is not alphabetic.",

yourChar);

356 | Appendix

}
}

/*
Sample Run 1:
Please enter a character: a
The letter a is lowercase.

Sample Run 2:
Please enter a character: A
The letter A is uppercase.

Sample Run 3:
Please enter a character: 3
The character 3 is not alphabetic.

Sample Run 4:
Please enter a character: #
The character # is not alphabetic.
*/

// Drill 4-2.cs

// Computing the power

using System;

public class Power
{

static void Main(string[] args)
{

// Enter the first number:
Console.Write("Please enter the number: ");
string stringNumber = Console.ReadLine();
int number = Int32.Parse(stringNumber);
// Enter the second number:
Console.Write("Please enter the power: ");
string stringPower = Console.ReadLine();
int power = Int32.Parse(stringPower);
int result = 1;
for (int i = 1; i <= power; i++)

result = result * number;
Console.WriteLine("The number {0} raised to the power {1} = {2}",

number, power, result);
}

}

/*
Sample Run 1:
Please enter the number: 4

Answers to Drills | 357

http://www.abicomputer.net

Please enter the power: 3
The number 4 raised to the power 3 = 64

Sample Run 2:
Please enter the number: 2
Please enter the power: 3
The number 2 raised to the power 3 = 8
*/

// Drill 4-3.cs

// Two-dimensional arrays example

using System;

class JaggedClass
{

static void Main ()
{

// Two dim array:
string[,] grades = new string[2,4]

{ {"Pass", "Good", "VeryGood", "Distinct"},
{"55%", "65%", "75%", "85%"} };

for (int j = 0; j <= 3; j++)
{

Console.Write("Grade={0}\t", grades[0,j]);
Console.WriteLine("Score={0}", grades[1,j]);

}
}

}

/*
Output:
Grade=Pass Score=55%
Grade=Good Score=65%
Grade=VeryGood Score=75%
Grade=Distinct Score=85%
*/

// Drill 4-4.cs

// Computing the power, version 2

using System;

public class ConvertMethod

{
static void Main(string[] args)
{

int number = Int32.Parse(args[0]);

358 | Appendix

int power = Int32.Parse(args[1]);
int result = 1;
for (int i = 1; i <= power; i++)

result = result * number;
Console.WriteLine(

"The number {0} raised to the power {1} = {2}",
number, power, result);

}
}

/*
Sample Run 1:
>power 4 2
The number 4 raised to the power 2 = 16

Sample Run 2:
>power 4 3
The number 4 raised to the power 3 = 64
*/

// Drill 4-5.cs

// Using array methods

using System;

class MyClass
{

static void Main()
{

int[] myArray = {1, 4, 25, 3};

// Display the array:
foreach (int i in myArray)

Console.Write(i + " ");
Console.WriteLine("Original");

// Sort, then display:
Array.Sort(myArray);
foreach (int i in myArray)

Console.Write(i + " ");
Console.WriteLine("Sorted");

// Reverse, then display:
Array.Reverse(myArray);
foreach (int i in myArray)

Console.Write(i + " ");
Console.WriteLine("Reversed");

}
}

Answers to Drills | 359

http://www.abicomputer.net

/*
Output:
1 4 25 3 Original
1 3 4 25 Sorted
25 4 3 1 Reversed
*/

// Drill 5-2.cs

// Private constructors

using System;

public class MyClass
{

/* Remove the comment characters from the next line to see the
compiler error */

// private MyClass() {}
public string companyName = "Microsoft";
public string employmentDate = "5/12/2006";

}

public class TestingPrivateCtor
{

public static void Main()
{

MyClass mc = new MyClass();
// Displayed only if compilation succeeded:
Console.WriteLine(mc.companyName +"\n" + mc.employmentDate);

}
}

/*
Compilation error:
error CS0122: 'MyClass.MyClass()' is inaccessible due to its protection
level
drill5-2.cs(7,12): (Location of symbol related to previous error)
*/

// Drill 5-3 - file1.cs

// Compilation command: csc/out:Drill5-3.exe file1.cs file2.cs

using System;

public class Citizen
{

private int age = 36;
private string ssn = "555-55-5555";

public void GetPersonalInfo()

360 | Appendix

{
Console.WriteLine("SSN: {0}", ssn);
Console.WriteLine("Age: {0}", age);

}
}

public partial class Employee
{

private string name = "Pille Mandla";
private string id = "123-WxYz";

}

// Drill 5-3 - file2.cs

// Compilation command: csc/out:Drill5-3.exe file1.cs file2.cs

using System;

public partial class Employee: Citizen
{

public void GetInfo()
{

// Calling the base class GetPersonalInfo method:
Console.WriteLine("Citizen's Information:");

GetPersonalInfo();

Console.WriteLine("\nJob Information:");
Console.WriteLine("Company Name: {0}", name);
Console.WriteLine("Company ID: {0}", id);

}
}

class MyClass
{

static void Main(string[] args)
{

// Create object:
Employee emp = new Employee();

// Display information:
emp.GetInfo();

}
}

/*
Output:
Citizen's Information:
SSN: 555-55-5555
Age: 36

Answers to Drills | 361

http://www.abicomputer.net

Job Information:
Company Name: Pille Mandla
Company ID: 123-WxYz
*/

// Drill 6-1.cs

// using override and virtual

using System;

class Citizen
{

string idNumber = "DAC-2345-A";
string name = "Dylan Alexander Combel";

public virtual void GetInformation()
{

Console.WriteLine("Name: {0}", name);
Console.WriteLine("ID Card Number: {0}", idNumber);

}
}
class Employee: Citizen
{

string companyName = "Technology Group Inc.";
string companyID = "ENG-RES-101-C";

public override void GetInformation()
{

// Calling the base class GetInformation method:
base.GetInformation();

Console.WriteLine("\nJob Information:");
Console.WriteLine("Company Name: {0}", companyName);
Console.WriteLine("Company ID: {0}", companyID);

}
}
class MainClass
{

public static void Main()
{

Employee E = new Employee();
E.GetInformation();

}
}

/*
Output:
Name: Dylan Alexander Combel

362 | Appendix

ID Card Number: DAC-2345-A

Job Information:
Company Name: Technology Group Inc.
Company ID: ENG-RES-101-C
*/

// Drill 6-2.cs

// Abstract classes

using System;

abstract class MyBaseClass
{

// Fields:
protected int number = 100;
protected string name = "Dale Sanders";

// Abstract method:
public abstract void MyMethod();

// Abstract properties:
public abstract int Number
{ get; }
public abstract string Name
{ get; }

}

// Inheriting the class:
class MyDerivedClass: MyBaseClass
{

// Overriding properties:
public override int Number
{

get { return number; }
}
public override string Name
{

get { return name; }
}

// Overriding the method:
public override void MyMethod()
{

Console.WriteLine("Number = {0}", Number);
Console.WriteLine("Name = {0}", Name);

}
}

Answers to Drills | 363

http://www.abicomputer.net

class MySecondDerivedClass: MyDerivedClass
{

public override void MyMethod()
{

// Implementation:
Console.Write("Hello...");
Console.WriteLine("again!");

}
}

class MainClass
{

public static void Main()
{

MyDerivedClass myObject1 = new MyDerivedClass();
MySecondDerivedClass myObject2 = new MySecondDerivedClass();
myObject1.MyMethod();
myObject2.MyMethod();

}
}

/*
Output:
Number = 100
Name = Dale Sanders
Hello...again!
*/

// Drill 6-3.cs

// Overloading methods with different number of parameters

using System;

class MyClass
{

// Using an integer parameter:
static void MyMethod(int m1)
{

Console.WriteLine(m1);
}

// Using two integer parameters:
static void MyMethod(int m1, int m2)
{

Console.WriteLine("{0}, {1}", m1, m2);
}

static void Main()
{

364 | Appendix

int m = 134, n = 155;
MyMethod(m);

MyMethod(m, n);
}

}

/*
Output:
134
134, 155
*/

// Drill 6-4.cs

// Swapping two strings

using System;

class MyClass
{

static void Swap(ref string s1, ref string s2)
{

string temp = s1;
s1 = s2;
s2 = temp;
Console.WriteLine("Inside the swap method: " +

"s1 = {0}, s2 = {1}", s1, s2);
}
public static void Main()
{

string s1 = "John";
string s2 = "Smith";
Console.WriteLine("Before swapping: "+

"s1 = {0}, s2 = {1}", s1, s2);
Swap(ref s1, ref s2);
Console.WriteLine("After swapping: "+

"s1 = {0}, s2 = {1}", s1, s2);
}

}

/*
Output:
Before swapping: s1 = John, s2 = Smith
Inside the swap method: s1 = Smith, s2 = John
After swapping: s1 = Smith, s2 = John
*/

Answers to Drills | 365

http://www.abicomputer.net

// Drill 6-5.cs

// Overloading Example

using System;

public class MyClass
{

public void MyMethod(out int x, out int y, out int z)
{

x = 1945;
y = 1966;
z = 1987;

}

public void MyMethod(ref int x, ref int y)
{

x++;
y++;

}
}

class MainClass
{

public static void Main()
{

int d1, d2, d3;
int m = 100, n = 200;

MyClass mc = new MyClass();

mc.MyMethod(out d1, out d2, out d3);
mc.MyMethod(ref m, ref n);

Console.Write("My dates are: {0}, {1}, {2}\n", d1, d2, d3);
Console.WriteLine ("My numbers are: {0}, {1}", m, n);

}
}

/*
Output:
My dates are: 1945, 1966, 1987
My numbers are: 101, 201
*/

// Drill 6-6.cs

// Using params

using System;

366 | Appendix

public class MyClass
{

// Declare MyMethod that uses object parameters:
public void MyMethod(params object[] myObjArray)
{

for(int i = 0; i< myObjArray.Length; i++)
Console.WriteLine(myObjArray[i]);

Console.WriteLine();
}

}

class MainClass
{

static void Main()
{

MyClass mc = new MyClass();
mc.MyMethod(11, 22, 33);
mc.MyMethod(45.33, 'A', "My string");

}
}

/*
Output:
11
22
33

45.33
A
My string
*/

// Drill 6-7.cs

// Overloading operators

using System;

public class CompNum
{

public int real;
public int imag;

// Constructor:
public CompNum(int r, int i)
{

real = r;
imag = i;

}

Answers to Drills | 367

http://www.abicomputer.net

// The overloaded operator:
public static CompNum operator+(CompNum c1, CompNum c2)
{

// Return the sum as a complex number:
return new CompNum(c1.real + c2.real, c1.imag + c2.imag);

}

// Override ToString():
public override string ToString()
{

return (String.Format("{0} + {1}i", real, imag));
}

static void Main()
{

CompNum n1 = new CompNum (15, 33);
CompNum n2 = new CompNum (10, 12);

// Add two complex numbers using the overloaded + operator:
CompNum sum = n1 + n2;

// Display the objects:
Console.WriteLine("Num1 = {0}", n1);
Console.WriteLine("Num2 = {0}", n2);
Console.WriteLine("Sum = {0}", sum);

}
}

/*
Output:
Num1 = 15 + 33i
Num2 = 10 + 12i
Sum = 25 + 45i
*/

// Drill 7-1.cs

// Struct properties

using System;

struct Color
{

// Fields:
private int r;
private int g;
private int b;

// Constructor:
Color(int r, int b, int g)

368 | Appendix

{
this.r = r;
this.b = b;
this.g = g;

}

// Properties:
public int R
{

get { return r; }
set { r = value; }

}

public int B
{

get { return b; }
set { b = value; }

}

public int G
{

get { return g; }
set { g = value; }

}

// Override the method ToString():
public override string ToString()
{

return (String.Format("Red = {0}, Green = {1}, Blue = {2}",
R, B, G));

}
static void Main()
{

// Declare objects:
Color c1 = new Color();
Color c2 = new Color(100, 100, 0);

// Display objects:
Console.WriteLine("The first object:");
Console.WriteLine("The colors are: {0}", c1);
Console.WriteLine("The second object:");
Console.WriteLine("The colors are: {0}", c2);

}
}

/*
Output:
The first object:
The colors are: Red = 0, Green = 0, Blue = 0

Answers to Drills | 369

http://www.abicomputer.net

The second object:
The colors are: Red = 100, Green = 100, Blue = 0
*/

// Drill 7-2.cs

// Passing struct & class objects

using System;

class MyClass
{

public string classField;
}

struct MyStruct
{

public string structField;
}

class MainClass
{

public static void MyMethod1(MyStruct s)
{

s.structField = "New Value";
}
public static void MyMethod2(MyClass c)
{

c.classField = "New Value";
}

static void Main()
{

// Create class and struct objects:
MyStruct sObj = new MyStruct();
MyClass cObj = new MyClass();

// Initialize the values of struct and class objects:
sObj.structField = "Original Value";
cObj.classField = "Original Value";

// Print results:
Console.WriteLine("Results before calling methods:");
Console.WriteLine("Struct member = {0}", sObj.structField);
Console.WriteLine("Class member = {0}\n", cObj.classField);

// Change the values through methods:
MyMethod1(sObj);
MyMethod2(cObj);

370 | Appendix

// Print results:
Console.WriteLine("Results after calling methods:");
Console.WriteLine("Struct member = {0}", sObj.structField);
Console.WriteLine("Class member = {0}", cObj.classField);

}
}

/*
Output:
Results before calling methods:
Struct member = Original Value
Class member = Original Value

Results after calling methods:
Struct member = Original Value
Class member = New Value
*/

// Drill 7-3.cs

// Using enum in a switch

using System;

// Declare the enum Color:
enum Color { Red = 1, Green, Blue }

class MyClass
{

// A method that uses a Color parameter:
static void SelectColor(Color c)
{

switch (c)
{

// The switch displays the appropriate message according to
the color:

case Color.Red:
Console.WriteLine("The selected color is Red.");
break;

case Color.Green:
Console.WriteLine("The selected color is Green.");
break;

case Color.Blue:
Console.WriteLine("The selected color is Blue.");
break;

default:
Console.WriteLine("Not a valid choice.");
break;

}
}

Answers to Drills | 371

http://www.abicomputer.net

static void Main()
{

// Read a color from the keyboard:
Console.Write("Please select a color: 1=Red, 2=Green, 3=Blue: ");

// Convert the string to int:
int myColor = Int32.Parse(Console.ReadLine());

// Pass the color to the method SelectColor:
SelectColor((Color)myColor);

}
}

/*
Sample Run 1:
Please select a color: 1=Red, 2=Green, 3=Blue: 2 --> input
The selected color is Green.

Sample Run 2:
Please select a color: 1=Red, 2=Green, 3=Blue: 0 --> input
Not a valid choice.
*/

// Drill 7-5.cs

// Using PInvoke

using System;

using System.Runtime.InteropServices;

class PlatformInvokeTest
{

[DllImport("msvcrt.dll")]
static extern int puts(string c);

static void Main()
{

string s = "This is an example of platform invoke.";
puts(s);

}
}

/*
Output:
This is an example of platform invoke.
*/

372 | Appendix

// Drill 7-6.cs

// Emulating unions

using System;
using System.Runtime.InteropServices;

[type: StructLayout(LayoutKind.Explicit)]
struct UnionStruct
{

[field: FieldOffset(0)]
public long longVar;
[field: FieldOffset(0)]

public int byte1;
[field: FieldOffset(4)]
public int byte5;

}
class MyClass
{

static void Main()
{

UnionStruct u = new UnionStruct();

u.byte1 = 5;
u.byte5 = 7;

Console.WriteLine("The bytes of the first int number:
{0:x8}",u.byte1);

Console.WriteLine("The bytes of the second int number:
{0:x8}",u.byte5);

Console.WriteLine("The bytes of the long number:
{0:x16}",u.longVar);

}
}

/*
Output:
The bytes of the first int number: 00000005
The bytes of the second int number: 00000007
The bytes of the long number: 0000000700000005
*/

// Drill 8-1.cs

// Explicit interface implementation

using System;

public interface ITemp1
{

Answers to Drills | 373

http://www.abicomputer.net

double Convert(double d);
}

public interface ITemp2
{

double Convert(double d);
}

public class TempConverter: ITemp1, ITemp2

{
double ITemp1.Convert(double d)
{

// Convert to Fahrenheit:
return (d * 1.8) + 32;

}

double ITemp2.Convert(double d)
{

// Convert to Celsius:
return (d - 32) / 1.8;

}
}

class MyClass
{

public static void Main()

{
// Create a class instance:
TempConverter cObj = new TempConverter();

// Create instances of interfaces
// Create a From-Celsius-to-Fahrenheit object:
ITemp1 iCF = (ITemp1) cObj;
// Create From-Fahrenheit-to-Celsius object:
ITemp2 iFC = (ITemp2) cObj;

String display = @"Please select a converter:
1. From Celsius to Fahrenheit.
2. From Fahrenheit to Celsius.
:";
Console.Write(display);

double F = 0, C = 0;
string selection = Console.ReadLine();
switch(selection)
{

case "1":

374 | Appendix

Console.Write("Please enter the Celsius temperature: ");
C = Convert.ToDouble(Console.ReadLine());
F = iCF.Convert(C);
Console.WriteLine("Temperature in Fahrenheit: {0:F2}",F);
break;

case "2":
Console.Write("Please enter the Fahrenheit temperature: ");
F = Convert.ToDouble(Console.ReadLine());
C = iFC.Convert(F);
Console.WriteLine("Temperature in Celsius: {0:F2}",C);
break;

default:
Console.WriteLine("Please select a converter.");
break;

}
}

}

/*
Sample Run #1:
Please select a converter:
1. From Celsius to Fahrenheit.
2. From Fahrenheit to Celsius.
:1 --> Keyboard input
Please enter the Celsius temperature: 0 --> Keyboard input
Temperature in Fahrenheit: 32.00

Sample Run #2:
Please select a converter:
1. From Celsius to Fahrenheit.
2. From Fahrenheit to Celsius.
:2 --> Keyboard input
Please enter the Fahrenheit temperature: 32 --> Keyboard input
Temperature in Celsius: 0.00
*/

// Drill 8-3.cs

// The as operator

using System;

public class MyClass
{

static void TestType(object o)
{

if (o as string != null)
Console.WriteLine ("The object \"{0}\" is a string.", o);

Answers to Drills | 375

http://www.abicomputer.net

else
Console.WriteLine ("The object \"{0}\" is not a string. It is

{1}.", o, o.GetType());
}

static void Main()
{

object o1 = "Hello, World!";
object o2 = 123;
object o3 = 12.34;
TestType(o1);
TestType(o2);
TestType(o3);

}
}

/*
Output:
The object "Hello, World!" is a string.
The object "123" is not a string. It is System.Int32.
The object "12.34" is not a string. It is System.Double.
*/

// Drill 8-4.cs

// Hiding interface members

using System;

interface IBase
{

int M1 {set; get;}
}

interface IDerived: IBase
{

// Declare a method that hides the property
// on the IBase interface:
new void M1();

}

class MyClass: IDerived
{

private int x;

// Explicit implementation of the property:
int IBase.M1
{

get { return x; }
set { x = value; }

376 | Appendix

}

// Regular implementation of the method:
public void M1()
{

Console.WriteLine("Hi, I am the M1 method!");
}

}

class MainClass
{

static void Main()
{

// Create a class object:
MyClass mc = new MyClass();

// Create an IBase object:
IBase mi = (IBase)mc;

// Use the property:
mi.M1 = 123;

// Call the method:
mc.M1();

// Display the property:
Console.WriteLine("I am the M1 property. My value is {0}.", mi.M1);

}
}

/*
Output:
Hi, I am the M1 method!
I am the M1 property. My value is 123.
*/

// Drill 9-1.cs

// Exception hierarchy

using System;

class MyClass
{

static void Main()
{

int x = 0;
int y = 10;
try
{

Answers to Drills | 377

http://www.abicomputer.net

int z = y/x;
}

// The most specific exception:
catch (DivideByZeroException e)
{

Console.WriteLine("Divide-by-zero Exception Handler: {0}", e);
}

// The less specific exception:
catch (ArithmeticException e)
{

Console.WriteLine("Arithmetic Exception Handler: {0}", e);
}

// Catch the general exception:
catch (Exception e)
{

Console.WriteLine("General Exception Handler: {0}", e);
}

// Continue the program:
Console.WriteLine("Program continues...");

}
}

/*
Output:
Divide-by-zero Exception Handler: System.DivideByZeroException:
Attempted to divide by zero.
at MyClass.Main()
Program continues...
*/

// Drill 9-2.cs

// Reading a text file

using System;
using System.IO;

class MyClass
{

static void Main()
{

StreamReader myFile = null;
try
{

myFile = new StreamReader("test.txt");
string myString = myFile.ReadToEnd();

378 | Appendix

Console.WriteLine(myString);
myFile.Close();

}
catch (FileNotFoundException)
{

Console.WriteLine("The file you are trying to open is not
found.");

}
catch
{

Console.WriteLine("General catch statement.");
}

}
}

/*
Output:
The file you are trying to open is not found.
*/

// Drill 9-3.cs

// Processing files using finally

using System;
using System.IO;

class MyClass
{

static void Main()
{

int counter = 0;
string line;
StreamReader file = null;

try
{

file = new StreamReader("test.txt");
while((line = file.ReadLine()) != null)
{

Console.WriteLine (line);
counter++;

}
}

catch (FileNotFoundException)
{

// If the file does not exist, you will get this message:
Console.WriteLine("The file you are trying to open is not

found.");

Answers to Drills | 379

http://www.abicomputer.net

}

catch
{

Console.WriteLine("General catch statement.");
}

finally
{

// If you opened a file with the name "test.txt" it will be
closed here.

if (file != null)
{

file.Close();
Console.WriteLine("The file is closed.");

}
}

}
}

/*
Sample Run 1 (if the file exists):
The file is closed.

Sample Run 2 (if the file does not exist):
The file you are trying to open is not found.

*/

// Drill 9-4.cs

// Fixing errors at run time

using System;

class MainClass
{

static void Main()
{

MyClass mc = new MyClass();
int x = 0;

try
{

mc.MyMethod(x);
}

catch
{

380 | Appendix

Console.Write("Please enter the denominator of the
division 'x': ");

x = Int32.Parse(Console.ReadLine());
mc.MyMethod(x);

}
}

}

class MyClass
{

public void MyMethod(int x)
{

int y = 10;
int z = 0;

try
{

z = y / x;
Console.WriteLine("The division: {0} / {1} = {2}", y, x, z);

}

// Catch the exception:
catch (DivideByZeroException ex)
{

Console.WriteLine("A divide-by-zero occurred:\n{0}",
ex.StackTrace);

// Rethrow the exception:
throw;

}
}

}

/*
Output:
A divide-by-zero occurred:

at MyClass.MyMethod(Int32 x)
Please enter the denominator of the division 'x': 2
The division: 10 / 2 = 5
*/

// Drill 10-1.cs

// Using delegates

using System;

// Declare a delegate:
delegate void MyDelegate(int n, string s);

Answers to Drills | 381

http://www.abicomputer.net

class MainClass
{

static void Main()
{

// Instantiate the class:
MyClass obj = new MyClass();

// Instantiate the delegate:
MyDelegate d = new MyDelegate(obj.MyMethod);

// Invoke the delegate:
d(123, "Jane Doe");

}
}

class MyClass
{

// The encapsulated Method:
public void MyMethod(int id, string name)
{

Console.WriteLine("ID = {0}\nName = {1}", id, name);
}

}

/*
Output:
ID = 123
Name = Jane Doe
*/

// Drill 10-2.cs

// Adding and removing delegates

using System;

// Declare a delegate:
delegate void MyDelegate();

class MyClass
{

public static void MyMethod1()
{

Console.Write("MyMethod #1 ");
}

public static void MyMethod2()
{

Console.Write("MyMethod #2 ");
}

382 | Appendix

public static void Main()
{

// Declare delegate object and reference MyMethod1:
MyDelegate d1 = new MyDelegate(MyClass.MyMethod1);

// Declare delegate object and reference MyMethod2:
MyDelegate d2 = new MyDelegate(MyClass.MyMethod2);

// Declare delegate d3 by adding d1 and d2.
// This will invoke both MyMethod1 and MyMethod2:
MyDelegate d3 = d1 + d2;

// Declare delegate d4 by removing d1 from d3. This will invoke
MyMethod2 only:

MyDelegate d4 = d3 - d1;

Console.Write("Invoking d1, referencing ");
d1();
Console.Write("\nInvoking d2, referencing ");
d2();
Console.Write("\nInvoking d3, referencing ");
d3();
Console.Write("\nInvoking d4, referencing ");
d4();

}
}

/*
Output:
Invoking d1, referencing MyMethod #1
Invoking d2, referencing MyMethod #2
Invoking d3, referencing MyMethod #1 MyMethod #2
Invoking d4, referencing MyMethod #2
*/

// Drill 10-3.cs

// Right-button simulation

using System;

public delegate void RightButtonDown(object sender, EventArgs e);

public class MouseClass
{

public static event RightButtonDown PressDown;

public static void OnPressDown()
{

Answers to Drills | 383

http://www.abicomputer.net

if (PressDown != null)
PressDown(new MouseClass(), new EventArgs());

}
}

class MyClass
{

public static void MouseHandler(object sender, EventArgs e)
{

Console.WriteLine("Message from the right button: 'Hey, you
pressed me down.' ");

}

static void Main()
{

MouseClass.PressDown += new RightButtonDown(MouseHandler);
MouseClass.OnPressDown();
MouseClass.PressDown -= new RightButtonDown(MouseHandler);

}
}

/*
Output:
Message from the right button: 'Hey, you pressed me down.'
*/

// Drill 11-1.cs

// Stack

using System;
using System.Collections;

public class MyClass
{

public static void Main()
{

// Initialize a stack object:
Stack myStack = new Stack();

myStack.Push("One");
myStack.Push("Two");
myStack.Push("Three");
myStack.Push("Four");

// Display all:
Console.Write("myStack elements are: ");
foreach (object obj in myStack)

Console.Write(obj + " ");

384 | Appendix

// Display first element:
Console.WriteLine("\nFirst element: {0} ", myStack.Peek());

// Pop one element:
myStack.Pop();

// Displays the count of elements:
Console.WriteLine("Number of elements is now: {0}",

myStack.Count);

// Display first element:
Console.WriteLine("First element: {0} ", myStack.Peek());

// Check if the stack contains the value "Four":
if(myStack.Contains("Four"))

Console.WriteLine("The stack contains the element 'Four'");

// Copy the contents to an array:
object[] myArr = myStack.ToArray();

// Display the array:
Console.WriteLine("Elements of the array are: ");
foreach (object obj in myArr)

Console.Write(obj + " ");
}

}

/*
Output:
myStack elements are: Four Three Two One
First element: Four
Number of elements is now: 3
First element: Three
Elements of the array are:
Three Two One
*/

// Drill 11-2.cs

// Queue

using System;
using System.Collections;

public class MyClass
{

public static void Main()
{

// Declare an int array:
int[] myIntArr = { 1, 2, 3, 4, 5 };

Answers to Drills | 385

http://www.abicomputer.net

// Initialize a Queue collection with the array elements:
Queue myQueue = new Queue(myIntArr);

// Declare a string array:
string[] myStrArr = { "one", "two", "three" };

// Add some string elements to the Queue collection:
foreach(string s in myStrArr)

myQueue.Enqueue(s);

// Display all:
Console.WriteLine("myQueue elements are: ");
foreach (object obj in myQueue)

Console.Write(obj + " ");

// Display the count of elements:
Console.WriteLine("\nThe number of elements is: {0}",

myQueue.Count);

// Display first element:
Console.WriteLine("The first element is: {0}",

myQueue.Peek());

// Remove one element:
myQueue.Dequeue();
Console.WriteLine("Removing one element...");

// Display the count of elements:
Console.WriteLine("The number of elements is now: {0}",

myQueue.Count);

// Copy the contents to an object array:
object[] myArr = myQueue.ToArray();

// Display the array:
Console.WriteLine("Elements of the array are: ");
foreach (object obj in myArr)

Console.Write(obj + " ");
}

}

/*
Output:
myQueue elements are:
1 2 3 4 5 one two three
The number of elements is: 8
The first element is: 1
Removing one element...

386 | Appendix

The number of elements is now: 7
Elements of the array are:
2 3 4 5 one two three
*/

// Drill 11-3.cs

// ArrayList

using System;
using System.Collections;

public class MyClass
{

public static void Main()
{

// Creates an ArrayList:
ArrayList myArrayList = new ArrayList();

// Initializes the list with some elements:
myArrayList.Add("SNL");
myArrayList.Add("Mad TV");
myArrayList.Add("Seinfeld");
myArrayList.Add("Everybody Loves Raymond");
myArrayList.Add("Married with Children");
myArrayList.Add("SNL");

// Displays the index of the first matching item starting at
index 2:

Console.WriteLine("The index of the first match for 'SNL' starting
at index 2: {0}",

myArrayList.IndexOf("SNL", 2));
}

}

/*
Output:
The index of the first match for 'SNL' starting at index 2: 5
*/

// Drill 11-4.cs

// SortedList

using System;
using System.Collections;

public class MyClass
{

public static void Main()
{

Answers to Drills | 387

http://www.abicomputer.net

// Create an ArrayList:
SortedList myList = new SortedList();

// Initialize the list with some elements:
myList.Add("003","SNL");
myList.Add("002","Mad TV");
myList.Add("004","Seinfeld");
myList.Add("001","Married with Children");
myList.Add("006","Everybody Loves Raymond");

// Display the index of the key "004":
Console.WriteLine("The index of the key \"004\" is: {0}",

myList.IndexOfKey("004"));

// Display the item that corresponds to key "004":
Console.WriteLine("The item that corresponds to the key

\"004\": {0}", myList["004"]);

// Search for "Seinfeld":
Console.WriteLine("Is Seinfeld in the list?: {0}",

myList.ContainsValue("Seinfeld"));
}

}

/*
Output:
The index of the key "004" is: 3
The item that corresponds to the key "004": Seinfeld
Is Seinfeld in the list?: True
*/

// Drill 11-5.cs

// Hashtable

using System;
using System.Collections;
public class MyClass
{

public static void Main()
{

// Creates a Hashtable object:
Hashtable ZipCodeHash = new Hashtable();

// Initializes the Hashtable.
ZipCodeHash.Add("98006", "Bellevue");
ZipCodeHash.Add("98201", "Everett");
ZipCodeHash.Add("98101", "Seattle");
ZipCodeHash.Add("98501", "Olympia");
ZipCodeHash.Add("98040", "Mercer Island");

388 | Appendix

ZipCodeHash.Add("98033", "Kirkland");

// Displays the contents of the Hashtable.
DisplayIt(ZipCodeHash);

// Display the city that corresponds to zip code "98006":
Console.WriteLine("The city that corresponds to zip code

\"98006\": {0}",
ZipCodeHash["98006"]);

}

public static void DisplayIt(Hashtable ZipCodeHash)
{

Console.WriteLine("Zip Code\tCity");
foreach (string k in ZipCodeHash.Keys)

Console.WriteLine("{0}\t\t{1}", k, ZipCodeHash[k]);
}

}

/*
Output:
Zip Code City
98501 Olympia
98101 Seattle
98006 Bellevue
98201 Everett
98040 Mercer Island
98033 Kirkland
The city that corresponds to zip code "98006": Bellevue
*/

// Drill 11-6.cs

// ListDictionary collection

using System;
using System.Collections;
using System.Collections.Specialized;

public class LDClass
{

public static void Main(string[] args)
{

// Create an empty ListDictionary object:
ListDictionary myLD = new ListDictionary();

// Initialize the ListDictionary collection:
myLD.Add("Learn Pascal", "$39.95");
myLD.Add("Learn Pascal in Three Days", "$19.95");
myLD.Add("Learn C in Three Days", "$19.95");

Answers to Drills | 389

http://www.abicomputer.net

myLD.Add("Learn J#", "$35.95");
myLD.Add("Learn C#", "$39.95");

// Display Values and Keys:
foreach (string key in myLD.Keys)

Console.WriteLine("Key: {0}", key);
Console.WriteLine();

foreach (string value in myLD.Values)
Console.WriteLine("Value: {0}", value);

Console.WriteLine();

// Display the collection:
DisplayIt(myLD);

}

public static void DisplayIt(ListDictionary myLD)
{

string s = "\t\t\t\t";
Console.WriteLine("Book{0}Price\n", s);
foreach (string key in myLD.Keys)

Console.WriteLine("{0, -32}{1}", key, myLD[key]);
}

}

/*
Output:
Key: Learn Pascal
Key: Learn Pascal in Three Days
Key: Learn C in Three Days
Key: Learn J#
Key: Learn C#

Value: $39.95
Value: $19.95
Value: $19.95
Value: $35.95
Value: $39.95

Book Price

Learn Pascal $39.95
Learn Pascal in Three Days $19.95
Learn C in Three Days $19.95
Learn J# $35.95
Learn C# $39.95
*/

390 | Appendix

// Drill 11-7.cs

// Prime numbers iterator

using System;
using System.Collections;

class MyClass
{

public IEnumerable MyIterator(int start, int end)
{

for (int i = start+1; i <= end; i++)
{

bool x = false;
for (int j = start + 1; j <= i - 1; j++)
{

if (i % j == 0) x = true;
}
if (x == false) yield return i;

continue;
}

}
static void Main(string[] args)
{

MyClass mc = new MyClass();

// Display prime numbers:
Console.WriteLine("Prime numbers between 1 and 10 are:");
foreach (int item in mc.MyIterator(1,10))
{

Console.WriteLine(item);
}

}
}

/*
Output:
Prime numbers between 1 and 10 are:
2
3
5
7
*/

// Drill 12-1.cs

// List<T> example

using System;
using System.Collections.Generic;

Answers to Drills | 391

http://www.abicomputer.net

class MyClass
{

static void Main()
{

// Declare the list:
List<string> myList = new List<string>();

// Build the list from the array:
myList.Add("Dylan");
myList.Add("Isabella");
myList.Add("Eve");
myList.Add("Angelina");

// Sorting the List:
myList.Sort();

// Display items:
Console.WriteLine("The sorted List items:");
DisplayIt(myList);

// Copy items to an array:
string[] myArray = myList.ToArray();

// Display the array elements:
Console.WriteLine("The array elements:");
foreach (string s in myArray)

Console.WriteLine(s + " ");
}

// Display the list:
static void DisplayIt(List<string> myL)
{

foreach (string name in myL)
{

Console.WriteLine(name);
}
Console.WriteLine();

}
}

/*
Output:
The sorted List items:
Angelina
Dylan
Eve
Isabella

392 | Appendix

The array elements:
Angelina
Dylan
Eve
Isabella
*/

// Drill 12-2.cs

// Dictionary collection

using System;
using System.Collections.Generic;

public class Example
{

public static void Main()
{

// Create an empty Dictionary collection:
Dictionary<string, double> myDictionary =

new Dictionary<string, double>();

// Add some elements to the dictionary.
// Assume keys are fruit and values are prices.
// Prices can be duplicates.
myDictionary.Add("Apples", 0.30);
myDictionary.Add("Oranges", 0.50);
myDictionary.Add("Cherries", 0.44);
myDictionary.Add("Peaches", 0.50);

// Create the KeyCollections object:
Dictionary<string, double>.KeyCollection kC =

myDictionary.Keys;
// List all keys (fruit types):
Console.WriteLine("The fruit types in the store are:");
foreach (string fruit in kC)
{

Console.WriteLine("{0}", fruit);
}

// Create the ValueCollections object:
Dictionary<string, double>.ValueCollection vC =

myDictionary.Values;
// List all values (prices):
Console.WriteLine("The fruit prices in the store are:");
foreach (double price in vC)
{

Console.WriteLine("{0:C}", price);
}

}

Answers to Drills | 393

http://www.abicomputer.net

}

/*
Output:
The fruit types in the store are:
Apples
Oranges
Cherries
Peaches
The fruit prices in the store are:
$0.30
$0.50
$0.44
$0.50
*/

// Drill 12-3.cs

// Generic LinkedList

using System;
using System.Collections.Generic;

public class LinkedList
{

public static void Main()
{

string[] myArray = { "Paul", "John", "Mary" };
LinkedList<string> myLinkedList = new LinkedList<string>(myArray);

// Build the list:
myLinkedList.AddLast("Tom");
myLinkedList.AddLast("Dick");
myLinkedList.AddLast("Harry");

myLinkedList.AddBefore(myLinkedList.Last, "and");

// Display the list:
Display(myLinkedList);

}

// Display a LinkedList object:
private static void Display(LinkedList<string> myLL)
{

foreach (string name in myLL)
{

Console.Write(name + " ");
}
Console.WriteLine();

394 | Appendix

// Display the number of items:
Console.WriteLine(
"The number of nodes is {0}.", myLL.Count);

}
}

/*
Output:
Paul John Mary Tom Dick and Harry
The number of nodes is 7.
*/

// Drill 12-4.cs

// Constraints

using System;
using System.Collections;
using System.Collections.Generic;

public class Employee
{

private string name;
private string id;

public string Name
{

get { return name; }
set { name = value; }

}

public string ID
{

get { return id; }
set { id = value; }

}
}

public class MyClass<T> where T: Employee
{

Stack<string> s = new Stack<string>();
public void MyMethod(T t)
{

s.Push(t.ID);
s.Push(t.Name);

for (int i = 0; i <= s.Count; i++)
Console.WriteLine(s.Pop());

}
}

Answers to Drills | 395

http://www.abicomputer.net

public class MainClass
{

static void Main()
{

MyClass<Employee> mc = new MyClass<Employee>();
Employee emp = new Employee();
emp.Name = "Francis";
emp.ID = "123ABC";
mc.MyMethod(emp);
Employee emp1 = new Employee();
emp1.Name = "Donn";
emp1.ID = "123XYZ";
mc.MyMethod(emp1);

}
}

/*
Output:
Francis
123ABC
Donn
123XYZ
*/

// Drill 12-5.cs

// Generic delegates

using System;

// Declare a delegate:
public delegate void MyDelegate<T1, T2>(T1 id, T2 name);

class MyClass
{

// Declare the encapsulated Method:

public void MyMethod(int id, string name)
{

Console.WriteLine("ID number = {0}\nName = {1}", id, name);
}

}

class MainClass
{

static void Main()
{

// Instantiate the class:
MyClass mc = new MyClass();

396 | Appendix

//MyDelegate<int, string> delg =
// new MyDelegate<int, string>(mc.MyMethod);
// or:
MyDelegate<int, string> delg = mc.MyMethod;

// Invoke the delegate:
delg.Invoke(911, "Angelina Abolrous");

}
}

/*
Output:
ID number = 911
Name = Angelina Abolrous
*/

Answers to Drills | 397

http://www.abicomputer.net

This page intentionally left blank.

Index

?? operator, 54-55

@ symbol, 59-60

[] operator, 58-59

A

abstract classes,

declaring, 136

using, 137-138

abstract keyword, 136

abstract methods,

declaring, 136

using, 137-138

abstract properties, using, 137-138

abstraction, 2

access, restricting, 103

access levels, 103-104

default, 104

of accessors, 110

using, 104-105

access modifiers, 103-104

accessors, 106

access levels of, 110

alias, attribute, 167

AND operators, 67

anonymous methods, 228-229

using, 231, 346-347

anonymous types, 340

using, 341-344

Append method, 58

ApplicationException class, 212

applications, see also web site applications

and Windows applications

compiling in Visual Studio, 312

creating console, 307-308

opening in Visual Studio, 313

starting in Visual Studio, 306-307

using events in, 235-238

arguments, using, 89-90

arithmetic operators, 39

arity, 295-296

array of arrays, 84

Array.Resize method, 93-94

Array.Reverse method, 91-92

Array.Sort method, 91-92

ArrayList class, 250

members, 251-252

using, 252-253

ArrayList collection, see ArrayList class

arrays, 84-85, 241

accessing elements in, 87-89

array of, 84

declaring, 85

implicitly typed, 344-345

initializing, 85

jagged, 84, 86

methods of, 91-93

one-dimensional, 84-85

properties of, 91

resizing, 93-94

reversing, 91-92

sorting, 91-92

two-dimensional, 84

as operator, using to test types, 184-185

assembly, 4-5

checking, 333-334

assignment operators, 40

attribute alias, 167

attributes, 166-167

combining, 169-170

B

base class, 119

hiding members of, 185-186, 189-192

overriding virtual methods on, 132-136

base keyword, 131-132

binary operators, 39

binding, 139

bitwise operators, 68

bool type, 33

boxing, 35-37

branching statements, 84

break statement, 78, 81, 82-83

399

http://www.abicomputer.net

built-in data types, 32

C

C#, 2, 3

code, 6-7

compiler, 10-12

compiling program in, 18

program architecture, 24

running program in, 18

vs. C++, 13-14

C# 2005, 14-15

accessor access levels, 110

anonymous methods, 228-229

contravariance, 233-234

covariance, 231-232

generics, 275

iterators, 269

namespace alias qualifier operator, 102

nullable types, 53

partial classes, 123-124

C# 3.0, 15

implicitly declaring array types, 344-345

initializing collections, 336-339

installing, 329-330

lambda expressions, 346-348, 349-350

C++, 2

struct, 155

switch construct, 74

this keyword, 115

vs. C#, 13-14

captured variables, see outer variables

case sensitivity, 19, 21

case statement, 72

casting, 47

char type, 47-48

converting, 48

characters, manipulating, 70

child class, see derived class

class keyword, 19, 98

class library, 3

classes, 1, 97

base, 119

creating generic, 292

declaring, 19, 98

derived, 119

instantiating, 98-99

partial, 123-124

static, 112

using abstract, 137-138

client, 103

CLR, 3-4

CLS, 4

code,

commenting, 18-19, 28-29

conventions for writing, 27

Code Snippets feature, 326-328

code view, 318

collections, 241-242

enumerating, 266-269

generic, 277

initializing, 336-339

specialized, 261

command-line environment, compiling

programs in, 11-12, 331

comments, 18-19

Common Language Runtime, see CLR

Common Language Specification, see CLS

Common Type System, see CTS

comparison operators, 65-66

concrete type, 276

Conditional attribute, 168

conditional expression, 74-75

console application, creating, 307-308

const keyword, 112-113

constant fields, 119

constants, 112-113

constraints,

types of, 298

using, 297-298, 298-299

constructed types, see generic types

constructors, 33-34, 113

declaring, 115

instance, 114-115

private, 116

static, 116-117

contextual keywords, 106-107

continue statement, 78, 81

contravariance, 233-234

conventions, code writing, 27

conversion, strings to numbers, 62-64

Convert class, 62-63

covariance, 231-232

CTS, 4

currency format, 49

Current property, 266

D

data, types of, 31

data types,

built-in, 32

converting, 23

differentiating, 44-46

400 | Index

simple, 32, 38

debugging, 195-197

decimal format, 49

decrement operator, 40-41

default keyword, 297

definite assignment, 34

delegate type, 228

delegates, 221

adding, 226, 228

associating with methods, 224-225

creating, 222

declaring, 221-222

generic, 300-301, 348

invoking, 222-223

multicasting, 226-227

removing, 226, 228

using, 223-224

derived class, 119

design view, 318

destructors, 121-123

Dictionary class, 282-283

members, 283-284

using, 284-285

Dictionary generic collection, see Dictionary

class

directives, using, 21-22

DLL, 76

DllImport attribute, 170

do-while loop, 82-83

vs. while loop, 83

dynamic binding, 139

Dynamic Linking Library, see DLL

E

early binding, 139

encapsulation, 2, 103

enum, 162

declaring, 162-163

using, 163-166

enum keyword, 162

enumeration type, see enum

enumerators, 265

equality operator, 58

escape characters, 56-57

event keyword, 235

events, 234

using, 234-238

Exception class, 199

exception handlers, organizing, 199-201

exceptions, 193

catching, 197-199

common, 194

expected, 205-207

handling, 201-204, 206-207

rethrowing, 214-217

throwing, 194-197

user-defined, 212-213

explicit interface implementation, 179-181

explicit type conversion, 47

expression trees, 351-352

expressions, evaluating, 43-44

extension methods, 339-340

F

fields, initializing, 98

finally keyword, 210

fixed-point format, 49-50

for loop, 77-78

nesting, 79-80

using, 78-79

foreach loop, 94-95

using, 95-96

formatting, 49-52

fully qualified names, 25-27

Func delegates, 349

using, 349-350

function members, 129

functions, see also methods

calling native, 170-171

G

garbage collector, 5

general format, 50

generalization, 120

generic classes,

creating, 292

using, 293

using generic methods in, 294-295

generic collections, 277

generic delegates, 300-301, 348

generic interfaces, 301-303

generic methods,

creating, 294

overloading, 295-296

using in generic classes, 294-295

generic types, 276, 292

generics, 275

benefits of, 304

limitations of, 304

get method, 106

GetEnumerator method, 266, 269-270

GetName method, 165

Index | 401

http://www.abicomputer.net

GetNames method, 165

GetType method, 43

goto statement, 84

H

Hashtable class, 257-258

members, 258-259

using, 259-260

Hashtable collection, see Hashtable class

HasValue property, 54

heap, 5, 35

hexadecimal format, 50

I

ICollection generic interface, 290

members, 290-291

IDE, 309-311

IDictionary generic interface, 291

members, 291-292

IEnumerable interface, 266, 269-270

IEnumerator interface, 266

if-else statement, 68-70

nested, 71

IL, 7-8

ILASM, 6

ILDASM, 6

implicit type conversion, 46

increment operator, 40-41

indexers, 148-149

using, 149-150

inheritance, 2, 119-121

benefits of, 130

demonstrating, 120-121

input, reading from keyboard, 61

Insert method, 58

instance constructors, 114-115

int type, 20

integral types, differentiating, 45-46

integrated development environment, see IDE

IntelliSense feature, 323-324

interface keyword, 176

interfaces, 175

declaring, 176

generic, 301-303

implementing, 177-179, 179-181

internal keyword, 104

is operator, using to test types, 182-183

IsLower method, 70

IsUpper method, 70

iterator block, 270

iterators, 269

using, 271-273

J

jagged array, 84, 86

JIT compilation, 4

just-in-time compilation, see JIT compilation

K

keyboard input, reading, 61

keywords,

abstract, 136

as, 184-185

base, 131-132

class, 19, 98

const, 112-113

default, 297

enum, 162

event, 235

finally, 210

interface, 176

internal, 104

is, 182-183

new, 33-34, 156, 185-189

operator, 150-151

out, 144-145

override, 130-131, 186-187

params, 145-148

partial, 123

private, 104

protected, 104

public, 104

readonly, 117

ref, 141, 143

return, 82-83, 106

static, 110-111

string, 56

struct, 156

this, 115, 148, 339

throw, 84, 193-194, 214

value, 106

var, 331

virtual, 130-131

where, 297-298

yield, 271

L

lambda expressions, 346

using, 346-348, 349-350

Language Integrated Query, see LINQ

late binding, 139

Length property, 91

402 | Index

libraries, using, 76-77

library file, using, 9-10

library project, 314

creating, 314-315

using, 315-316

linked list class, 264

using, 264-265

linked list collection, see linked list class

LinkedList class, 286-287

members, 287-288

using, 288-290

LinkedList generic collection, see LinkedList

class

LinkedListNode class, 286

members, 288

using, 288-290

LinkedListNode generic collection, see

LinkedListNode class

LINQ, 329-330

List class, 277-278

members, 278-279

using, 280-281

List generic collection, see List class

ListDictionary class, 261

members, 261-262

using, 262-263

ListDictionary collection, see ListDictionary

class

local variables, 22-23, 331-332

using, 332-333

logical operators, 67-68

loops, 77-84, 94-95

M

Main method, 19-20

rethrowing exception to, 214-217

manifest, 4-5, 8-9

metadata, 3, 4

methods, 19

anonymous, 228-229

associating delegates with, 224-225

extension, 339-340

overloading, 138-140, 295-296

overriding virtual, 132-136

passing parameters to, 140-142

passing structs to, 160-162

using abstract, 137-138

using anonymous, 231, 346-347

Microsoft Intermediate Language, see MSIL

and IL

modifiers, see keywords

modulus operator, 39

MoveNext method, 266

MSIL, 4

multicasting, 226-227

multi-dimensional arrays, see

two-dimensional arrays

N

named iterator, 270

names, fully qualified, 25-27

namespace alias qualifier operator, 102

namespaces, 3, 100

nesting, 100

using, 100-101

native functions, calling, 170-171

.NET applications, handling, 5-6

.NET Framework, 3

.NET methods, 91-93

using, 20-21, 164-166

.NET properties, 91

new keyword, 33-34

using, 156, 185-189

NOT operator, 68

nullable types, 53

numbers, converting strings to, 62-64

numeric data types, differentiating, 44-46

numeric format, 50

numeric variables, using, 23

O

object initializers, 334-336

object-oriented programming, 1-2

Obsolete attribute, 168

one-dimensional arrays, 84

declaring, 85

operator associativity, 41-43

operator keyword, 150-151

operators,

arithmetic, 39

assignment, 40

decrement, 40-41

increment, 40-41

modulus, 39

overloading, 150-152

precedence, 42

OR operators, 67-68

out keyword, using, 144-145

outer variables, 229

using, 229-230

override keyword, 130-131

using, 186-187

Index | 403

http://www.abicomputer.net

P

parameters, passing to methods, 140-142

params keyword, using, 145-148

parent class, see base class

Parse method, 63-64

partial classes, 123-124

using, 124-126

partial keyword, 123

pointer type, 31

polymorphism, 2, 130

primary operators, 40

private constructors, 116

private keyword, 104

project templates, 320, 323

properties, 106

read-only, 108-109

read-write, 108-109

using, 107-108, 109, 137-138

protected keyword, 104

public keyword, 104

Q

query expressions, using, 350-351

Queue class, 246

members, 247

using, 248-249

Queue collection, see Queue class

R

range variable, 351

Rank property, 91

Read method, 70

ReadLine method, 61, 205

readonly keyword, 117

read-only fields,

declaring, 117-118

working with, 118-119

read-only properties, 108-109

ReadToEnd method, 205

read-write properties, 108-109

real types, differentiating, 44

ref keyword, 141

using, 143

Refactor feature, 326-328

reference types, 31, 35

converting to value types, 35-37

reflection, 166

relational expressions, using, 66

relational operators, 65-66

reserved words, 107

Reset method, 266

results,

displaying, 20-21

formatting, 49-52

return keyword, 82-83, 106

S

scientific format, 50

selection statements, 65

set method, 106

short-circuit evaluation, 67

simple data types, 32, 38

single-dimensional arrays, see

one-dimensional arrays

smart tag menu, 324

SortedList class, 254

members, 255

using, 256-257

SortedList collection, see SortedList class

source collection, 351

specialization, 120

stack, 5, 33

Stack class, 242-243

members, 243

using, 244-246

Stack collection, see Stack class

StackTrace property, 217

using, 217-219

Standard Query Operators, 348

static binding, 139

static class, 112

static constructors, 116-117

static keyword, 110-111

StreamReader class, 205

StreamWriter class, 206

string keyword, 56

string operators, 57-60

string type, 22, 56

StringBuilder class, 58

strings,

concatenating, 57-58

converting to numbers, 62-64

declaring, 56

initializing, 56

using, 56

struct keyword, 156

structs, 97, 155

declaring, 156

passing to methods, 160-162

using, 156-160

subclass, see derived class

superclass, see base class

404 | Index

Swap method, 141-142

using, 295-296

switch construct, 71-74

System.Array class, 85

System.Attribute class, 167

System.Collections.Generic namespace, 276

System.Exception class, 193

System.GC.Collect method, 5

System.Nullable structure, 54

T

target elements, 167

text files,

appending, 206

reading, 205

writing, 206

this keyword, 115, 148, 339

throw keyword, 84, 193-194, 214

ToString method, 23

overriding, 152-153

try-catch statement, 193

using, 197-199

try-catch-finally statement, 194

using, 210-211

try-finally statement, 194

using, 208-209

two-dimensional arrays, 84, 86

type argument, 276, 292

type conversion, 46-47

explicit, 47

implicit, 46

type parameter, 276, 292

types, 3

anonymous, 340-344

concrete, 276

converting, 46-47

generic, 276

initializing, 334-336

nullable, 53

retrieving, 43

testing, 182-185

using default, 297

U

unary operators, 40

unboxing, 35-37

unions, emulating, 172-173

unsafe code, 31

user-defined exceptions, 212-213

using directive, 21

V

value keyword, 106

Value property, 54

value types, 31, 33

converting to reference types, 35-37

default values of, 34

var keyword, 331

variables,

captured, 229

initializing, 23, 33-34

local, 22-23

numeric, 23

outer, 229-230

range, 351

versioning, 186-189

virtual keyword, 130-131

virtual methods, overriding, 132-136

Visual Studio,

Code Editor, 323-328

compiling applications in, 312

Error List window, 311

installing, 331

opening existing application in, 313

Properties window, 311

Solution Explorer, 309-310

Start Page, 305-306

starting application in, 306-307

using, 12

void type, 19

W

web site applications, 320-321

creating, 321-322

executing, 322

where keyword, 297-298

while loop, 80-81

do-while loop, 83

Windows applications,

creating, 316-318

running, 318-319

using multiple forms in, 319

Write method, 20

WriteLine method, 20, 23-24

using, 49-52

X

XML tags, adding to code, 28-29

Y

yield return statement, 269-270, 272

yield statement, 271

Index | 405

http://www.abicomputer.net

Visit us online at www.wordware.com for more information.

Use the following coupon code for online specials: csharp0357

Looking for more?
Check out Wordware’s market-leading

Applications Library featuring the following titles.

SQL for Microsoft Access
1-55622-092-8 • $39.95
6 x 9 • 360 pp.

Camtasia Studio 4: The
Definitive Guide
1-59822-037-3 • $39.95
6 x 9 • 600 pp.

Learn FileMaker Pro 9
1-59822-046-2 • $39.95
6 x 9 • 550 pp.

Advanced SQL Functions in
Oracle 10g

1-59822-021-7 • $36.95
6 x 9 • 416 pp.

FileMaker Web Publishing:
A Complete Guide to Using
the API for PHP
1-59822-041-1 • $49.95
6 x 9 • 472 pp.

Introduction to Game Pro-
gramming with C++
1-59822-032-2 • $44.95
6 x 9 • 392 pp.

Access 2003 Programming
by Example with VBA,
XML, and ASP
1-55622-223-8 • $39.95
6 x 9 • 704 pp.

Word 2003 Document Auto-
mation with VBA, XML, XSLT
and Smart Documents
1-55622-086-3 • $36.95
6 x 9 • 464 pp.

Excel 2003 VBA Programming
with XML and ASP
1-55622-225-4 • $36.95
6 x 9 • 968 pp.

Microsoft Excel Functions
& Formulas
1-59822-011-X • $29.95
6 x 9 • 416 pp.

FileMaker Pro Business
Applications
1-59822-014-4 • $49.95
6 x 9 • 648 pp.

Managing Virtual Teams:
Getting the Most From Wikis, Blogs,

and Other Collaborative Tools

1-59822-028-4 • $29.95
6 x 9 • 400 pp.

Essential LightWave v9
1-59822-024-1 • $49.95
6 x 9 • 992 pp.

LightWave v9 Texturing
1-59822-029-2 • $44.95
6 x 9 • 648 pp.

LightWave v9 Lighting
1-59822-039-X • $44.95
6 x 9 • 616 pp.

